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Abstract: Intracellular GSH is the most abundant non-protein biothiol and acts as a central antioxidant
to defend against aging toxins and radicals. Meanwhile abnormal level of intracellular GSH
concentration is directly related to some diseases. In this case, detecting intracellular GSH rapidly
and sensitively is of great significance. We synthesize a simple fluorescent probe (named GP) which
can discriminate GSH from Cys (cysteine) or Hcy (homocysteine) and presents a 50-fold fluorescence
increasing. The response time of GP to GSH was only 5 min and the product GO (the product of GP
after reacting with GSH) after reacting with GSH possesses a larger Stokes shift for 135 nm than that in
reported work. Probe GP can detect intracellular effectively and shows obvious yellow fluorescence.
Briefly, probe GP can detect intracellular GSH rapidly and effectively both in vitro and in living cells.
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1. Introduction

Biothiols containing glutathione (GSH), cysteine (Cys) and homocysteine (Hcy) play significant
roles in maintaining the normal redox status in biological systems [1–3]. However, GSH, a tripeptide
which is made up of glutamic acid, cysteine, and glycine [4], is the most abundant non-protein
biothiol and acts as a central antioxidant to defend against aging toxins and radicals [5,6]. Sulfhydryl
reduced form (GSH) and disulfide oxidized form (GSSG) are two existing forms in vivo and they
maintain the redox homeostasis via the transformation between GSH and GSSG [7]. The concentration
of GSH ranges from micromole in saliva, plasma, and other body fluids to millimole in cells [8].
Meanwhile, an abnormal level of GSH concentration is directly related to some diseases, such as
retarded children, hepatic impairment, and even serious diseases such as Alzheimer’s disease [9],
cardiovascular diseases [10], diabetes mellitus [11], cancer, etc. As the structure of GSH was extremely
similar to that of Cys or Hcy, it is a tough mission to discriminate GSH from Cys and Hcy.

Familiar methods to detect GSH mainly include electrochemistry [12], colorimetry [13],
surface-enhanced Raman scattering [14], magnetic resonance imaging [15], mass spectrometry [16],
electrochemical luminescence [17], and fluorescence spectroscopy [18]. Among those detection methods,
fluorescent analysis is a much simpler, more efficient and lower destructive method and detecting limits,
which can be applied in living cells and even in vivo to imaging bio-thiols. In this case, development
of a stable, sensitive, efficient and fast responsive fluorescent probe to GSH is meaningful both in vitro
and in vivo.
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Fluorescent probes can be classified into two categories: inorganic materials and organic molecules.
Inorganic materials applied to detect GSH mainly take advantage of the reduction properties of GSH [19].
Most organic fluorescent probes which were applied to detect GSH showed high nucleophilicity,
which were named “reaction based probes”. Reaction based probes are mainly related to cleavage
of sulfonate ester [20], acryloyl ester [7] and aryl substitution reactions [5,21,22], disulfide bond
cleavage [23] and cyclization [24], and Michael additions [25,26]. As organic molecules are easy to
modify, fluorescent probes with different emission wavelengths were synthesized and applied to cell
imaging. Benzothiazoles derivatives have rigid planar structure, high fluorescence quantum yield,
low toxicity, etc., which have important applications in photoelectric materials [27] and fluorescent
probes [28–31]. The reported benzothiazole-based derivatives mainly emit blue or green light, which is
limited for application in cell imaging. Therefore, it is of great significance to develop benzothiazole-based
probes with longer fluorescence emission wavelength.

In this work, we synthesized a benzothiazole-based derivative GP that showed an “off–on” fluorescent
change as coming across GSH in a buffer solution system (as showed in Scheme 1). Fluorescence intensity
could reach the plateau after incubating in a water bath for 5 min, which presented a relatively fast
responding speed. In addition, the limit of detection was 0.36 µM. The fluorescent responding product
(GO) showed the largest Stokes shift for about 135 nm until now. We applied the probe GP to detect
GSH in human breast cancer cells (MDA-MB-231) by a confocal laser scanning microscope and showed
an obvious fluorescence enhancement to GSH compared with that in cells pretreated with a quenching
agent of bio-thiols. The probe GP realized the fast detecting GSH and imaging GSH in living cells.

Scheme 1. Molecular structure of probe GP, detection mechanism and the corresponding reaction
product GO.

2. Materials and Methods

2.1. Materials

Regular reagents were acquired from suppliers and used without further purification.
2-Cyano-6-Hydroxybenzothiazole, 2-aminobenzenethiol, N-Ethylmaleimide, acetonitrile,
2,4-Dinitrofluorobenzeneand Sate dry dimethyl formamide (DMF) were purchased from a
general reagent. K2CO3, CH2Cl2, Et3N, and other common reagents were purchased form Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Physical Measurements and Instrumentation

Nuclear Magnetic resonance (1H NMR (400 MHz) and 13C NMR (100 MHz)) were tested on a
JEOL instrument (JEOL, Tokyo, Japan). Proton chemical shifts are reported in parts per million with
tetramethylsilane (TMS) as the reference. High-resolution mass spectra (HRMS) were successfully
obtained by an Agilent Technologies 6200 series TOF/6500 series Q-TOF B.06.01 (B6157) instrument
(California, USA) with the negative electro-spray ionization (ESI) ionization mode. A Shimadzu
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RF-6000 fluorescent spectrophotometer (Kyoto, Japan) was applied to test the fluorescent spectra.
CLSM images were performed on a Zeiss LSM 710 (Jena, Germany).

2.3. Synthesis and Characterization of Probe GP

Compound 1 was synthesized according to reported method [32]. The synthesis equation of
compound GP was showed as Scheme 2. In addition, 50 mg of compound 1 (0.18 mmol) was dissolved
in DMF. 2,4-Dinitrofluorobenzene (36 mg, 0.19 mmol) and three drops of Et3N were added into
the system, and the mixture was stirred at room temperature for 5 h. In the reaction process, pale
yellow precipitation appeared. After the reaction finished, a pale yellow product (36.5 mg, 0.81 mmol,
yield = 45%) was obtained via filtration. 1HNMR (CDCl3, 400 MHz): δ 8.86 (d, J = 2.6 Hz, 1H), 8.46
(dd, J = 9.2 Hz, 1H), 8.25 (d, J = 8.9 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H), 8.09 (d,
J = 2.3 Hz, 1H), 7.60 (dt, J = 27.3 Hz, 7.4 Hz, 2H), 7.48 (dd, J = 8.9 Hz, 2.4 Hz), 7.43 (d, J = 9.2 Hz,
1H). 13CNMR: δ 162.27, 162.18, 154.69, 153.68, 153.65, 151.40, 143.14, 140.88, 137.66, 135.90, 129.88,
127.65, 127.49, 125.86, 124.20, 123.10, 122.03, 121.50, 120.36, 113.88. HRMS (ESI, m/z): calculated for
C20H10ClN4O5S2 [M + Cl−] = 484.97866, found 484.97864.

Scheme 2. Synthesis procedure of probe GP.

2.4. Preparation of Samples and Test Solution

As the aromatic planner structure of probe GP, the solubility was poor in water or phosphate
buffer solution (PBS), compound GP was dissolved in dimethylsulfoxide (DMSO) and got the stocked
solution of which the concentration was 10−3 mol·L−1. GSH, Cys, Hcy, and other amino acids were
dissolved in distilled water to get a stock solution. The testing solution was obtained via diluting
the stocked solution with PBS/DMSO (v:v = 7:3). The PBS concentration was 0.02 M and PH = 7.4.
The mixture of probe EP and esterase was kept in the water bath at 37 ◦C for different lengths of time.
In addition, the fluorescent testing was conducted with 370 nm as the excitation wavelength.

2.5. Calculating Method of LOD

The limit of detection (LOD) was calculated according to the following Formula:

LOD =
3σ
S

, (1)

In Formula (1), σ is the standard deviation of fluorescence intensity measurements for blank
sample and testing number n = 14; and S is the slope of liner fitting equation.

2.6. Confocal Laser Scanning Microscope (CLSM) Imaging

Confocal Laser Scanning Microscope (CLSM) images were conducted on a Zeiss LSM 710.
The fluorescent images were collected from 530 nm to 600 nm with 405 nm laser as the excitation wavelength.

3. Results and Discussion

3.1. Preparation and Photo Physical Property

Probe GP was synthesized with compound 1 and 2,4-Dinitrofluorobenzene as the reported
method [33]. With the dinitrophenyl group in molecule GP, photoelectron transfer (PET) [34–36]
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appeared between the dinitrophenyl group and benzothiazole fluorescent group, so no fluorescence
appeared. As the nucleophilic replacement between GSH and probe GP in the buffer system (PBS
(0.05 M): DMSO = 7:3, pH of PBS was 7.4), a strong yellow fluorescence appeared. Fluorescent emission
and excitation spectra of GO (reaction product of GP solution with GSH) were tested, and it showed
that the Stokes shift of GO was about 135 nm, which was a larger Stokes shift than those in reported
references (Table S1) Fluorescence intensity of the GP solution showed a 50-fold increase (Figure 1a)
after reacting with abundant GSH. As structures of cysteine (Cys) and homocysteine (Hcy) were similar
to that of GSH, probe GP showed a slight increase after reacting with Cys (Figure 1b) or Hcy (Figure 1c).
The fluorescence enhancement of GP with adding GSH, Cys, or Hcy, respectively, showed in Figure 1d,
it is obvious that probe GP was more sensitive to detecting GSH with abundant incubating time
(60 min). The limit of detection (LOD) could reflect the detection sensitivity of probe. LOD of GP was
calculated as 0.36 µM (showed in Table S1).

Figure 1. Normalized fluorescent spectra of probe GP (10 µM) in PBS (pH = 7.4, 0.05 M): DMSO = 7:3
after adding different concentrations (0 µM–1000 µM) of GSH (a), Cys (b), or Hcy (c) and incubating
the mixture at 37 ◦C for 60 min. Fluorescence intensity at 569 nm of a mixture containing 10 µM
GP and biothiols changes as the concentration of biothiols (GSH or Cys or Hcy) increased gradually.
(d) Ex = 370 nm.

The fluorescence intensity of probe GP with abundant GSH, Cys, or Hcy was tested as incubated
in a 37 ◦C water bath for different lengths of time, and the variation trend was showed in Figure 2.
We found that fluorescence intensity of a mixture system containing probe GP and GSH increased to
the platform point after incubating in a 37 ◦C water bath for 5 min, whereas the mixtures containing
probe GP and Cys or Hcy showed sluggish fluorescent enhancement after incubating in a 37 ◦C water
bath for 60 min. In this case, we can discriminate GSH from Cys/Hcy with probe GP after incubating
for a short period of time (5 min) in a water bath.
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Figure 2. The normalized fluorescence intensity at 569 nm containing 10 µM GP and 1000 µM biothiols
(GSH or Cys or Hcy) in PBS (pH = 7.4): DMSO (v:v = 7:3) mixed solvent change as the incubating time
prolonged at 37 ◦C. Ex = 370 nm.

To verify if the fluorescent enhancement of mixture containing GP and GSH was caused by
nucleophilic substitution of biothiols, we try to quench the biothiols with N-Ethylmaleimide (NEM,
a quenching agent of bio-thiols through thiol alkylation). Different concentrations of NEM and 1000 µM
GSH or Cys or Hcy were added to the buffer solution of probe GP, and obvious fluorescence quenching
appeared as showed in Figure 3. In addition, 800 µM NEM could quench GSH (1000 µM) absolutely,
while only 400 µM NEM was needed to quench Cys (1000 µM) or Hcy (1000 µM) completely. It may be
that, due to the low chemical reactivity of Cys and Hcy with probe GP, the required concentration
of NEM was low. This result indicated that the fluorescent enhancement was indeed caused by a
substitution reaction of GSH with probe GP.

Figure 3. Normalized fluorescent intensity of probe GP (10 µM) in PBS (pH = 7.4)/DMSO mixed
solvent (v:v = 7:3) containing NEM and 1000 µM biothiols ((a): GSH, (b): Cys, (c): Hcy) changed as
the concentration of NEM increased from 0 µM to 1000 µM. The fluorescence intensity of probe GP at
569 nm changed as the concentration of biothiols increased (d). Ex = 370 nm.
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3.2. Selectivity Experiment

In general, fluorescent probes can be applied in cells to image target molecules. As the intracellular
environment is complex and contains various proteins, amino acids, and ions, the selectivity of probe
GP was necessary to evaluate the applicability. Different species were added into the GP solution
and incubated mixture in a 37 ◦C water bath for 60 min; then, fluorescent spectra were conducted.
As showed in Figure 4, Cys, Hcy, and H2S showed slight distractions while showing nearly no
fluorescence enhancement after adding other amino acids and ions. This result indicated that probe
GP showed high selectivity to other species in cells.

Figure 4. Selectivity of GP to other amino acids or ions. Fluorescent spectra (a) were conducted after
adding different 1000 µM amino acids or ions into the solution of probe GP (10 µM). The fluorescence
intensity at 569 nm was plotted as the bar graph (b). 0–37 represent Blank, GSH, Hcy, Cys, H2S, BSA,
Phe, Ala, Gly, Glu, Gln, Cystine, Arg, Lys, Tyr, Leu, Pro, Trp, Ser, Thr, Asn, His, Ca2+, Cu2+, Fe2+, K+,
OH−, Mg2+, Na+, HCO3

−, Cl−, I−, Br−, NH4
+, Sn2+, Zn2+, and PO4

3−, HPO4
2−. Different amino acids

and ions were added into the solution of GP in PBS (pH = 7.4)/DMSO (7:3) and incubated in a 37 ◦C
water bath for 60 min.

3.3. Cell Imaging Experiment and Its Application in the Analysis of Cell Healthy Status

We must test the toxicity of probe GP to MDA-MB-231 cells via the methyl thiazolyl tetrazolium
(MTT) method before applying it to cell imaging. As showed in Figure 5, cell viability was still above
90% after incubating cells with different concentrations of probe GP (0–100 µM) for 24 h at 37 ◦C. This
result indicated that probe GP was nearly nontoxic for MDA-MB-231 cells.

Figure 5. Cell toxicity of probe GP to MDA-MB-231 cells. Cells were incubated in cell culture fluid
containing different concentrations (range from 0 µM to 100 µM) of probe GP at 37 ◦C for 24 h. The cell
viability was tested via the MTT method.
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Cell imaging of GP to cellular GSH was conducted in MDA-MB-231 cells. MDA-MB-231 cells were
incubated in the mixture of PBS (pH = 7.4): DMSP = 99.1 (v:v) containing 10 µM probe GP for 30 min
at 37 ◦C and then imaging was performed on a Laser Scanning Confocal Microscope (LSCM). Cells
incubated with a 10 µM probe GP presented visible fluorescence in the yellow channel (Figure 6a1–a3).
Furthermore, fluorescence in cells became more obvious (Figure 6b1–b3) when cells were pretreated
with 100 µM GSH for 30 min and then incubated with 10 µM GP for 30 min at 37 ◦C. This was due
to the pretreating of GSH to cells giving rise to the intracellular GSH concentration; the intracellular
fluorescence induced by GSH become more obvious consequently. We evaluated the quenching effect
of NEM to intracellular GSH. Cells were pretreated with 1 mM NEM for 30 min and then incubated
with 10 µM probe GP. As showed in Figure 6c1–c3, fluorescence almost decreased to extinction and
this indicated that NEM indeed quenched the intracellular GSH. These cell imaging experiment results
showed that probe GP can image the intracellular GSH effectively.

Figure 6. Confocal Laser Scanning Microscopy (CLSM) images of MDA-MB-231 cells incubated in PBS
(pH = 7.4) containing 10 µM GP (a1–a3) for 30 min. MDA-MB-231 cells were pretreated with 100 µM
GSH (b1–b3) or 1 mM NEM (c1–c3) for 30 min firstly and incubated in PBS containing 10 µM GP for
30 min. (a1,b1,c1): Fluorescent channel (570 nm ± 30 nm); (a2,b2,c2): Bright field; (a3,b3,c3): Overlay
images of fluorescent channel and bright field. Ex = 405 nm; Scale bar = 10 µm.

4. Conclusions

In this work, we synthesized a GSH responding probe GP and characterized the structure via
NMR and HRMS. Probe GP can discriminate GSH from Cys or Hcy and shows a 50-fold fluorescence
increasing at 569 nm when adding GSH into a solution of GP in PBS/DMSO (v:v = 7:3) mixed solvent.
Probe GP showed a short response time and fluorescence intensity reached the platform after incubating
the mixture of GP and GSH at 37 ◦C for 5 min. The product of GP reacting with GSH possesses a large
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Stokes shift for 135 nm. Probe GP has to be applied to detect intracellular GSH and presents obvious
fluorescence in MDA-MB-231 cells. This indicates that GP can discriminate GSH from extremely
similar biothiols (Cys and Hcy) and be applied as a GSH fluorescence probe both in vitro and in living
cells. As a fluorescent probe that emits near-infrared fluorescence is more appropriate to image in cells
or tissues, further work is underway to shift fluorescence wavelength to near infrared region.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5348/s1,
Figure S1: Excitation (Ex) and emission (Em) spectra of GO, which is the product of GP (10 µM) reacting with
GSH (1000 µM), Table S1: Limit of detection (LOD), responding time and Sticks shift of reported probes for GSH,
Figure S2: 1HNMR of compound GP was conducted in d6-DMSO, Figure S3: 13CNMR of compound GP in
d6-DMSO, Figure S4: HRMS of compound GP.
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