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Abstract: The Internet, with the rise of the IoT, is one of the most powerful means of propagating
a terrorist threat, and at the same time the perfect environment for deploying ubiquitous online
surveillance systems. This paper tackles the problem of online surveillance, which we define as the
monitoring by a security agency of a set of websites through tracking and classification of profiles
that are potentially suspected of carrying out terrorist attacks. We conduct a theoretical analysis in
this scenario that investigates the introduction of automatic classification technology compared to the
status quo involving manual investigation of the collected profiles. Our analysis starts examining the
suitability of game-theoretic-based models for decision-making in the introduction of this technology.
We propose an adversarial-risk-analysis (ARA) model as a novel way of approaching the online
surveillance problem that has the advantage of discarding the hypothesis of common knowledge.
The proposed model allows us to study the rationality conditions of the automatic suspect detection
technology, determining under which circumstances it is better than the traditional human-based
approach. Our experimental results show the benefits of the proposed model. Compared to standard
game theory, our ARA-based model indicates in general greater prudence in the deployment of
the automatic technology and exhibits satisfactory performance without having to relax crucial
hypotheses such as common knowledge and therefore subtracting realism from the problem,
although at the expense of higher computational complexity.

Keywords: adversarial risk analysis; online surveillance; counterterrorism; threat identification;
Internet of things

1. Introduction

The global threat of terrorism is currently one of the greatest challenges facing our society.
Since 11 September, Western countries have been allocating more effort and resources to fight terrorism
on the national and international scales. However, the resources for the increased security to counter
potential large-scale attacks are limited.

In this context, the Internet is one of the most powerful means of propagating a threat with lethal
effects, especially in the case of jihadist terrorism. In fact, a quantitative study [1] of 178 individuals
detained in Spain between 2013 and 2016 for activities related to jihadist terrorism shows that there
are two crucial factors for understanding their radicalization: (1) face-to-face or online contact
with a radicalization agent; and (2) the existence of previous social links with other radicalized
individuals. With the rise of the Internet of things (IoT), where billions of online objects embedded
in our homes (e.g., smart grid technologies [2]), workplaces and cities will collect and analyze our
data, the risk to national security is exacerbated while it opens up a new horizon for more invasive
online surveillance technologies. We highlight, on the one hand, the emerging and recent deployment
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of vehicular ad hoc networks (VANETs) and specifically the vehicle cloud computing, a paradigm
of cooperative mobile communications [3,4]. This type of networks represent a challenge in security
and privacy since they require sophisticated mechanisms to protect against attacks coming from users
connected to the network with identical privileges. On the other hand, wireless sensor networks
are of crucial importance in the protection of critical infrastructures. The continuous monitoring of
these infrastructures and the detection of malicious activity in the traffic of sensor networks requires
advances that adapt to unknown attacks [5].

The revelations by NSA whistleblower Edward Snowden revealed the scale and extent of digital
surveillance, particularly on the Internet, by different security and intelligence agencies [6]. In this
work, we focus on the problem of online surveillance faced by a security agency that monitors a set of
specific websites by tracking and classifying profiles that are potentially suspected of carrying out
terrorist attacks. While there is an extensive body of research in decision-making models and risk
analysis for fighting terrorism (We refer the reader to [7] for a complete review of the field.), to the best
of our knowledge the problem above of online surveillance with counterterrorist purposes, understood
as a game between opponents who want to maximize their benefits, has not been tackled yet. Although
it is a controversial issue, our interest is to rationalize the matter from a strictly scientific point of view
and, in any case, raise new questions and challenges.

The aim of this work is to conduct a theoretical analysis of the rationality conditions implied
in the deployment of an online surveillance system for detecting and neutralizing potential terrorist
threats on the Internet. We consider an approach for evaluating the problem based on adversarial risk
analysis (ARA), whose bases are found in [8]. This approach supposes a new perspective of decision
analysis, providing a robust analytical framework that is a hybrid between game theory and risk
analysis. Its objective is to face precisely the risks derived from the intentional actions of intelligent
adversaries, which increase security risks, and uncertain results.

We analyze the feasibility of using a technology based on an automatic suspect detection system
that covers the functions of investigators who inspect certain websites. That is to say, we aim to
determine under which circumstances the tracking and automatic detection model is better than the
traditional model (“status quo”) in which the collected user profiles are inspected manually. Our work
also allows us to limit the paradox of the false positive [9], which is a controversial problem of mass
surveillance systems, since our approach is selective and does not infer errors from a broad reference
population. Our objective is to carry out a rigorous analysis of the problem.

Next, we summarize the major contributions of this work:

e  We analyze the suitability of decision-making models based on standard game theory and ARA,
to tackle the problem of online surveillance. Our analysis contemplates the case of sequential
defense-attack models, and examines the fulfillment of certain requirements on the defender and
attacker’s side.

o  We propose an ARA-based model to investigate the problem of online surveillance and analyze
the rationality conditions of an automatic threat detection system. Our analysis constitutes
a preliminary step towards the systematic application of ARA, in that it aims to establish a point
of departure and connection between the analytical framework provided by ARA, a young field
within risk analysis, and the problem of online surveillance.

o  We conduct an experimental evaluation of the proposed decision-making model and illustrate the
typical problem solving approach used in a real case. Our evaluation methodology, in fact, may
serve as a template for real problems, which would basically add modeling and computational
complexities. Furthermore, we carried out a sensitivity analysis and provide a thorough
comparison with a standard game-theoretic approach under assumptions of common knowledge.
Our experiments showed that our ARA-based model outperforms the standard game-theoretic
approach, although at the expense of more costly solutions, from a computational point of view.

e  The connection between the ARA models and online counterterrorism sheds new light on the
understanding of the suitability of such decision-making models when it comes to applying them
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to the online surveillance problem. We also hope to illustrate the riveting intersection between
the fields of ARA and threat intelligence, in an attempt towards bridging the gap between the
respective communities.

The remainder of this paper is organized as follows. Section 2 provides some background on
online third-party tracking and establishes our assumptions about the surveillance system. Section 3
describes the online surveillance problem tackled in this work. Section 4 examines the appropriateness
of decision-making models based on standard game theory and ARA, to address the problem of online
surveillance. Section 5 proposes an ARA-based model for sequential decision-making in the context of
online surveillance. Section 6 conducts an experimental evaluation of the proposed model. Section 7
discusses several aspects of our model in relation to the experimental results. Finally, conclusions are
drawn in Section 8.

2. Background and Assumptions

The purpose of online third-party tracking is behavioral advertising [10,11], that is to say, showing
ads based on the user’s past browsing activity. In this section, we first give a brief overview of the
main actors of the advertising ecosystem. This will be necessary to understand our assumptions about
the online surveillance system assumed in this work, described below in Section 2.2.

2.1. Background in Online Third-Party Tracking

The online advertising industry is composed by a considerable number of entities with very
specific and complementary roles, whose ultimate aim is to display ads on websites. Publishers,
advertisers, ad platforms, ad agencies, data brokers, aggregators and optimizers are some of the parties
involved in those processes [12]. Despite the enormous complexity and constant evolution of the
advertising ecosystem, it is usually characterized in terms of publishers, advertisers and advertising
platforms [13-17].

In this simplified albeit comprehensive terminology, the third-party tracking and advertising is
carried out as follows. As users navigate the Web and interacts with websites, they are observed by
both “first parties", which are the sites the user visits directly, and “third parties”, which are typically
hidden trackers such as ad networks embedded on most web pages. The former parties are often
known as publishers and the latter as ad platforms.

Tracking by third-parties begins with publishers embedding in their sites a link to the ad
platform(s) they want to work with. The upshot is as follows: when a user retrieves one of those
websites and loads it, their browser is immediately directed to all the embedded links. Then, through
the use of third-party cookies, web fingerprinting or other tracking technologies, the ad platform is
able to track the user’s visit to this and any other site partnering with it. Third parties can learn not
only the webpages visited and hence its content, but also the user’s location through their IP address,
and, more importantly, their web-browsing interests, also known as navigation trace.

2.2. Assumptions

In this section, we describe our assumptions about the surveillance system deployed by a security
agency for detecting possible terrorist threats on websites of interest. We acknowledge that a number
of security and privacy aspects would need to be considered if such an online surveillance technology
were to be deployed in real practice; among those aspects, the exchange of information between the
security agency and the tracking/advertising platform(s) would be critical. However, the practical
details of this system and possible anti-tracking countermeasures are beyond the scope of this work.
The purpose of our analysis is not to explore these details but rather to study the rationality conditions
of deploying such an online surveillance technology.

First, we suppose that a security agency wants to develop a web infrastructure on which to apply
an online automatic threat detection system. The websites or publishers targeted by the agency will be
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those that make it possible to detect threats. For example, certain web forums where ISIS recruiting
messages appear with certain frequency are sites that are susceptible to being investigated by the
security agency.

In addition, we suppose that it is possible to track users” activity in the target sites, or in other
words, there are advertising and tracking companies operating on these sites. We acknowledge,
however, that there may be sites such as those hosted on the dark web or others that are on the Internet
that cannot be subject to surveillance because there are no ad platforms and tracking companies.

We assume that the agency can contract the services of the trackers available at the target sites to
capture the users’ visit data, which may include, among others, their activity within the site, location,
IP address and web-browser fingerprints. Once properly treated, all such data may allow the agency
to re-identify a given web user, possibly with the help of the Internet service provider in question.

In essence, the infrastructure assumed is based on three well-differentiated activities. In a first
stage, the agency selects its target publishers and hires the services of the companies that track them to
obtain the users’ raw visit data. In a second optional stage, the agency exploits the data captured by the
third-party trackers through an automatic system based on artificial intelligence methods (classifiers)
so that, once the navigation trace of each user is extracted, it is possible to obtain a binary classification:
suspicious or not suspicious. The threat detection algorithm that underlies this automatic system
inevitably has certain sensitivity and specificity parameters (false positives). In a third and final stage,
whether the automatic system has been deployed or not, there is an essential manual investigation
of the flagged users by security experts. It should be noted that this type of architecture has two
types of limited resources that are well differentiated: resources for hiring trackers and resources for
the manual investigation of the collected profiles. In this work, we consider the cost of first type of
resources is negligible compared to that of the latter. Figure 1 provides a conceptual depiction of the
surveillance infrastructure assumed in this work.

| redirections ?

1 Publishers

Figure 1. Third-party tracking requires that publishers include a link to the ad platform(s) they want to

partner with (1). When a user visits pages partnering with this/these ad platform(s) (2), the browser is
instructed to load the URLs provided by the ad platform(s). Through the use of third-party cookies and
other tracking mechanisms, the ad platform(s) can track all these visits and build a browsing profile (3).
Finally, the information collected by the ad platform(s) is shared with the security agency, provided
that they have an agreement (4).

3. The Problem of Online Surveillance

In this section, we describe the problem of online surveillance from the intrusion-detection
problem posed and solved by [18] (According to [19]), intrusion detection systems (IDSs) are hardware
or software systems that automate the process of monitoring events that have occurred in a computer
system or network, analyzing them to detect security problems.. It is also appropriate to point out
the work of Merrick and McLalay [20] on the use of scanners against smuggling of nuclear devices in
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cargo containers. Both works treat physical or logical security problems and assess their conditioning
factors under uncertainty with the use of automatic threat detection systems. We rely on the cited
works to define the problem at hand.

Suppose we are going to give support to the decision making of a security agency that has
jurisdiction in a territory to prevent and neutralize attacks perpetrated by terrorists who use the
Internet as a resource for carrying out their attacks. In general terms, we assume that the agency
wishes to suffer the least possible harm, and, on the contrary, the terrorists want to cause the greatest
possible damage. Faced with a normal Internet user, we define the suspect as a user whose digital
activity can be considered a threat that must be investigated by the agency.

Suppose then that, in a certain period of time, the security agency will carry out online surveillance
tasks on a series of websites that, based on expert knowledge, have been classified as susceptible to
being used (propaganda, training, forums, etc.) by users who could potentially acquire the capabilities
to prepare and/or carry out attacks.

To monitor these sites, the security agency uses a digital technology based on automatic detection
of threats, described in Section 2, which consists of two well-defined complementary functions:
automatic collection and classification of user profiles. Firstly, and based on tracking the digital activity
of users who browse the target websites, the system collects the navigation traces, which result in unique
user profiles. Secondly, of the profiles collected, the system is able to detect those that are potentially
suspicious with certain sensitivity and specificity rates. More specifically, these classifiers are based on
artificial intelligence methods. The use of the classifier is optional and in any case the system can always
be supported by an “ad hoc” manual investigation by experts whose criteria we assume to be totally
reliable. The classifier analyses each profile and if it considers it to be suspicious, it generates an alarm
signal. Afterwards, the agency decides whether to investigate the profile based on available (limited)
resources. Therefore, the agency makes decisions about whether to investigate according to the state
(signal or lack of signal) of the system. However, when the system generates a signal, the agency does not
know with certainty whether it is a real threat or the system has generated a false alarm. On the other
hand, the suspect user’s main objective is not to be detected by the surveillance system, which would
imply, immediately and to simplify, the success of their actions.

The aim of the agency is to configure the system by choosing a point in its effectiveness function
that minimizes the total cost of surveillance (the cost is not necessarily a monetary value but we can
treat values such as image, privacy, etc., or in any case monetize them). Thus, we initially define the
probability of detection « as the probability of classifying a suspect conditioned on the user really
being a suspect, and the probability of a false positive § as the probability of classifying a suspect
conditioned on the user not being a suspect. In a perfect surveillance system, we would suppose & = 1
and B = 0. However, and in general, online surveillance technology is such that a high value of « also
implies a high value of , due to the variability of the data associated with the normal and abnormal
traces and the imprecision of the algorithms used by these types of systems.

In general terms, the navigation trace of potential suspects will depend on factors such as the
benefit derived from acquiring the capacities to carry out terrorist acts of different levels; the loss that
they will receive if they are captured; and the probability that they will be detected. We assume that
a potential terrorist obtains a benefit b if their navigation is not detected. If it is detected, the user
incurs a loss I over a non-positive net benefit of (b —I) < 0. Suppose that it is reasonable to think that
I = (14 A)b, with A < 0. The loss can take different forms depending on the nature of the terrorist
potential (cost of legal persecution, reputation, intimidating effect, etc.). We denote by 7t the probability
of the presence of a suspicious user in the set of monitored sites.

The agency complements the system with a manual investigation conducted by security experts.
In general, it is expensive to always carry out manual investigations (it is obvious that it is a limited
resource). When the agency does not deploy the automatic system, expert investigators must manually
investigate a proportion p of the user profiles collected. When the system is deployed, experts can
only investigate a proportion p; of the profiles that generated alarm signals and a proportion pg of



Sensors 2019, 19, 480 6 of 26

the profiles that did not generate signals. The agency incurs a cost ¢ every time the experts conduct
a manual investigation. We assume that expert manual investigation always confirms or discards
threats with certainty (it is 100% effective). If the agency detects a threat it will not incur any loss
other than the cost c of the manual investigation. When a suspicious profile is not detected, the agency
incurs a damage d. Suppose again that it is reasonable to think that ¢ < ¢d, with ¢ < 1. It is usual to
estimate these possible damages in the risk assessment phase before implementing and configuring
the detection system. Traditionally, the quality function of a detection system is modeled through its
relative operating characteristic (ROC) curve, although other evaluation functions can be appropriate,
as shown in the next section. Table 1 summarizes the parameters of the problem of online surveillance
defined in this section.

Table 1. Parameters of the online surveillance problem.

Symbol Description

Probability of ASC alarm due to suspicion (true positive)

Probability of ASC alarm without suspicion (false positive)
Probability of presence of a suspicious user

Probability of manual investigation without using ASC

Probability of manual investigation when the ASC generates an alarm
Probability of manual investigation when the ASC does not generate an alarm
Cost of manual investigation; ¢ < ¢d, ¢ < 1

Damage derived from an undetected suspect

Cost/damage coefficient of the system

Benefit for suspects not detected; I > (1+ A)b, A <1

Loss for suspects not detected

Benefit/loss coefficient of the suspect

>—TSeaundPo 3™

4. Analysis of Decision-Making Models

The terrorist attacks that occurred in Western countries in the last decades have sparked a growing
interest in decision-making models and risk analysis for fighting terrorism. We refer the reader to the
work in [7] for a complete review of the field.

The vast majority of this literature adopts a game-theoretic approach [21]. For example, [22],
studied multi-attribute utility functions for the defender and attacker, and for simultaneous and
sequential actions, to compute Nash equilibria; and [23] proposed several max-min optimization
models to tackle defender-attacker, attacker-defender and defender-attacker-defender-problems.
A hybrid model between game theory and risk analysis is ARA [8], a new perspective of decision
analysis that differs from standard game theory in that it makes no assumptions of common knowledge.

The other mainstream literature adopts a decision-analysis approach. Among such works,
we highlight the work in [24], which uses decision trees to assess man-portable air defense systems
countermeasures. The recurrent problem of decision analysis, however, is the need to evaluate the
likelihood of the actions of the others, which is a central issue of the Bayesian approach to games
(We would like to stress that the tension between game-theoretic and decision-analytic approaches to
decision-making problems with adversaries is by no means exclusive of counterterrorism models [21].).

This section is organized as follows. We first specify our requirements for the desired
decision-making model in Section 4.1. Then, Section 4.3 examines the classical game-theoretic approach,
and Section 4.4 analyzes ARA and verifies whether the requirements are met by these two models.

4.1. Model Requirements and Notation

In this section, we focus on standard game theory and ARA, and analyze their suitability to tackle
the online surveillance problem described in Section 3. Since the aim of our analysis is to gain insight
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into the rationality of online surveillance with the principle of being as close as possible to reality,
we define the following requirements for such a model:

e  Both opponents (intelligent, rational) want to maximize their utility.

e There is uncertainty about the attacker’s actions due to uncertainty about their utilities
and probabilities.

e  The information on the evaluation of the objectives between opponents is incomplete, with
the possibility of obtaining it partially through different sources that we will call intelligence
(experts, historical data and/or statistical distributions).

e Anditis possible to model simultaneous and non-simultaneous (sequential) decisions.

Throughout this section, we follow the convention of using uppercase letters for random
variables (r.v.s), and lowercase letters for the particular values they take on. Accordingly, p denotes
approximation, estimation, as a result of Monte Carlo simulation; and p* ~ P denotes the former is the
kth iteration of the Monte Carlo simulation of the latter r.v. In the text, we drop the superindex k for
notational simplicity.

4.2. Sequential Defense—Attack Model

To study the appropriateness of standard game theory and ARA, we develop first the sequential
defense—attack model, which is one of the two standard counterterrorism model (Other standard
models include the simultaneous defense-attack model, the sequential defense-attack—defense [25]
and the sequential defense-attack with private information.). We use this model to analyze the problem
that is the objective of this work. For the sake of comparison, we consider the following example of
counterterrorism scenario.

Example 1 (Counterterrorism scenario). The authority of an airport (D, the defender) must decide whether
to install body scanners at the security checkpoints of an airport, replacing the X-ray scanners. On the other
hand, a terrorist group (A, the attacker) decides whether to try to smuggle a bomb onto an airplane. D makes
the first move, so A can see if the new body scanners are in use when they arrive at the airport. Because A
can observe the actions of D before deciding their move, they do not need to know their probabilities or utilities.
However, D must have a distribution for A, which specifies its utilities and probabilities.

In this model, the defender makes the first move, deploys their defensive resources and makes a
certain choice to position themselves against the possible terrorist threat. The attacker, after having
observed this decision, evaluates their options and carries out an attack.

We assume that the defender initially has a discrete set of possible decisions D = {dy,dy,...,dn}
and that the attacker can respond with one of their possible attacks A = {aj,ay,..., zzp}.
As a consequence of these actions, a result is produced. This result is the only uncertainty of the
problem and depends probabilistically on (d,a) € D x A. The decision sets can include the option to
do nothing or combine several defenses or several attacks. To simplify the discussion, we consider
only two possible values for the result, S = {0,1}, which represents the failure or success of the attack.
Thus, the defender and the attacker can have different probability distributions for the possibility of
success, given a pair (dj, a;). They can also have different utility functions.

To visualize the situation, we have built the influence diagram and the decision tree corresponding
to the problem at hand. These are two decision analysis tools that help us to gain a clearer view of the
sequential decisions that have to be made.

An influence diagram is a directed acyclic graph with three kinds of nodes: decision nodes,
which are shown as squares; chance or uncertainty nodes, shown as circles; and value nodes, shown as
hexagons. In addition, an influence diagram can have three types of arcs depending on their destination:
if the arc arrives at a decision node, this indicates that the decision is made knowing the value of the
predecessor; if it arrives at a random node, then the uncertainty depends on the predecessor node
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conditioned probability; and if it arrives at a value node, then the utility reflected in that value node
depends on the values of the predecessors.

Figure 2 shows the coupled influence diagram of the model. In view of this, we assume that
the consequences for the defender and the attacker depend, respectively, on (d,s) and (4, s). This is
then inferred to the defender’s utility node by two arcs coming from the decision node, D, and the
uncertainty node, S, which represents the result. The decision node representing the attacker’s utility
also has two arcs, which in this case come from the decision node A and the uncertainty node S. It is
also reflected that the result node, S, depends, in this case probabilistically, on the defender’s initial
action and the attacker’s response. The influence diagram arc from the node of the defender’s first
decision to the attacker’s node reflects that the defender’s choice is observed by the attacker before
they decide on their attack.

(a) Coupled influence diagram. (b) Decision tree.
Figure 2. Sequential defense-attack model.

We also show in Figure 2b the decision tree for this problem, clearly reflecting its sequential
nature. First, a decision is made corresponding to the set D; once the attacker observes this descision,
they decide whether to attack; the final result is produced as a consequence of these two actions. Note
that there are two utility values in the terminal node of the tree. Each of these represents the utility
that corresponds to each of the actors: one value refers to the defender’s utility and the other value
refers to the attacker’s utility. The fact that there are several branches of each of the nodes refers to the
possible decisions or results, which is the case of the chance node, which can be taken in each of them.
The number of possible decisions in each decision node is not always the same and that is reflected in
the decision tree.

4.3. Analysis Based on Standard Game Theory

The focus of game theory to solve the posed problem requires obtaining the utility functions of
the defender up(d,s) and attacker u4(a,s), as well as evaluating the probability of the event S|d, a
for each of the participants, which we designate as pp(S|d,a) and p4(S|d, a) for the defender and the
attacker, respectively. Standard game theory requires as initial assumption that the defender knows the
attacker’s utilities and probabilities and the attacker knows the defender’s utilities and probabilities,
this being common knowledge. 1f this happens, a solution to the problem can be obtained from the
decision tree (Figure 2b) by backward induction as follows.

In node S, it is common knowledge for the two participants that the defender’s expected utility
associated with each pair (d,a) € D x A,

Yp(d,a) = pp (S=0|d,a)up (d,S=0) +pp(S=1|d,a)up (d,S=1), 1)
and the attacker’s expected utility associated with (d,a) € D x A,

Yald,a) = pa(S=0ld,a)us (S =0)+ps(S=1ld,a)us (d,5=1). @)
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Knowing what the defender will do in decision node D, the attacker can determine what is their
best attack in node A, after observing the defensive action of the defender, solving the problem

a* (d) = argmax, 4 ¥4 (d,a),¥d € D. ©)]

This is also known by the defender due to the hypothesis of common knowledge. The defender
can determine their best decision in the decision node D, solving the problem

d* = argmax,.p¢p (d,a" (d)). 4)

Thus, under the assumption of common knowledge, standard game theory predicts that the
defender will choose d* € D in node D. Then, the attacker will respond by choosing the attack a*(d*).
The pair (d*,a*(d*)) determines a solution of the game and is a Nash equilibrium.

4.4. Analysis Based on ARA

Now we abandon the assumption of common knowledge. It should be taken into account that
ARA serves here as support to the defender.

To do this, we treat the attacker’s behavior in node A as uncertainty from the defender’s point
of view and we model this added uncertainty. This is reflected in the influence diagram and the
decision tree, as the attacker’s decision node has become a chance node, replacing the square by a
circle. Looking at the influence diagram (Figure 3a) we now need to obtain pp(A|d), the probability
that the defender will assign to the attack what the attacker will choose once they have observed every
defensive move d € D of the defender. The defender also needs to evaluate up(d,s) and pp(S|d, a),
already described above.

(a) (b)

Figure 3. (a) Influence diagram of the defender and (b) decision tree of the defender.

Once these data have been evaluated, the defender can solve their decision problem with
backward induction considering the decision tree (Figure 3b). Then, the defender will obtain their
expected utility in the node S, ¢p (d, a), for each pair (d,a) € D x A in the same way as in the previous
approach. It is at this time when the defender can use the evaluation of the probability of what the
attacker will do faced with each of the defender’s decisions, pp(A|d), to determine their expected
utility in the node A for each d € D, with the expression

p
Yp (d) =Y ¢p (d,a;) pp (A = a; | d). ©)
i=1

Finally, the defender can find the decision that maximizes their expected utility in node D,
solving the problem

d* = argmax,.p¢p (d,a" (d)). (6)

Therefore, the best strategy for the defender for the defense—attack model is to choose first 4* in
node D after having observed s € S.
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The key now is how to evaluate pp (A =a | d). To do this, ARA assumes the defender can
use a statistical method if they have historical data on the attacker’s behavior in similar situations.
To complement this evaluation, the defender could also use expert opinions. However, as we describe
in Section 5, an approach could be modeling the uncertainty that the defender has about the attacker’s
decision. This can be done assuming: (i) the attacker wants to maximize their expected utility; and
(ii) the defender’s uncertainty in evaluating this probability stems from the uncertainty that the
defender has about the attacker’s probabilities and utilities associated with the attacker’s decision
problem. In short, the evaluation is limited to analyzing the attacker’s decision problem from the
defender’s point of view (Figure 4). The evaluation of the attacker’s probabilities and utilities from
the defender’s perspective will be based on all the information that the defender has available, which
can include previous data from similar situations and expert opinions. If the defender does not
have this kind of information, they can use an uninformative or reference distribution to describe
pp (A =a|d). Therefore, to obtain pp (A =a | d), the defender needs to evaluate u4(a,s) and
pa(S|d, a), the attacker’s utilities and probabilities, which are unknown to the defender.

(a) (b)
Figure 4. (a) Influence diagram of the attacker and (b) decision tree of the attacker.

If the defender can access the attacker’s probabilities and utilities they will learn, by the same
procedure as in the game theory approach, the action that the attacker would give most expected
utility, a*(d), for each d € D, and therefore, pp (A = a*(d) | d) = 1. This would imply that the
attacker’s decision would be anticipated by the defender, and therefore they would not need to
evaluate pp (A=a|d).

We start, therefore, from the assumption that the defender does not know these two
quantities, but can recognize their uncertainty about them by means of a probability distribution
F=(Ux (a,s),P4(S|d,a)) and solve the attacker’s decision problem using backward induction on the
decision tree of Figure 4b with the expression

¥y (d,a) =Pa(S=0|d,a)U,(a,S=0)+Ps(S=1|d,a)Uy(a,S=1). @)

In node A, assuming that the attacker wants to maximize their expected utility, the defender’s
distribution on the attacker’s choice when the defender has considered their defense d is

pp(A =a*|d) = Ppla" = argmax,. ,¥a(d, a)]. 8)

This distribution can be approximated using Monte Carlo simulation methods, generating n
values, such that

pp (A =a|d) =|{a=argmax, ,¢'s(d,x)}|/n, Va € A. )

Once the defender has completed their evaluations, from these data they can solve their problem
in the S node for each (d,a) € D x A with the expression

¥Yp(d,a)=pp(S=0|d,a)up(d,S=0)+pp(S=1|d,a)up(d,S=1). (10)
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Then, their estimated expected utility is

)
'M“

¢yp(d) =) v¥p(d,a;)pp(A=a;|d) (11)

1

1

and finally their optimal decision is

d* = argmax,_pp (d). (12)

In view of our analysis of standard game theory and ARA, we regard the latter as the
most appropriate model for evaluating the online surveillance problem defined in Section 3.
The counterterrorism modeling based on common-knowledge assumptions entails that parts have too
much information about their counterparts, which does not seem to make sense in a field in which
secrecy tends to be an advantage. In a scenario where the adversary wishes to increase the risks of the
defender, it seems unusual that the defender will have a full knowledge of their objectives, intentions
or possible movements. Similarly, it seems unrealistic that the adversary fully knows the objectives,
intentions or possible movements of the defender. Table 2 summarizes the analysis of the two models
by matching the initial requirements defined in Section 4.1. As we show in next section, we rely on the
analyzed ARA model to tackle the problem at hand.

Table 2. Comparison between standard game theory and ARA.

Requirements Standard Game Theory ARA
opponents aim to maximize their utility 4 v
uncertainty about the attacker’s actions X v
incomplete information about the evaluation of the X v
objectives between opponents

simultaneous and sequential decisions v v

5. An ARA Model for the Online Surveillance Problem

We present an ARA model to evaluate the problem of online surveillance described in Section 3.
This model allows us to analyse the rationality conditions of the automatic threat detection system.

We assume that we support an agent (the agency, the defender, D) in their decision-making in
relation to deploying an online surveillance system to monitor a set of selected websites, faced with
the threat posed by the presence of the other agent (the suspect, the adversary, A) in the target sites.
We assume that both agents operate monolithically.

According to the premises described in Section 2, we assume that the dynamics of the defender
and the adversary can be described by means of a sequential defense-attack decision model represented
in Figure 5 as an influence diagram coupled for the two agents.

To begin and given a set of target websites, the defender makes his initial decision d; = {0,1}
(0is No, 1 is Yes) about using the technology, represented by the decision node D;. The adversary
knows about these tracking measures and even so decides to be present in the set of sites, 2 = {0,1},
represented by the decision node A. The automatic system, in the case that it is deployed (d; = 1),
can lead to a system alarm signal, s; = {0, 1}, represented by the node of uncertainty S; shared by
the defender and the adversary (if the system is not deployed, s; = 0 unfailingly). Depending on
the previous result, the defender manually investigates the alarm, d, = {0,1}, represented by the
node of uncertainty D,, to the degree that their (limited) resources allow. All this leads to the final
result of the success/failure of the two agents, s, = {0, 1}, represented by the node of uncertainty
Sy. We understand as success for the security agency the fact of detecting the threat and avoiding its
potential actions, and failure is understood as the opposite. For the adversary, success and failure are
the reverse events of the defender.
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Figure 5. Influence diagram for the online surveillance problem.

The utility up obtained by the defender depends on the added cost of the manual investigation
and the final success of the surveillance (nodes D, and S;), on which their utility function is applied.
Similarly, the utility u 4 obtained by the attacker depends on the added cost of access to the set of sites
and the final success of the surveillance (nodes A y S,), on which their utility function is applied.

5.1. The Defender’s Decision Problem

We describe in this section the defender’s decision problem, illustrated by an influence diagram
in Figure 6, where the threat appears as a probability node A, from the point of view of D, which,
given a collected profile should:

e decide if they use the technology, assigning values d; = {0,1} in node D;.

e face the possible existence of a threat 2 = {0,1} in node A.

e  observe optionally, given the case, the result of the automatic detection system, s; = {0,1},
in node S;.

e  establish proportions of profiles investigated manually based on the available resources, assigning
values d, = {0,1} in node D;.

e  observe the final result of the surveillance, s, = {0,1}, in node S; and.

e add their costs and evaluate the results with their utility function up.

Figure 6. Influence diagram for the defender’s decision problem.

To solve the decision problem, D, it is necessary to evaluate the probability distributions, pp (A|d;),
pp(Sila,d1), pp(Daldy,s1) and pp(Sala,dy) and the utility function up(dp,sy). Assuming that D
is capable of providing such inputs, we would proceed by applying standard decision analysis
calculations based on dynamic programming to obtain the optimal decision.

1. First, for each relevant scenario (dy,s;), add the consequences and obtain the utility up(dy, s).
2. Innode Sy, calculate the expected utilities:

Yp (d1,81,d2) = ZMD (da, 52) b (Sp | dp, a). (13)

52
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3. Innode Dy, calculate the expected utilities:

Yp (d1,51) =Y ¥p (d,s1,d2) pp (Dy | dy,51). (14)
dy

4. Innode Sy, calculate the expected utilities:

¥p (di,a) =Y p (d1,51) pp(Sildy, a). (15)

51

5. Innode A, calculate the expected utilities:
p (d1) = }_¢p (d1,a) pp (A |dy). (16)
d2

6.  Finally, the decision node D; maximizes the expected utility and stores the corresponding optimal
initial decision d7.
Yp = arg max ¢p(dq). (17)

dq

Then, di describes the optimal decision for the defender.
It should be kept in mind that we can describe the defender’s optimization problem with
the expression

di =argmax) Y Y ) up(da,s2)pp(Saldz, a)pp(Daldy, s1)pp(Sildi, a)pp(Aldy). (18)

d a s1 d; %2

Note that of the four values required by the agency, pp(A|d;) is the most problematic, insofar as it
involves the defender’s beliefs about the adversary’s decision once they have observed the defender’s
initial decision d;. This is an evaluation that requires strategic thinking for which we propose an
approach based on ARA. For this, we need to solve the adversary’s decision problem, assuming
uncertainty about their evaluations and propagating it to obtain its expected distribution based on the
optimal presence of the adversary in the set of monitored sites. We discuss this in the following section.

5.2. The Adversary’s Decision Problem

We describe the dynamics of the threat, illustrated as an influence diagram in Figure 7, according to
the defender’s point of view, where D; is now a probability node for the attacker, who must:

e  observe the initial decision of D, d; = {0,1}.

e decide on their presence in the set of monitored sites, a = {0,1}, with impact over time if they are
not detected.

e  observe their success s; = {0,1} after the defender makes their allocations d, = {0,1} on the
manual investigation of the profiles; and

e add their costs and obtain the corresponding utility u 4.

To solve the decision problem, we assume that the adversary wants to maximize their expected
utility. They therefore need to evaluate pa(Sila,d1), pa(Dals1,d1), pa(Sz|da,a), and ua(a,s;).
We cannot easily obtain these values so we model the defender’s uncertainty about them with random
probability distributions. Then, we can propagate this uncertainty using the standard reduction
algorithm of influence diagrams and obtain the optimal and random decision a = {0,1} for each value
of dy = {0,1}. This provides us with the required distribution pp (A | d1) = P(A*(d1) = a).

1.  Add the consequences and obtain the random utility U4 (a, s3), for each (a,s,).
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2. Innode Sy, calculate the expected random utilities:

Ya(a,s1,d2) =) Ua(a,52) Py (S2 | do,a). (19)

52

3. Innode Dy, calculate the expected random utilities:

1FA (dl,ﬂ,51) - ZTA (ﬂ, Sl/d2> PA (DZ | d1151>' (20)
dy

4. Innode Sy, calculate the expected random utilities:

IPA (dl,a) :ZIPA (dl,a,sl)PA (Sl ‘ d],a). (21)

51
5. Innode A, calculate the (random) optimal decision in response to each value of dy:

A*(dy) = argmax, ¥4 (dy,a). (22)

Figure 7. Influence diagram for the adversary’s decision problem.

This provides us with the required distribution pp(A = a*|d1)=P[A*(d1) = a], assuming that
the space of a is discrete. It should be kept in mind again that the reduction of the previous influence
diagram can be recast as

A*(dl) = argmaxZZEUA(a,sz)PA(Sz\dp_,a)PA(D2|d1,sl)PA(Sl|d1, ﬂ). (23)

a 51 dp 52

The distribution pp(A|d;) can be estimated by Monte Carlo simulation. To do this, we sample n
times the probabilities and utilities of the set

F = {PA (S1|a,d1),PA (D2|51,d1),P(52|d2,ﬂ), U(LZ,SQ)} (24)

to obtain the optimal decision a* ~ A*(dp) in the k—th iteration of the Monte Carlo simulation,
k=1,...,n. Then, we can approximate pp(A|dy) through [1 <k < n: af = a|/n.

Note that, of the four components in F, the first three can be easily obtained. Normally, P4 (S1|a, d)
would be related to pp(S1|a, dy) through some uncertainty, as we are referring to the results and the
interaction between the attacker and defender, based on their decisions d; and a. This is also true
for P4 (Sz|dy, a) with respect to pp(Sz|da, a). Regarding U 4, we generally have information about the
multiple interests of the adversary, which we add. However, the fourth element, P4(D;|s1,d; ), could
require strategic thinking. In fact, the proposal presented here can be seen as a model of “level-2”
thought, in which the defender optimizes their expected utility, with adverse probabilities derived
from the optimization of the expected utilities (at random) of the adversary (Algorithm 1).
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Algorithm 1: Overall attacker-defender approach.

1 Initialize parameters
2 For the Adversary

3
4
5

10

11

16

17

foreach d;,and for k=1,...,ndo

In node Sy, and for each (a,s1,4d3),
Generate
uk (a,57) ~ Ua(a,sy) for each (a,s,)

Plfq (52 = Sz|d2,a) ~ PA (52 = Sz|d2,a) for (dz,a)

Calculate
¥l (a,51,d2) = Y uby (a,5)ply (S2=s2|do,0)

52

In node D,, and for each (dq,4a,s1),
Generate
Pl (D2 = do|dy,51) ~ Pa (D = da|dy, 51)

In node Sy, and for each (dy,a),

Generate
P (S1=s1ldy,a) ~ Py (S1 = s1ldy, )
Calculate
¢l (dy,a) = Y ¢ (a,51,dp)ply (Dy = da | dy, 1)
da
In node A,

Calculate a (d1) = arg max,y% (dy,a)

end
Aproximate for each a,

pp(A=a|d))={1<k<n: af =a}|/n

For the Defender, calculate
In node Sy, for each (a,d;),

¥p (a,d2) =) up (da,s2) pp (52| da, )

$2
In node Dy, for each (dq,s1),
¥p (d1,a,51) = Y_¢p (a,d2) pp(daldy,s1)
da
In node Sy, for each (dy,a),

¥p (dr,a) =) ¢p (d1,a,51) pp(sildi,a)

51

In node A, for each d4,

¥p (d1) =) ¢p (dv,a) pplaldy)

In node Dj, calculate p = argmax, ¢p (d1).
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5.3. Overall Approach

The above ideas can be integrated into a step-by-step algorithm. First, we use simulation to
estimate the distribution that predicts the options of the adversarial (suspicious) presence in the
monitored sites. Second, we find the optimal initial allocation d] (in favor or against the deployment
of technology), maximizing the defender’s expected utility with respect to the distribution of the
derived prediction. We assume that the intervening r.v.’s are discrete, that is, that the impacts S; and
S, are classified.

In the previous scheme, d; would be the optimal initial defense allocation. The corresponding
probabilities of adversary presence, pp(A = a|d;), represent the probability of each adversary scenario
after deploying d7, which would help raise awareness about the state of the security.

It is important to take into account that we make simulations for all possible initial allocations d.
Our problem is a binary allocation on using a technology or continuing with the status quo; however,
in problems where the number of these allocations/resources is too large, we could use a regression
meta-model, as explained in [26], simulating some defenses, evaluating the corresponding attack
probabilities and, consequently, approaching the attack probabilities in other defenses. Then, we would
use that estimated attack prediction distribution to find the optimal resource allocation.

6. Experimental Evaluation

This section evaluates the decision-model proposed in the previous section. We used artificial data,
given the absence of real, accurate information of terrorist web-browsing data and counterterrorism
strategies. Therefore, we gave value to each of the evaluations that the defender must make about
their own decisions and their beliefs about the adversary’s decisions.

We also illustrate the proposed decision model with an example that serves to show some of
the computational subtleties, as well as the typical problem solving approach used in a real case.
In fact, it may serve as a template for real problems, which would basically add modeling and
computational complexities. Essentially, first we structured the problem, then modeled the defender’s
evaluations about themselves, and, afterwards, about the adversary. In the computational phase, we
simulated the adversary’s problem to obtain their attack probabilities and fed them into the defender’s
problem to obtain the optimal defense. Finally, we carried out a sensitivity analysis. For purposes of
completeness and comparison, we also provide a standard game-theoretic approach under assumptions
of common knowledge.

6.1. Structure of the Problem

We begin by identifying the available resources for both the defender and the adversary.

Defensive resources. We considered the defender’s defensive resources to be the use of the automatic
threat detection system with d; = 1. Otherwise, d; = 0.

Adversarial resources. For the adversary’s resources, we took the presence of the adversary in the
set of monitored sites, with a = 1. Otherwise, a = 0.

Results of the game. Finally, we must consider the results of the decisions of both agents.
We assumed that the states of S; and S, are 0 or 1, which means, respectively, the success or failure of
the detection in terms of the alarm signal of the automatic system (recall that, if d; = 0, then s; = 0)
and the final detection of the threat after a manual investigation.

6.2. The Defender’s Evaluations

Now we consider the evaluations of the beliefs and preferences for the agency, thatis, pp(S1|a,dq),
pp(Da|dy,s1), pp(S2|d2,a) and up(ds,s;), defined in Section 5. In the assumed scenario, none of
them require strategic thinking. In the evaluations, we used the different parameters of the online
surveillance problem defined in Section 3. Next, we examined the evaluation of the probability
distributions involved as well as the utility model.
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e  Evaluating pp(S1|a,d1). S1 represents the probability that the automatic threat detection system
generates an alarm, whether there is suspicion or not. Obviously, if the system is not used,
it is impossible that it generates an alarm. We established a range of values for this probability,
although the defender will operate their problem with the base values. These considerations are
reflected in Table 3.

Table 3. PD (51 = 1‘(11,(1).

a=1 a=0

d =1 base ﬁbase
=0 0 0

e  Euvaluating pp(Dy|d1,s1). Dy represents the probability of manually investigating a profile
collected both when the automatic system is used and when it is not. We also established a
range of values that includes the base value for the defender’s problem, as shown in Table 4.

Table 4. PD (D2 = 1|d1,51).

s1=1 s1=0

d =1 pllaase pgase
d =0 pbase

e  Evaluating pp(Sa|da, a). Sy represents the final success/failure of the surveillance. As described
in Section 3, manual investigation was considered 100% effective in confirming or ruling out
a threat. In this case, we did not use a range for the values of this probability. Table 5 shows
these considerations.

Table 5. PD (52 = 1‘[1, dz)

e  Evaluating up(dy,sy). Finally, the utility up(dy,sy) as a measure of the quality of the model.
We opted for an exponential utility function that allowed us to order the costs vp of the defender
while assuming their (constant) risk aversion. Accordingly, we define up (d,s2) = —exp (cpvp),
with cp ~ U(0, 3) and consider the parameters shown in Table 6.

Table 6. vp(dy, s3).

s =1 s =0

dr, =1 c c+d
d, =0 0 d

6.3. The Defender’s Evaluations about the Adversary

The security agency also needs to evaluate pp (A|d;). This requires strategic thinking, as explained
in Section 3. To do this, we must put ourselves in the adversary’s shoes and make assessments about
their probabilities and utilities, from the defender’s perspective. Next, we go through how to estimate
the probability distributions of the problem at hand and the adversary’s utility function.

e  Evaluating Py (Sq|a, d1). We assumed that p 4 (S; = 1|dq, a) is similar to pp(S1 = 1|dy, a). To model
our lack of knowledge about the probabilities used by the adversary in their decision problem, we
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added some uncertainty. In particular, we assumed that, except in cases where pp(S1 = 1|dy,a) is
0 or 1, for those who suppose that the adversary’s probabilities will match their beliefs P4 about
pa(S1 = 1|dy, a) are uniform within the ranges [p’3i", p7] of Table 7, evaluated by the defender.

Table 7. PA(Sl = 1|d1,a).

a=1 a=20

dy=1 [amin amax] [ﬁmin ﬁmax]
d; =0

Then, we modeled p, as a uniform distribution between p2i" and p3@*. Thus, P4(S1|a,d;), was
defined by the expression

min
7

pa=pB" +w(ph™ - ph
with w ~ U (0,1), so that the uncertainty about w induced uncertainty about p 4 to provide Pg4.
e  Evaluating P4(D;|dq,s1). We adopted the same approach as before, now based on Table 8.

Table 8. PD (Dz = 1|d1,51).

s1=1 s1=0
dl =1 [pinin’ pinax] [praﬁn’ panax]
dl =0 [pmm, pmax]

e  Euvaluating P4 (Sy | da,a). We adopted the same approach as before, now based on Table 9.

Table 9. pp (S2 = 1|a,dp).

e  Evaluating U4 (a, s;). Finally, for utility 14 (a,s,), we also opted for an exponential utility function
that allowed us to order the adversary’s costs v 4, while we assumed their (constant) risk seeking
in relation to their benefits. Thus, we defined 14 (a,s3) = exp (c4v4), with c4 ~ U(0, 0.025) and
consider the parameters shown in Table 10.

Table 10. v4(a,s;).

a=1 a=0

dy=1 b—1 b
dy=0 0 0

6.4. Results

We solved the problem with the open-source software R (R version 3.3.3 (2017-03-06)) with an
Intel® Core ™ processor i3-2370 CPU at 2.4 GHz, 4Gb RAM on a Windows 10 64-bit operating system.
In our example, the computation time was acceptable (15-20 s per problem on average) and therefore
we did not consider the implementation and its performance as the object of the analysis. In any case,
it should be noted that the resolution of the problem implied a Monte Carlo simulation for each value
dq and that in each simulation we must propagate uncertainty at different levels, which became a
strong computational challenge for larger problems.

For comparative and sensitivity analysis purposes, we prepared an experiment with 1000 random
scenarios for five levels cp of risk aversion of the defender, specifically cp = (0.01, 0.1, 0.5, 1.0, 3.0).
In total, we obtained a set of 5000 solutions. In this way, we intended to determine how the parameters
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of the problem influenced the defender’s optimal decision d; and at the same time compared their
behavior according to their level of risk aversion, between cp = 0.01 (minimum) and cp = 3.0
(maximum). In Table 11, we include the parameters that we used when the 1000 scenarios were
generated for each value of cp.

The implementation of our evaluation model allowed us to obtain in each run (i) the optimal
solution dj for the defender; and (ii) the conditional probability pp(A|d;) that the defender needed
to solve their problem. As explained above, this probability was estimated using a Monte Carlo
simulation with n = 10, 000 replications for each value d; € D. Tables 12 and 13 show an extract of the
results for one scenario and different levels of cp of risk aversion of the defender, and the explicit form
of the probability pp(A|dy) for that scenario.

Table 11. Main parameters of the experimental evaluation.

Sensitivity and Specificity =~ Proportion of Manual Investigations Costs and Coefficients
base ‘Bbase pbase pll)ase pgase ) A
Uu(0.60, 0.99) u(o, 0.1) u(o, 1) u(o, 1) u(o, 1)
pmin 'Bmin pmin prlnin pronin c b
U(0.60, abase) (0, pbase) U(0, pbse) ditto for o™ and pfi™  ¢dgp ~ U(0,1) 100
Dcmax ﬁmax pmax plil’la)( p(r)nax d l
U(abae, 0.99)  U(BPe,0.1)  U(pP*,1) ditto for p@X and pJax 100 I=(1+A)bA~U(0,1)

Table 12. Summary of the results obtained for our ARA model.

d; cp JJIJDD((J'?*)) abase ﬁbase pbase pllaase Pgase 4) A ﬁD (A — lldl )
d=1 d;=0

1 0.01 0.73 0.92 0.01 0.48 0.89 0.73 0.08 0.05 091 0.99

1 0.10 0.53 0.92 0.01 0.48 0.89 0.73 0.08 0.05 091 0.99

0 050 0.21 0.92 0.01 0.48 0.89 0.73 0.08 0.05 091 0.99

0 1.00 0.08 0.92 0.01 0.48 0.89 0.73 0.08 0.05 0091 0.99

0 3.00 0.08 0.92 0.01 0.48 0.89 0.73 0.08 0.05 091 0.99

Table 13. Form of pp(A|dy).

dj=1 091  0.09
di=0 099 001

Thus, for example, the probability that the adversary is present in the set of monitored
websites, taking into account the possibility that the defender is monitoring their navigation,
is pp(A=1]|d; =1) = 0.91. This means that, in this example, solving the defender’s problem
ends with the optimal solution dj = 1 for levels cp of the defender’s risk aversion 0.01 and 0.10 and
the contrary for higher levels.

In Figures 8 and 9, we can observe graphically some of the most relevant results. The favorable
use of the system, d] = 1, is given in a moderate proportion of the 1000 cases (between 30% and
38%), and in a more conservative way at a higher level cp of the defender’s risk aversion. The same
decreasing behavior is observed for the ratio between the expected utilities of the optimal solution
and its opposite. On the other hand, we have the average values of the estimates, pp (A =1 | dy),
for which we observe that pp (A =1|d; =1) > pp (A=1]|d; =0) when dj = 1, and conversely
in the opposite case. All these results confirm what we intuitively assumed a priori, and the correct
behavior of the calculations.
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Figure 8. Results of ARA. (a) No. of cases (over 1000) and (b) ratio % (average + deviation) for
1

dj, both depending on the risk aversion level cp of the defender (abscissa axis).
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Figure 9. Values of pp(A|d; = 1). On the leftif dy = 1 and on the right if d; = 0.

Finally, we adjusted a parametric model to the set of solutions, specifically a logistic regression
of the form logit (d}) = by + bixy + byx1 + - - - + b;x;, with the aim of determining the relationship
between d] and the parameters of the problem. To select the best model, we used the bestglm
(Available online: https:/ /cran.r-project.org/web/packages/bestglm /index.html (accessed on 8 May
2012)) package of R. The reason was to avoid losing information and overestimating the logit model.
Table 14 shows the results of the adjustments, where between the null model and the complete model,
the best model obtained is “ARA08.06” (logit model with six variables out of eight available variables,
highlighted in bold). Thus, the model indicates that, a priori, we could do without the parameters b2
and A to explain the optimal decision dj = 1 of the defender, while the parameter P3¢ (proportion of
profiles investigated manually when the system is not used), with an odds ratio = 16.56, is shown to

be highly influential.
Table 14. Logit models for the ARA results.
Model cte. Logit ~ abase  pgbase  pbase  ,base pgase ¢ A cp AIC
ARA00.00 —0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6283.70
ARAO08.06 0.64 —1.49 0.00 2.81 —-046 —237 —0.58 0.00 —0.08 5281.03
ARA08.08  0.59 —146 —-1.08 281 —-047 =237 —-058 0.16 —0.08 5277.06

The confusion matrix (The cut-off value is 0.40 for a dataset with 1608 reference cases over 5000)
shown in Table 15, computed from the predictions of the “ARA08.06” model, indicates that 3703 of the
5000 scenarios (74%) would be correctly predicted, with 953 out of 1608 (59%) referring to the cases
where dj = 1.

At this point, we want to highlight that other parametric and/or nonparametric adjustments can
be used alternatively to logistic regression. It is also possible to analyze the sensitivity of the problem
from other angles, be it for example through game theory in its classical form or through differential
calculus, to find solutions and optimal parameter configurations. We look at this in the following
subsection, which analyzes the problem from a standard game-theoretic approach.
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Table 15. Confusion matrix of the “ARA08.06” logit model.

Pred.
di =0 di=1

;=0 2753 639
aj =1 655 953

Obs.

Comparison with Game Theory

We next solved our example using the game theory approach and compared the results with
the solution offered by ARA. The standard game theory approaches generally assume a common
knowledge about the structure of the game (values at stake, resources available for the players, feasible
assignments, etc.) as well as the utilities and probabilities of the players. In addition, the existence of
objective probabilities for uncertainties is also usually assumed, in our case the results of automatic
and/or manual investigations, S1|dq,a and Sy|a, d;.

We assume that the conditional probabilities (S1|d1,a) and p(Sz|a,dy) derive, respectively,
from pp(Si|di,a) and pp(Sz|a,dy), that is, the defender’s belief about the probability that the
adversary’s presence is not detected. These probabilities now represent objective non-detection
probabilities, and both the defender and the adversary know them. In addition, the assumption
of common knowledge ensures that the defender knows the probabilities used by the adversary
when they solve their decision problem, and therefore does not need to represent the uncertainty
surrounding them.

To resolve the problem we adapted the reduction algorithm of influence diagrams proposed by [27]
to evaluate an influence diagram that represents a decision problem of a single agent, to solve the
sequential defense—attack games formulated as multi-agent influence diagrams. We solved, in parallel,
the experiment proposed for ARA when the coefficients of risk aversion and risk seeking for the
defender and the adversary are, respectively, cp = (0.01, 0.1, 0.5, 1.0, 3.0) and c4 = 0.0125 (remember
that originally c4 ~ U(0, 0.025)). These values determine the utility functions of the defender and
the adversary, given, respectively by up (dz,s2) and u4 (a,s;), which are also common knowledge.
In general, we expect coincidental and opposite results that reveal the different assumptions of the
methods. In Table 16, we show the same extract of results that Table 12 shows obtained by ARA, now
adding the optimal solution provided by game theory. In this scenario and depending on the risk
aversion level cp of the defender, ARA behaves more prudently than game theory, which constantly
obtains the same solution d;¢T = 1.

Table 16. Extract of standard game theory (GT) results vs. ARA results.

«GT *ARA

cp dik GT 'I’;D((ddll_‘* )) dTARA lp;[(,[(i:i{‘* ) ) ‘xbase ﬂbase pbase pllaase pgase ¢ A
001 1 0.77 1 0.73 0.92 0.01 0.48 0.89 0.73 0.08 0.05
010 1 0.04 1 0.53 0.92 0.01 0.48 0.89 0.73 0.08 0.05
050 1 0.04 0 0.21 0.92 0.01 0.48 0.89 0.73 0.08 0.05
1.00 1 0.04 0 0.08 0.92 0.01 0.48 0.89 0.73 0.08 0.05
3.00 1 0.04 0 0.08 0.92 0.01 0.48 0.89 0.73 0.08 0.05

In Figure 10, we can observe graphically some of the results obtained. The favorable use of
the system, di = 1, is given in a proportion between 49% and 59% of 1000 cases, decreasing to a
greater level cp of risk aversion of the defender. The same decreasing behavior is observed for the
ratio between the expected utilities of the optimal solution and its opposite. Compared to ARA,
the frequency of favorable use of the system is significantly less conservative. This result satisfies us
because it corresponds to ARA applications solving other problems. The opposite occurs with the
ratio of the expected utilities between the optimal solution and the opposite, where ARA also has
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decreasing but higher ratios. We understand that these differences are found in the terms used to
calculate the expected utilities of the defender in node A.

0,9 4
0,8
0,7
0,6
0,5 4
0,4
0,3 4
0,2
0,1 4

(b)

Figure 10. ARA results (grey) vs. game theory (black). (a) No. of cases (over 1000) and (b) ratio %{;;T))

(average =+ deviation) for d] = 1, both depending on the level cp of risk aversion of the defender.

In Table 17, we show the same logistic adjustment used for the results obtained with ARA.
Between the null model and the complete model, the best model obtained with game theory is
“GT08.05” (logit model with five variables out of eight available variables). The model indicates
that, a priori, we could dispense with parameters a®¢, ¢ and A to explain the defender’s optimal
decision, while parameter P (false positives), with an odds ratio of 29.88, demonstrates to be highly
influential. For comparison, we also include in the table the best ARA model obtained, “ARA08.06”.

Table 17. Logit models for the game theory results.

Model Cte. Logit abase  pbase  gbase  pbase  pbase 4 A kp AIC

GT00.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6927.13
GT 08.05 0.34 0.00 3.40 1.34 -125 -0.74 0.00 0.00 —0.09 6549.20
GT08.08 —0.13 050 328 1.35 —-124 -074 005 0.10 —0.09 6550.38
ARA08.06 0.64 —1.49 0.00 2.81 —046 —-237 —0.58 0.00 —0.08 5281.03

The confusion matrix (The cut-off value is 0.55 for a dataset with 2589 reference cases over 5000)
shown in Table 18, computed from the predictions of the “GT08.05” model, indicates that 3067 of the
5000 scenarios (61%, 74% with ARA) would be correctly predicted, 1312 out of 2589 (51%, 59% with
ARA) referring to the cases in which dj = 1.

Table 18. Confusion matrix of the “GT08.05” logit model.

Pred.
i =0 di=1

;=0 1595 816
di=1 1277 1312

Obs.

In general, we can conclude that the results obtained with ARA are more satisfactory than those
obtained with game theory. In contrast to standard game theory, however, ARA provides more
costly solutions from a computational point of view, but more realistic in terms of the dynamics and
perspective of the game proposed between adversaries to solve the problem of online surveillance.

7. Discussion

We defined the problem of online surveillance based on the intrusion-detection problem posed
by [18] through backward induction. The choice of methodology and model applied to this problem
is one of the central ideas of this work. In this sense, we believe that the essence of the problem is
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adequate for the use of ARA, which arises, among other aspects, from (i) the need to address an efficient
allocation of security resources for managing a terrorist threat and (ii) to improve the methods of
decision analysis when the risks are derived from intentional actions by intelligent adversaries. These
improvements of ARA are aimed to address the unrealistic situations such as the hypothesis of common
knowledge about payments and probabilities among adversaries that the classical game theory requires,
and the unpredictability of the adversaries’ intentions that the standard risk analysis supposes.

On this basis, we investigated an ARA model as a novel way of proposing and solving the problem
of online surveillance, where, among other aspects, we do not assume the hypothesis of common
knowledge. Unlike the problem tackled by [18], we evaluated the problem of online surveillance faced
by a security agency that monitors a set of specific websites by tracking and classifying profiles that
are potentially suspected of carrying out terrorist attacks.

Our analysis constitutes a preliminary, theoretical step in that it aimed to establish a point of
departure and connection between the analytical framework provided by ARA, a young field within
risk analysis, and the problem of online surveillance with counterterrorist purposes, understood as
a game between opponents who wanted to maximize their benefits.

To give consistency to our proposal, we have illustrated a feasible architecture for online
surveillance based on an engine for tracking user navigation traces on monitored websites and
an automatic classifier of suspects, thought of as a classification method based on artificial intelligence.
However, we recognize that the implementation of such a surveillance infrastructure may pose
several technical difficulties. A number of security and privacy aspects, out of the scope of this
work, would need to be considered if such an infrastructure were to be implemented in real practice;
among those aspects, special attention should be paid to the exchange of information between the
security agency and the tracking/advertising platform(s) and the design of secure authentication
schemes [28-30].

In this scenario, we evaluated the adoption of automatic technology compared to the status quo
that involves the manual investigation of profiles. The automatic threat detection system, nonetheless,
is limited to the extent given by the sensitivity and specificity parameters of the artificial-intelligence
algorithm responsible for classifying the collected profiles. Specifically, the compromise between the
defined parameters and the evaluations of the probabilities and payments of the agents governed by
the dynamic strategy modeled with ARA determines the limitations of the automatic system. The
results of our experiments indicate that the use of the automatic detection system is strongly influenced
by the proportion of profiles that the security agency could investigate manually (status quo case).
This is a proportion that supposedly depends in turn on the budget available for intelligence analysts.

We applied the ARA methodology, which offers the possibility of treating the problem with
game theory and risk analysis approaches in a new perspective of decision analysis against intelligent
adversaries, who increase the risk of security and uncertain results.

Our experimental results corroborate the benefits of the proposed model and at the same time are
indicative of its potentialities.

Compared to the analysis of the problem from standard game theory, ARA indicated in general
greater prudence in the deployment of the automatic system, even more at higher levels of risk
aversion. In addition, the behavior of estimated conditional probabilities correctly responded to our
intuitions (pp(A = 1|dy = 1) > pp(A = 1|d; = 0) when d} = 1, and conversely in the opposite case).
From this point of view, the ARA model is more attractive than the standard game-theoretic model
since it behaves satisfactorily without having to relax crucial hypotheses such as common knowledge
and therefore subtracting realism from the problem.

We used a parametric model with the aim of understanding the relationship between the optimal
decision d] = 1 and the parameters of the problem. This can be a way of not having to execute the
resolution algorithm countless times to determine the adjustment of the system parameters. This
and other decisions can be part of the implementation of the online monitoring architecture (machine
learning, sensitivity analysis, etc.). In addition to the better parametric adjustment of ARA over
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standard game theory, we observed that pP25¢ (proportion of profiles investigated manually in case of
not using the system) is determinant for ARA while B¢ (false positives) was for game theory. gbase
depends on how good our detection system was and pPs
implications could be coherent and a further debate could explore this, for example, depending on
how the surveillance architecture is implemented.

Given the absence of real, accurate information of terrorist web-browsing data, our experiments
were conducted on artificial data. We consider that the obtained results, although based on artificial
and therefore limited data, place us positively at this starting point, as they have been satisfactorily

contrasted with standard game theory. The obtained experimental results are solvent from a theoretical

on the available resources. A priori the two

standpoint. Furthermore, from a practical point of view, those results provide confirmatory evidence
as we could corroborate some previous intuitions we expected from ARA, as illustrated in Figures 8
and 9, particularly with regard to the predictions about the attacker pp(A|d;), whose evaluation is key
for ARA, and which we derived from our uncertainty about the adversary’s problem and under the
hypothesis that the adversaries endeavor to maximize their expected utility. The following support the
validity and appropriateness of the proposed approach: (i) the model formulation used in this work is
one of the basic template models employed in counterterrorism; (ii) this model has been successfully
addressed by ARA; and (iii) ARA is a robust, extensively investigated theoretical framework in the
literature [8,21,31].

Furthermore, ARA goes beyond the dynamics of a player facing “nature”, introducing in its place
intelligent adversaries in a game of rational confrontation represented by the agents’ utility functions.
In addition, another important advantage of ARA is its use of multi-agent influence diagrams, a graphic
tool that allows clearly representing a decision problem between more than one agent. In a nutshell,
we can conclude that ARA is an excellent option for modeling and solving the problem posed against
the classical model of game theory.

8. Conclusions and Future Work

In recent years, Western countries have allocated tremendous amounts of resources to fight
terrorism. As in any war, the battle occurs in various environments and the Internet, with the
advent of the IoT, is one of the most powerful ones for propagating a threat and recruiting terrorists.
However, at the very same time, this environment is the perfect storm for the development of
ubiquitous online surveillance.

In this work, we first examined the suitability of standard game theory and ARA, to tackle
the online surveillance problem in which a security agency aims at countering terrorism online by
deploying an automatic threat detection system on certain target websites. Then, we proposed an
ARA-based model to analyze the feasibility of using such an automatic system, and determined
under which conditions said deployment is better than the traditional model in which terrorist online
activity is inspected manually by agents. Experimental results show that our ARA-based model is
more attractive than the standard game-theoretic model as the former behaves satisfactorily without
having to relax crucial hypotheses such as common knowledge and thus subtracting realism from the
problem. Specifically, experiments on artificial data showed ARA would correctly predict 74% of the
5000 simulated scenarios, 59% of them corresponding to the case d] = 1. In contrast, GT would yield
61% correct prediction, with 51% of the analyzed scenarios corresponding to dj = 1.

Future research lines include adopting other sequences and/or introducing new intermediate
decisions to be taken into account (for example, changing the uncertainty node D2 to a decision
node). For this, we can use other ARA templates and model new situations, in both sequential and
simultaneous game dynamics.



Sensors 2019, 19, 480 25 of 26

Author Contributions: Both authors contributed equally to this work.

Funding: The author was supported by the Spanish government under grant TIN2016-80250-R and by the Catalan
government under grant 2017 SGR 00705. J. Parra-Arnau is the recipient of a Juan de la Cierva postdoctoral
fellowship, IJCI-2016-28239, from the Spanish Ministry of Economy and Competitiveness.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results. The views in this paper are solely the responsibility of the authors and are not necessarily
shared by their affiliated institutions.

References

1. Reinares, F; Calvo, C. Estado isldmico en Espafia; Real Instituto Elcano: Madrid, Spain, 2016.

2. Khan, S.; Paul, D.; Momtahan, P.; Aloqaily, M. Artificial intelligence framework for smart city microgrids:
State of the art, challenges, and opportunities. In Proceedings of the International Conference on Fog and
Mobile Edge Computing (FMEC), Barcelona, Spain, 23-26 April 2018; pp. 283-288.

3. Aloqaily, M.; Kantarci, B.; Mouftah, H. Trusted Third Party for service management in vehicular clouds.
In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC),
Valencia, Spain, 26-30 June 2017; pp. 928-933.

4. Aloqaily, M.; Kantarci, B.; Mouftah, H. Fairness-Aware Game Theoretic Approach for Service Management in
Vehicular Clouds. In Proceedings of the Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada,
24-27 September 2017; pp. 1-5.

5. Otoum, S.; Kantarci, B.; Mouftah, H. Adaptively Supervised and Intrusion-Aware Data Aggregation for
Wireless Sensor Clusters in Critical Infrastructures. In Proceedings of the International Conference on
Communications (ICC), Kansas City, MO, USA, 20-24 May 2018; pp. 1-6.

6. Hintz, A,; Dencik, L. The politics of surveillance policy: UK regulatory dynamics after snowden. Inf. Syst.
Res. 2016, 5, 1-6.

7.  Bier, V.; Azaie, M. Game Theoretic Risk Analysis of Security Threats; Springer-Verlag: Boston, FL, USA, 2008;
Volume 128.

8. Rios, D.; Rios, J.; Banks, D. Adversarial risk analysis. ]. Am. Stat. Assoc. 2009, 104, 841-854. [CrossRef]

9. Parra-Arnau, J.; Castelluccia, C. On the cost-effectiveness of mass surveillance. IEEE Access. 2018, 6,
46538-46557. [CrossRef]

10. Englehardt, S.; Narayanan, A. Online tracking: A 1-million-site measurement and analysis. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24-28 October 2016; pp. 1388-1401.

11. Parra-Arnau, J.; Achara, J.; Castelluccia, C. MyAdChoices: Bringing transparency and control to online
advertising. ACM Trans. Web 2017, 11. [CrossRef]

12.  Yuan, S.; Abidin, A.; Sloan, M.; Wang, ]. Internet advertising: An interplay among advertisers, online
publishers, ad exchanges and web users. arXiv 2012, arXiv:1206.1754.

13. Toubiana, V. SquiggleSR. 2007. Available online: www.squigglesr.com (accessed on 7 August 2018).

14. Liu, B.; Sheth, A.; Weinsberg, U.; Chandrashekar, J.; Govindan, R. Adreveal: Improving transparency into
online targeted advertising. In Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks
Article, College Park, MD, USA, 21-22 November 2013; pp. 121-127.

15. Yan,]; Liu, N,; Wang, G.; Zhang, W,; Jiang, Y.; Chen, Z. How much can behavioral targeting help online
advertising? In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain,
20-24 April 2009; pp. 261-270.

16. Aly, M.; Hatch, A ; Josifovski, V.; Narayanan, V. Web-scale user modeling for targeting. In Proceedings of the
21st International Conference on World Wide Web, Lyon, France, 16-20 April 2012; pp. 3-12.

17.  Tsang, M.; Ho, S.; Liang, T. Consumer attitudes toward mobile advertising: An empirical study. Int. |.
Electron. Commer. 2004, 8, 65-78. [CrossRef]

18. Cavusoglu, H.; Mishra, B.; Raghunathan, S. The value of intrusion detection systems in information
technology security architecture. Inform. Syst. Res. 2005, 16, 28—46. [CrossRef]

19. Mell, P; Bace, R. Nist Special Publication on Intrusion Detection Systems; National Institute of Standards and
Technology (NIST): Gaithersburg, MD, USA, 2001.


http://dx.doi.org/10.1198/jasa.2009.0155
http://dx.doi.org/10.1109/ACCESS.2018.2866310
http://dx.doi.org/10.1145/2996466
www.squigglesr.com
http://dx.doi.org/10.1080/10864415.2004.11044301
http://dx.doi.org/10.1287/isre.1050.0041

Sensors 2019, 19, 480 26 of 26

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Merrick, J.; McLay, L. Is screening cargo containers for smuggled nuclear threats worthwhile? Decis. Anal.
2010, 7, 155-171. [CrossRef]

Rios, ].; Insua, D. Adversarial risk analysis: Applications to basic counterterrorism models. In Proceedings of
the International Conference on Algorithmic Decision Theory, Venice, Italy, 20-23 October 2009; pp. 306-315.
Zhuang, J.; Bier, V. Balancing terrorism and natural disasters—Defensive strategy with endogenous attacker
effort. Oper. Res. 2007, 55, 976-991. [CrossRef]

Brown, G.; Carlyle, M.; Salmeron, J.; Wood, K. Defending critical infrastructure. Interfaces 2006, 36, 530-544.
[CrossRef]

Winterfeldt, D.; O’Sullivan, T. Should we protect commercial airplanes against surface-to-air missile attacks
by terrorists? Decis. Anal. 2006, 3, 63-75. [CrossRef]

Gil, C.; Rios, D.; Rios, J. Adversarial risk analysis for urban security resource allocation. Risk Anal. 2016, 36,
727-741. [CrossRef] [PubMed]

Barton, R.; Meckesheimer, M. Handbooks in Operations Research and Management Science; Metamodel-Based
Simulation Optimization; Elsevier: New York, NY, USA, 2006; pp. 535-574.

Shachter, D.R. Evaluating influence diagrams. Oper. Res. 1996, 34, 871-882. [CrossRef]

Wang, D.; Wang, N.; Wang, P; Qing, S. Preserving privacy for free. Inf. Sci. 2015, 321, 162-178. [CrossRef]
Wang, D.; Li, W.; Wang, P. Measuring Two-Factor Authentication Schemes for Real-Time Data Access in
Industrial Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2018, 14, 4081-4092. [CrossRef]

Wang, D.; Li, W. Two Birds with One Stone: Two-Factor Authentication with Security Beyond Conventional
Bound. IEEE Trans. Dependable Secur. Comput. 2018, 15, 708-722. [CrossRef]

Banks, D.; Aliaga, ].; Insua, D. Adversarial Risk Analysis; CRC Press: Boca Raton, FL, USA, 2015.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1287/deca.1100.0171
http://dx.doi.org/10.1287/opre.1070.0434
http://dx.doi.org/10.1287/inte.1060.0252
http://dx.doi.org/10.1287/deca.1060.0071
http://dx.doi.org/10.1111/risa.12580
http://www.ncbi.nlm.nih.gov/pubmed/26927388
http://dx.doi.org/10.1287/opre.34.6.871
http://dx.doi.org/10.1016/j.ins.2015.03.070
http://dx.doi.org/10.1109/TII.2018.2834351
http://dx.doi.org/10.1109/TDSC.2016.2605087
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Assumptions
	Background in Online Third-Party Tracking
	Assumptions

	The Problem of Online Surveillance
	Analysis of Decision-Making Models
	Model Requirements and Notation
	Sequential Defense–Attack Model
	Analysis Based on Standard Game Theory
	Analysis Based on ARA

	An ARA Model for the Online Surveillance Problem
	The Defender's Decision Problem
	The Adversary's Decision Problem
	Overall Approach

	Experimental Evaluation
	Structure of the Problem
	The Defender's Evaluations
	The Defender's Evaluations about the Adversary
	Results

	Discussion
	Conclusions and Future Work
	References

