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Abstract: Structural health monitoring technologies have provided extensive methods to sense the
stress of steel structures. However, monitored stress is a relative value rather than an absolute value
in the structure’s current state. Among all the stress measurement methods, ultrasonic methods
have shown great promise. The shear-wave amplitude spectrum and phase spectrum contain
stress information along the propagation path. In this study, the influence of uniaxial stress on
the amplitude and phase spectra of a shear wave propagating in steel members was investigated.
Furthermore, the shear-wave amplitude spectrum and phase spectrum were compared in terms of
characteristic frequency (CF) collection, parametric calibration, and absolute stress measurement
principles. Specifically, the theoretical expressions of the shear-wave amplitude and phase spectra
were derived. Three steel members were used to investigate the effect of the uniaxial stress on the
shear-wave amplitude and phase spectra. CFs were extracted and used to calibrate the parameters in
the stress measurement formula. A linear relationship was established between the inverse of the CF
and its corresponding stress value. The test results show that both the shear-wave amplitude and
phase spectra can be used to evaluate uniaxial stress in structural steel members.

Keywords: uniaxial stress measurement; structural steel members; amplitude spectrum; phase
spectrum; shear-wave birefringence; acoustoelastic effect

1. Introduction

1.1. Absolute Stress in Structural Steel Members

Many large-scale steel structures have been built worldwide due to their high degree of
industrialization [1,2]. Fully understanding the performance degradation of steel structures during
their entire life cycle has become a significant topic [3], which has received increasing attention
in academic and engineering fields [4,5]. Structural health monitoring [6,7] is one of the most
effective technologies to sense the real response of the monitored objects. Many excellent monitoring
technologies [8,9], systems [10], and advanced intelligent algorithms [11] have been developed and
applied to solve engineering problems. A stress monitoring system [12,13], which plays an important
role in structural health monitoring technologies, has been regarded as a mature way to obtain
structural stress information from the macroscale stress distribution of a whole structure [14] to the
microscale stress concentration of a local member [15]. However, the monitored stress value using
a stress monitoring system is a relative value rather than an absolute value. The absolute stress,
which represents the current state of structures, is a significant indicator for judging the safety of
structures [16].
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Existing stress measurement methods, such as diffraction [17,18] and magnetic methods [19],
can be used to detect the absolute stress of materials. However, these methods are unable to adequately
test large-scale steel members and are unsuitable for field applications because a strict testing
environment is required during the testing process. In addition, the testing equipment is complex,
and the testing process is time consuming. Generally, absolute stress measurements of structural steel
members using structural health monitoring technologies remains a challenging task [20,21].

1.2. Ultrasonic Stress Measurement Methods

In recent years, ultrasonic methods, which are based on acoustoelastic effects, have been studied
to evaluate the internal and initial stress in complex structures [22–25]. Compared with other stress
measurement methods, such as X-ray diffraction [17], neutron diffraction [18], and magnetic [19]
methods, ultrasonic methods have shown great prospects for use in in-site stress measurements [26].
Essentially, ultrasonic methods establish a linear relationship between the stress and ultrasonic
wave velocities, that is, a time-of-flight (TOF) measurement [27]. Compared with other ultrasonic
waves, a longitudinal critically refracted (Lcr) wave exhibits the greatest sensitivity to stress [28].
Hence, these waves have been widely used to evaluate welding residual stress [29], rail stress [30],
steam turbine disk stress [31], and steel member stress [22]. To improve the signal-to-noise ratio,
the laser-generated Lcr wave method was presented to evaluate the stress in a noncontact manner [32],
and the piezoelectric effect-generated Lcr wave was investigated to detect the stress in an immersion
manner [33]. Combining the experimental and the numerical analysis results, the colored stress
distribution nephogram of a tested member can be sketched [34]. Because the Lcr wave energy is
relatively small and rapidly decays, guided ultrasonic wave methods have been proposed and used
to monitor the stress in steel strands [35] and aluminum plates [36,37], which is a further application
of the acoustoelastic effect. Recently, the influence of a uniaxial load on the electromechanical
impedance of embedded piezoceramic transducers in steel fiber concrete was investigated [38].
A normalized root-mean-square deviation index was developed to analyze the electromechanical
impedance information, and the experimental results showed that the index increases with the uniaxial
load, thus providing a potential method to evaluate the uniaxial stress of steel fiber concrete.

In addition to the methods described above, the shear wave [39] can also be used to evaluate
stress. The effect of birefringence [40] describes a phenomenon in which the velocity of a shear
wave varies when the shear wave vibrates in different directions, which endows the shear wave
with unique advantages to evaluate the stress in materials. If two individual stress values in
plate-like components need to be detected, then the combination of longitudinal and polarized
shear waves is advantageous [41]. In addition, by measuring the velocities of the shear wave in
two different polarization directions, the influence of texture during the stress evaluation can be
separated [42]. Note that the aforementioned shear-wave methods are based on TOF measurements.
The accuracy of the ultrasonic stress evaluation results is influenced by the TOF data collection.
In fact, many uncertain factors, such as microcracks [43], inhomogeneous materials [44], coupling
conditions [45], and temperature [46], may lead to a distortion of the waveform, which limits the
industrial application of ultrasonic methods. It is critical to distinguish the influence of the uncertainty
factors from that of stress [47]. To date, only a few systems have been used in practical engineering [48].

In addition to the above methods, shear-wave frequency domain signals have received attention
in recent years. Shear-wave spectrum analysis methods are based on acoustoelastic theory and
the shear-wave birefringent effect. When a beam of a shear wave is perpendicularly incident to
a stressed solid, it separates into two modes. The two separated shear-wave modes travel with
different velocities, which produces interference effects. The received shear-wave spectrum contains
the interference information, which can be used to evaluate the absolute stress in solids [49]. Recently,
the shear-wave amplitude spectrum method was proposed to measure the absolute stress in steel
members [24]. The experimental results showed that the inverse of the CF linearly changed with the
applied uniaxial stress, and then the mechanically applied stresses of the structural steel members
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were evaluated. The ultrasonic shear-wave amplitude spectrum method makes use of the amplitude
spectrum to establish the relationship between the stress and the CF. In fact, the phase spectrum also
contains the stress information along the shear-wave propagation path, which may provide a new
method to detect the absolute stress in structural steel members. However, the effect of stress on the
phase spectrum is not as well understood, which is the focus of this study.

1.3. Goals and Objectives of This Study

In light of the challenges described above, here we investigate the influence of uniaxial stress on
shear-wave spectrum propagation in steel members. Compared to our previous work [24], which aimed
to measure the absolute stress using the shear-wave amplitude spectrum, this paper further studies the
phase spectrum of a shear wave propagating in steel members. Moreover, the shear-wave amplitude
spectrum and phase spectrum are compared in terms of CF collection, parametric calibration and
absolute stress measurement principles, which represents an expansion of our previous method [24].
For this purpose, the theoretical formulas of the shear-wave pulse echo phase spectrum are derived.
Accordingly, the relationship between the uniaxial stress and the CF is established. Three structural
steel members are tested to investigate the effect of the applied uniaxial stress on the shear-wave
amplitude and phase spectra. The parameters representing the quantitative relationship between the
stress and the CF are calibrated using the experimental data. The results show that the amplitude and
phase spectra have the potential to be used for stress monitoring of in-service structures.

2. Theory

2.1. Theoretical Derivation of the Shear-Wave Pulse Echo Spectrum

The theoretical expression of the shear-wave pulse echo spectrum is derived on the assumption
that the steel member interface exerts no effect on the propagation of the shear wave. In addition,
the steel member material is assumed to be isotropic and homogeneous as well as be elastic in its range.
When a beam of ultrasonic shear-waves is perpendicularly incident on a steel member, the motion
equation of the shear-wave propagating is

u0 = y(t) =
n

∑
i=0

Ai cos(wit + ji), (i = 0, 1, 2, ..., n), (1)

where the shear-wave contains various components of the harmonic vibration, u0 and Ai are the
amplitude of the vibration source and the amplitude of the ith component, respectively; wi and ϕi are
the angular frequency and initial phase of the ith component, respectively; and t is the vibration time.

Uniaxial stress in steel members can cause an acoustic anisotropy of the material; that is, stress
causes the ultrasonic velocity to change when vibrating in different directions. When an ultrasonic
shear-wave is perpendicularly incident on a steel member under a uniaxial stressed state, it separates
into two shear-wave modes with one polarization direction parallel to the stress direction and the
other mode perpendicular to the stress direction [49]. The motion equations of the two separated shear
waves are [40]

u1(x3, t) = y(t− x3

v31
) cos θ, (2)

u2(x3, t) = y(t− x3

v32
) sin θ, (3)

where x1, x2 and x3 are axes of the Cartesian coordinate; the two separated shear waves propagate
in the positive direction of x3; v31 and v32 are the velocities of the two shear-waves traveling in the
direction of x3 with a particle vibration parallel to x1 and x2, respectively; and θ is the angle between
the incident shear-wave direction and the x1 direction.
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When the two separated shear waves travel from the starting point on one side of the steel
member to the rear side, they will be reflected and travel back to the starting point. The synthesis of
the two reflected shear waves is

ur(t) = y(t− x3

v31
) · cos2 θ + y(t− x3

v32
) · sin2 θ, (4)

where y(t − x3/v31) and y(t − x3/v32) contain the information of the two separated shear waves’
TOF delay and cos2θ and sin2θ contain the amplitude information of the two wave components that
synthesize pulse echo in the incident direction. Let M = cos2θ and N = sin2θ; then Equation (4) can be
simplified as the following form:

ur(t) = y(t− x3

v31
) ·M + y(t− x3

v32
) · N. (5)

U0 (f ) and Ur (f ) are defined as the Fourier transforms of y(t) and ur(t), respectively. The synthesis
of the two reflected shear waves in the frequency domain is [24]

Ur( f ) = U0( f ) · L(θ, f ), (6)

L(θ, f ) = cos(2π f x3
v31

) ·M + cos(2π f x3
v32

) · N
−i

[
sin(2π f x3

v31
) ·M + sin(2π f x3

v31
) · N

] (7)

where L(θ,f ) is defined as the interference factor (IF). Equation (6) is the theoretical expression of the
shear-wave pulse echo spectrum propagating in steel members. Note that Equation (6) is equivalent to
Equation (4) and contains the interference information of the two separated shear waves.

2.2. Theoretical Derivation of the Shear-Wave Amplitude Spectrum

Equation (6) contains information on the amplitude spectrum and phase spectrum. By taking the
modular operation on both sides of Equation (6), the theoretical formula of the shear-wave amplitude
spectrum can be obtained, which is shown in the following formula.

|Ur( f )| = |U0( f )| · |L(θ, f )|, (8)

|L(θ, f )| =
√

1+2MN(cos(2πP f )− 1), (9)

where |L(θ,f )| is the amplitude of the interference factor (AIF) with a value ranging from 0 to 1;
P equals (2l/v31 − 2l/v32), which is the TOF difference of the two separated shear waves.

The AIF is a periodic function of the frequency and polarized angle. When the AIF reaches
a minimum, the frequency and the polarized angle can be solved.{

f ∗ = 2N1−1
2P , (N1 = 1, 2, 3, ...)

θ = N2π
4 , (N2 = 1, 3, 5, ...)

. (10)

In Equation (10), f * is defined as the CF. The CFs are defined as the first CF (f 1*), the second CF
(f 2*), the third CF (f 3*), . . . , when N1 equals 1, 2, 3, . . . , respectively.

Equation (8) shows that the amplitude spectrum is a product of the incident shear-wave amplitude
spectrum and the AIF. The periodic values for the frequency and the polarized angle are 1/P and π/2,
respectively. Particularly, when the shear-wave polarized angle is an odd multiple of π/4, the AIF
reaches 0 at the minimum point. This finding indicates that the energy of the harmonic component
with the frequency of (2N1 − 1)/2P decreases to 0. Correspondingly, the amplitude value in the
amplitude spectrum with a frequency of (2N1 − 1)/2P decreases to 0. In Equation (9), P is the TOF
difference of the two separated shear waves. Because the TOF difference of the two separated shear
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waves is determined by the uniaxial stress, the CF in Equation (10) is related to the uniaxial stress
in the steel member. This effect establishes the foundation for detecting the uniaxial stress in steel
members from the shear-wave amplitude spectrum.

2.3. Theoretical Derivation of the Shear-Wave Phase Spectrum

ϕ0(f ) and ϕr(f ) are defined as the phase spectra of U0 (f ) and Ur (f ), respectively. The spectra U0

(f ) and Ur (f ) are complex functions. By combination with Equation (6), the following expression can
be obtained.

ϕr( f ) = ϕ0( f ) + ϕL( f ), (11)

where ϕL(f ) is defined as the phase of the interference factor (PIF).
From Equation (7), the following formula can be obtained:

ϕL( f ) = −π f (
2l
v31

+
2l
v32

)− arctan((M− N) · tan(π f P)). (12)

By substituting Equation (12) into Equation (11), the theoretical expression of the shear-wave
pulse echo phase spectrum can be obtained.

ϕr( f ) = ϕ0( f )− π f (
2l
v31

+
2l
v32

)− arctan((M− N) · tan(π f P)). (13)

From Equation (13), the shear-wave pulse echo phase spectrum contains three parts. The first
part, ϕ0(f ), is the phase spectrum of the incident shear wave. The second part, −πf (2l/v31 + 2l/v32),
is the delayed phase values of the shear-wave propagating a length of 2l. The third part equals
−arctan((M − N)·tan(πfP)), which is the phase value caused by the TOF difference for the two
separated shear waves. When the amplitude of the separated shear waves is identical, that is, N equals
M, the third part in Equation (13) is 0, and the corresponding shear wave polarized angle is 45◦. In the
following theoretical derivation, as the third part in Equation (13) is significant for CF collection,
the shear wave polarized angle should not be 45◦. Comparing Equations (8) and (11), the interference
factor plays different roles in the amplitude and phase spectra. The AIF (|L(θ,f )|) and the PIF (ϕr(f ))
indicate the amplitude change and the phase change in the synthesis shear wave, respectively.

When the shear-wave pulse echo amplitude spectrum reaches a minimum value, the phase
difference of the two separated shear-waves should be (2N3 − 1)π. Hence, the phase difference of the
two separated shear-waves corresponds to the TOF difference, P, should be (2N3 − 1)π.

2π f P = (2N3 − 1)π, (N3 = 1, 2, 3, ...). (14)

The solution of Equation (14) is

f ∗ =
2N3 − 1

2P
, (N2 = 1, 2, 3, ...), (15)

which is identical to the CF derived from the amplitude spectrum.
Particularly, when the polarized angle of the shear-wave is 45◦, the third part in Equation (13) is 0.

Then, the shear-wave pulse echo phase spectrum is

ϕ45◦( f ) = ϕ0( f )− π f (
2l
v31

+
2l
v32

). (16)

The phase difference between an arbitrary polarized angle θ, and the polarized angle of 45◦ is

∆ϕr = −arctan((M− N) · tan(π f P)). (17)
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where ∆ϕr is defined as the phase difference (PD). A typical illustration of the PD is shown in Figure 1,
in which P is taken as equal to 100 ns as an example. The CF in the curve of the PD corresponds to
an inflection point. The inflection point in the PD curve can be used to identify the CF.Sensors 2019, 19, x FOR PEER REVIEW 6 of 19 
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Figure 1. Functional image of the phase difference.

A method for obtaining the inflection point is to draw an image of the derivation of the PD (DPD),
in which the maximum point corresponds to the CF. An illustration of the DPD curve when P = 100 ns
is shown in Figure 2. The maximum values in the curve correspond to the CFs. Both Equations (10)
and (15) show that the CF is a key indicator because it is directly related to the TOF difference of the
two separated shear waves. Hence, the CF can be collected by determining the maximum value in the
curve of the DPD function.
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Figure 2. An illustration of the derivation of the phase difference.

2.4. Uniaxial Stress Measurement Using the Shear-Wave Pulse Echo Spectrum

According to the acoustoelastic effect, the velocities of the shear waves are different when
their particle vibration directions are perpendicular and parallel to the stress direction, respectively.
The velocities of the shear waves can be related to the uniaxial stress, which theoretical formulas can
be found in references [24,50]. By further combining Equations (10) and (15), we obtain the following
formula [24].

σ =
κ

f ∗
− γ, (N2 = 1), (18)

κ =
2N1 − 1

2t0
· −8µ2

4µ + n
, (N1 = N3 = 1, 2, 3, ...), (19)
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γ =
−8µ2

4µ + n
α, (20)

where σ is the uniaxial stress in the direction of x2; λ and µ are the second-order elastic constants;
l, m, and n are the third-order elastic constants; t0 is the shear-wave TOF in the free-stressed state and
equals 2l/v0; α is a factor to indicate the initial anisotropy of the materials; and κ and γ should be fitted
using the uniaxial compressive test.

3. Experimental Studies

3.1. Equipment and Sample

The devices and the measurement schematic diagram for identifying the uniaxial stress effect
on the spectrum of the shear wave are shown in Figures 3 and 4, respectively. The probe used in the
experiments is a normal incidence shear-wave transducer (V156-5/25”; central frequency: 5 MHz;
Olympus NDT, Waltham, MA, USA), which can introduce shear waves directly into the steel member
without the use of refraction. The shear-wave transceiver probe is excited by the ultrasonic generator
(5072PR; Olympus NDT, Waltham, MA, USA) and a pure shear wave is generated. The generated shear
wave is perpendicularly incident on the steel member loaded by a universal testing machine (SHT4605;
MTS Systems (Shenzhen, China) Co., LTD). After being reflected from the rear side of the steel member,
the shear wave travels back to the steel member surface and is received by the transceiver probe.
The shear-wave pulse echo signals travel back to the ultrasonic generator and are finally collected by
the oscilloscope (MDO3024; Tektronix, Beaverton, OR, USA). A personal computer (PC) is used to
process the received signals. The polarized angle of the shear wave can be determined by rotating the
transceiver probe that is imbedded in a card slot. More details of collecting the pulse echo shear waves
can be found in paper [24].

Three steel members, made of Q235 steel, are designed and used as the test specimens.
The dimensions of the three steel members are 80 mm × 45 mm × 24 mm (sample C1), 80 mm
× 45 mm × 30 mm (sample C2), and 80 mm × 45 mm × 36 mm (sample C3). GW-type-III ultrasound
coupler is used as the couplant to couple the probe and the specimens.

As the shear-wave length is small enough (approximately 0.64 mm) and the shear-wave travel
length is short enough (24 mm to 36 mm), we do not consider the influence of steel member boundaries
on shear-wave propagation. Therefore, guided waves are not formed when the shear wave propagates
in steel members. The experiment was conducted at room temperature (25 ◦C), and the temperature
was considered constant. Therefore, variations in the operational temperature were not considered.
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3.2. Influence of the Uniaxial Stress on the Shear-Wave Amplitude Spectrum

A universal testing machine was used as the loading device to apply compressive stress along the
vertical axis of the three specimens. The increasing step load history applied to the three specimens
is shown in Figure 5. The step load increased from 20 MPa to 230 MPa with a step amplitude of
10 MPa. The transceiver probe is attached to the specimens’ surface. During each loading stabilization,
the shear-wave pulse echo signals are collected using the oscilloscope with a sampling rate of
100 MSa/s. The typical time-domain signals of the received shear waves (sample C3, σ = 200 MPa) are
shown in Figure 6. Using the Fourier transform method, the pulse echo signal can be converted into
frequency domain signals [24].

The shear wave is perpendicularly incident on the steel member with a polarized angle of 45◦.
The second pulse echo signals are extracted, and the corresponding applied uniaxial stresses are
recorded. The Fourier transform method is used to transform the time domain signal to the amplitude
spectrum. Hence, the change in the amplitude spectra affected by the stresses for the three specimens
can be obtained. Figure 7 shows the normalized amplitude spectra under different compressive stress
states in samples C1, C2, and C3.
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3.3. Influence of Uniaxial Stress on the Shear-Wave Phase Spectrum

The polarized angles of 40◦ and 45◦ were selected during the experiments. Using the Fourier
transform method, the shear-wave phase spectrum could be obtained from the collected time-domain
signals. The phase spectrum corresponding to different uniaxial compressive stresses could be obtained
for the three specimens. A typical illustration of the change in the phase spectrum affected by the
stress state is shown in Figure 8.

The PD describes the difference of the two phase spectra for an arbitrary polarized angle
and a polarized angle of 45◦. With the phase spectra of polarized angles at 40◦ and 45◦, the PD
under different stress states could be sketched. Further, the DPD curves was successfully obtained.
The influence of stress on the normalized DPD curves for the three specimens is shown in Figure 9.
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3.4. Parameter Calibration of the Stress Measurement Formula

The aim of sketching the amplitude spectra and the DPD curves is to collect the CFs in each stress
state. For the convenience of making a comparison between the amplitude spectra and the DPD curves,
the second CFs for sample C1, the third CFs for sample C2, and the fifth CFs for sample C3 are extracted
from the amplitude spectra and DPD curves under identical applied uniaxial stresses. The comparison
of the CFs in the amplitude spectra and the DPD curves for the three samples are shown in Figure 10.
Using the least squares method listed in reference [24], the parameters in Equation (18) can be obtained
from a linear fitting of the stress and the inverse of the CF, which is shown in Figures 11 and 12.
The coefficients of the fitting line are listed in Table 1.
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Table 1. Coefficients of the fitting line using the amplitude spectrum and the phase spectrum.

Parameters Methods
Sample C1 Sample C2 Sample C3

Values Difference Values Difference Values Difference

κ
(MPa·MHz)

Amplitude
Spectrum 7356.73

0.23%
8308.07

0.16%
6691.01

0.01%
Phase Spectrum 7339.74 8321.41 6755.27

γ
(MPa)

Amplitude
Spectrum 1103.99

5.83
1111.95

6.06
1106.05

13.75
Phase Spectrum 1109.82 1118.01 1119.80

R2
Amplitude
Spectrum 0.9901 / 0.9937 / 0.9998 /

Phase Spectrum 0.9795 / 0.9828 / 0.9996 /

4. Results and Discussion

4.1. Influence of Uniaxial Stress on Shear-Wave Amplitude Spectrum

The amplitude spectrum of a shear wave traveling in a steel member under different stress state
is definitely different, as shown in Figure 7. The main reason is that the interference effect between
the two separated shear waves lead to an energy loss of the harmonic components. In particular,
the energy of the harmonic component corresponding to the CF decreased to 0 when the shear-wave
polarized angle reached 45◦. In addition, the amplitude spectra did not change with stress when the
shear-wave polarized angle was 0◦. The reason for this phenomenon is that the velocities of the two
separated shear waves are identical. Therefore, no interference occurs between the two separated shear
waves. Another explanation of this phenomenon can be found in Equations (8) and (9), in which the
AIF equals 1 when the shear-wave polarized angle is 0◦. Hence, the pulse echo amplitude spectrum
does not change with stress.

As shown in Figure 7, the minimum point is periodically presented in the amplitude spectra with
a repetition period of 3.75 MHz, 2.39 MHz, and 1.25 MHz for samples C1, C2, and C3, respectively.
According to Equation (10), the periodic values for the CF are 1/P. Because the TOF difference (P) of
the two separated shear waves depends on the dimensions of the sample, sample C3 with the thickest
size shows the least periodic value, while sample C1 with the thinnest size presents the maximal period.
The minimum point in an amplitude spectrum corresponds to the CF. The CF shows a tendency to
move left with increasing stress, which lays the foundation for stress evaluation. This is consistent
with the theoretical analysis result in Equation (10): the CF decreases when the stress-induced TOF
difference P increases.

4.2. Influence of Uniaxial Stress on Shear-Wave Phase Spectrum

Figure 8 shows the typical phase spectra when the applied compressive stress increases from
20 MPa to 230 MPa. All the phase spectra have a tendency to decrease with increasing frequency.
The inflection points periodically appear on the phase spectra curves. With increasing compressive
stress, the inflection points tend to move left. However, it is difficult to observe any quantitative
relationship between the inflection points and the stresses.

The DPD curves of the three samples in Figure 9 show an obvious variation tendency. Compared
with the phase spectrum, the influence of stress on the DPD curves is obvious because a peak point
appears, which corresponds to a specific inflection point. The peak points periodically appeared in
each DPD curve with nearly identical periods to the amplitude spectra for the three samples. As the
peak point in the DPD curve corresponds to the CF, the CF can be obtained from the DPD curve.
In Figure 9, the DPD curves of three samples show that the CF decreases with stress, which is consistent
with the results obtained from the amplitude spectrum.



Sensors 2019, 19, 492 15 of 18

4.3. Comparison of the Amplitude and Phase Spectra

Equations (10) and (15) indicate that the abscissas corresponding to the minimum point in the
amplitude spectrum and the maximum point in the DPD curve should be identical, which was
verified by the experimental results in Figure 10. The CFs obtained from the amplitude spectra and the
DPD curves in Figure 10 are nearly identical. Therefore, both the amplitude spectrum and the phase
spectrum can be used to extract the CF. The difference between the two methods is that the stress
exerts a direct influence on the amplitude spectrum, while the effect of stress on the phase spectrum is
difficult to observe, and the CF is extracted from the DPD curve.

For the amplitude spectrum, the CF can be obtained with only one shear-wave pulse echo signal
with a polarized angle of 45◦. For the phase spectrum, two shear-wave pulse echo signals are required:
one is the signal with a polarized angle of 45◦, and the other is the signal with a polarized angle of
close to 45◦. Therefore, the shear-wave pulse echo signal with a polarized angle of 45◦ is required for
both the amplitude and phase spectra.

Notably, the essence of the stress effect on the two spectra is identical, that is, the interference
effect of the two separated shear waves. The velocities of the two separated shear waves propagating
in a stressed steel member are different; thus, the interference effect occurs for the two separated
shear waves. For the amplitude spectra, when the shear-wave polarized angle is 45◦, the interference
effect induces the amplitude of the CF to decrease to 0; thus, a minimum point appears, and the CF
can be obtained. For the phase spectra, the maximum point in the DPD curve corresponds to the CF,
and it changes with stress. Although the method of collecting the CF is different, the value of the CF
corresponding to a certain stress state is identical. Therefore, the calibrated parameters using the two
sets of data should be identical.

Note that the CF corresponding to a peak point in the DPD curve is easily observed, while the
minimum point in the amplitude spectrum is not always obvious, as shown in Figures 7 and 9.
For instance, the second CFs (f 2

*) for sample C1 and the third CFs (f 3
*) for sample C2, which are shown

in Figure 7a,b, are difficult to collect. The main reason is that the amplitude spectrum indicates the
energy amplitude of a certain frequency, which is directly related to the transceiver probe. In this work,
the central frequency of the probe is approximately 5 MHz, and the amplitude spectrum energy is
centered on the range of 3–7 MHz. When the CFs are beyond the range of 3–7 MHz, the change in the
amplitude spectrum energy is not dramatic and is difficult to observe. Therefore, from the aspect of CF
extraction, the phase spectrum method is more advantageous.

4.4. Parametric Calibration for the Stress Measurement Formula

Figures 11 and 12 show that the inverse of the CFs obtained from the amplitude spectra and
the DPD curves linearly change with the stress. The calibrated parameters in Table 1 indicate that
the correlation coefficients (R2) of all the lines are larger than 0.95, which verifies the correctness of
Equation (18).

The difference in the calibrated parameter κ using the amplitude spectrum and the phase spectrum
is less than 1% for the three samples. This error may come from the ambient effect and can be ignored.
The parameter γ is related to the material and the initial acoustic anisotropy. Because the three samples
were cut from one steel plate, the calibrated parameter γ is nearly identical for the three samples using
the two types of spectra, in which the maximum error is 13.75 MPa. With the calibrated parameters,
the uniaxial stress in a steel member can be evaluated by collecting the shear-wave pulse echo signals
and extracting the CFs from the amplitude spectra or the DPD curves. The results in this work provide
a potential way to detect the uniaxial absolute stress in structural steel members using the amplitude
spectrum method and the phase spectrum method.

The experiments of this work were implemented on the laboratory scale, and a perfect linear
relationship between the stress and the inverse of CFs was obtained. However, some necessary factors
need to be considered for the absolute stress evaluation of realistic structures. For instance, the ambient
temperature of realistic structures is uncontrollable, the surface roughness of the tested steel members
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will be notable due to the development of corrosion, and the coupling state between the probe and
steel member surface is difficult to maintain in a constant state. All of these factors may exert a direct
influence on the absolute stress measurement. Another limitation of the two methods is that structural
steel members are usually non-removable after installation. It is hard to calibrate the parameters on
the original tested member. A possible solution is to replicate a steel member with the same material
and dimensions as the tested steel member. However, the replicated steel member is not the original
in-service steel member, and the potential differences between the tested and replicated steel members
may lead to errors in parametric calibration. To realize the practical engineering application of the
shear-wave spectrum method, further research efforts should focus on the influence of temperature,
surface roughness and coupling state on parametric calibration and the absolute stress measurement.

5. Conclusions

In this paper, the influence of uniaxial stress on the shear-wave spectrum propagating in steel
members was investigated. Three steel members were used to study the effect of the applied uniaxial
stress on the amplitude spectrum and phase spectrum. The conclusions are summarized as follows:

(1) The theoretical expressions of the shear-wave pulse echo phase spectrum were derived.
The essence of the stress effect on the shear-wave phase spectrum is the interference effect of the two
separated shear waves, which follows the same principles as the shear-wave amplitude spectrum.

(2) The CFs can be obtained from both the amplitude spectrum and the DPD curve. The extracted
CFs are identical when the steel member is under the same stress state. To collect a CF, one shear-wave
signal is required for the amplitude spectrum, while two shear-wave signals are needed for the
phase spectrum.

(3) The inverse of the CF showed a linear relationship with the corresponding uniaxial stress,
thus establishing a basis for the uniaxial stress evaluation. The calibrated parameters obtained from
the two methods are nearly identical. Using the calibrated parameters, the uniaxial stress in a steel
member can be evaluated by extracting the CF from the shear-wave pulse echo signal.

Author Contributions: Conceptualization, Z.L.; Data curation, J.H.; Formal analysis, J.H.; Funding acquisition,
Z.L. and J.T.; Investigation, J.H.; Methodology, J.H.; Project administration, Z.L. and J.T.; Resources, Z.L. and
J.T.; Software, D.L.; Supervision, J.T.; Validation, D.L. and N.L.; Visualization, D.L.; Writing—original draft, J.H.;
Writing—review & editing, N.L. and Z.L.

Funding: This work was financially supported by the National Key Research and Development Program of
China under Grant 2016YFC0701102, the National Natural Science Foundation of China under Grant 51538003,
the National Major Scientific Research Instrument Development Program of China under Grant 51827811, and the
Shenzhen Technology Innovation Program under Grant JCYJ20170811160003571. The authors are thankful for this
financial support.

Conflicts of Interest: The author(s) declared no potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

References

1. Nichols, J.M. Structural health monitoring of offshore structures using ambient excitation. Appl. Ocean Res.
2003, 25, 101–114. [CrossRef]

2. Li, J.; Hao, H.; Fan, K.; Brownjohn, J. Development and application of a relative displacement sensor for
structural health monitoring of composite bridges. Struct. Control Health Monit. 2015, 22, 726–742. [CrossRef]

3. Biondini, F.; Frangopol, D.M. Life-cycle performance of deteriorating structural systems under uncertainty:
Review. J. Struct. Eng. 2016, 142, F4016001. [CrossRef]

4. Wang, H.; Li, G.; Huang, X. Behavior of coupled shear walls with buckling-restrained steel plates in high-rise
buildings under lateral actions. Struct. Des. Tall Spec. 2016, 25, 22–44. [CrossRef]

5. Wang, J.; Zhao, H. High performance damage-resistant seismic resistant structural systems for sustainable
and resilient city: A review. Shock Vib. 2018, 8703697. [CrossRef]

6. Sousa, H.; Wang, Y. Sparse representation approach to data compression for strain-based traffic load monitoring:
A comparative study. Measurement 2018, 122, 630–637. [CrossRef]

http://dx.doi.org/10.1016/j.apor.2003.08.003
http://dx.doi.org/10.1002/stc.1714
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001544
http://dx.doi.org/10.1002/tal.1226
http://dx.doi.org/10.1155/2018/8703697
http://dx.doi.org/10.1016/j.measurement.2017.10.042


Sensors 2019, 19, 492 17 of 18

7. Asadollahi, P.; Huang, Y.; Li, J. Bayesian finite element model updating and assessment of cable-stayed
bridges using wireless sensor data. Sensors 2018, 18, 3057. [CrossRef]

8. Luo, M.Z.; Li, W.J.; Wang, B.; Fu, Q.Q.; Song, G.B. Measurement of the length of installed rock bolt based
on stress wave reflection by using a giant magnetostrictive (GMS) actuator and a PZT sensor. Sensors 2017,
17, 444. [CrossRef]

9. Laflamme, S.; Kollosche, M.; Connor, J.J.; Kofod, G. Soft capacitive sensor for structural health monitoring of
large-scale systems. Struct. Control Health Monit. 2012, 19, 70–81. [CrossRef]

10. Yi, T.H.; Li, H.N.; Gu, M. Recent research and applications of GPS-based monitoring technology for high-rise
structures. Struct. Control Health Monit. 2013, 20, 649–670. [CrossRef]

11. Ay, A.M.; Wang, Y. Structural damage identification based on self-fitting ARMAX model and multi-sensor
data fusion. Struct. Health Monit. 2014, 13, 445–460. [CrossRef]

12. Teng, J.; Lu, W.; Wen, R.F.; Zhang, T. Instrumentation on structural health monitoring systems to real world
structures. Smart Struct. Syst. 2015, 15, 151–167. [CrossRef]

13. Meoni, A.; D’Alessandro, A.; Downey, A.; García-Macías, E.; Rallini, M.; Materazzi, A.L.; Torre, L.;
Laflamme, S.; Castro-Triguero, R.; Ubertini, F. An experimental study on static and dynamic strain sensitivity
of embeddable smart concrete sensors doped with carbon nanotubes for SHM of large structures. Sensors
2018, 18, 831. [CrossRef] [PubMed]

14. Shen, Y.B.; Yang, P.C.; Zhang, P.F.; Luo, Y.Z.; Mei, Y.J.; Cheng, H.Q.; Jin, L.; Liang, C.Y.; Wang, Q.Q.;
Zhong, Z.N. Development of a multitype wireless sensor network for the large-scale structure of the
National Stadium in China. Int. J. Distrib. Sens. N. 2013, 9, 709724. [CrossRef]

15. Li, G.W.; Pei, H.F.; Yin, J.H.; Lu, X.C.; Teng, J. Monitoring and analysis of PHC pipe piles under hydraulic
jacking using FBG sensing technology. Measurement 2014, 49, 358–367. [CrossRef]

16. Teng, J.; Lu, W.; Cui, Y.; Zhang, R.G. Temperature and displacement monitoring to steel roof construction of
Shenzhen Bay Stadium. Int. J. Struct. Stab. Dyn. 2016, 16, 1640020. [CrossRef]

17. Suzuki, K. Proposal for a direct-method for stress measurement using an X-ray area detector. NDT E Int.
2017, 92, 104–110. [CrossRef]

18. Hemmesi, K.; Farajian, M.; Boin, M. Numerical studies of welding residual stresses in tubular joints and
experimental validations by means of x-ray and neutron diffraction analysis. Mater. Des. 2017, 126, 339–350.
[CrossRef]

19. Zhou, D.; Pan, M.; He, Y.; Du, B. Stress detection and measurement in ferromagnetic metals using pulse
electromagnetic method with U-shaped sensor. Measurement 2017, 105, 136–145. [CrossRef]

20. Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in
components. Mater. Des. 2012, 35, 572–588. [CrossRef]

21. Liu, T.J.; Zou, D.J.; Du, C.C.; Wang, Y. Influence of axial loads on the health monitoring of concrete structures
using embedded piezoelectric transducers. Struct. Health Monit. 2017, 16, 202–214. [CrossRef]

22. Li, Z.H.; He, J.B.; Teng, J.; Wang, Y. Internal stress monitoring of in-service structural steel members with
ultrasonic method. Materials 2016, 9, 234. [CrossRef] [PubMed]

23. He, J.B.; Li, Z.H.; Teng, J.; Wang, Y. Absolute stress field measurement in structural steel members using the
Lcr wave method. Measurement 2018, 122, 679–687. [CrossRef]

24. Li, Z.H.; He, J.B.; Teng, J.; Huang, Q.; Wang, Y. Absolute stress measurement of structural steel members
with ultrasonic shear-wave spectral analysis method. Struct. Health. Monit. 2017. [CrossRef]

25. Li, Z.H.; He, J.B.; Teng, J.; Wang, Y. Cross-correlation-based algorithm for absolute stress evaluation in steel
members using the longitudinal critically refracted wave. Int. J. Distrib. Sens. Netw. 2018, 14. [CrossRef]

26. Withers, P.J.; Turski, M.; Edwards, L.; Bouchard, P.J.; Buttle, D.J. Recent advances in residual stress
measurement. Int. J. Press. Vessel. Pip. 2008, 85, 118–127. [CrossRef]

27. Guz’, A.N.; Makhort, F.G. The physical fundamentals of the ultrasonic nondestructive stress analysis of
solids. Int. J. Appl. Mech. 2000, 36, 1119–1149. [CrossRef]

28. Bray, D.E.; Tang, W. Subsurface stress evaluation in steel plates and bars using the L-CR ultrasonic wave.
Nucl. Eng. Des. 2001, 207, 231–240. [CrossRef]

29. Karabutov, A.; Devichensky, A.; Ivochkin, A.; Lyamshevb, M.; Pelivanova, I.; Rohadgic, U.; Solomatina, V.;
Subudhic, M. Laser ultrasonic diagnostics of residual stress. Ultrasonics 2008, 48, 631–635. [CrossRef]

30. Egle, D.M.; Bray, D.E. Measurement of acoustoelastic and 3rd-order elastic-constants for rail steel. J. Acoust.
Soc. Am. 1976, 60, 741–744. [CrossRef]

http://dx.doi.org/10.3390/s18093057
http://dx.doi.org/10.3390/s17030444
http://dx.doi.org/10.1002/stc.426
http://dx.doi.org/10.1002/stc.1501
http://dx.doi.org/10.1177/1475921714542891
http://dx.doi.org/10.12989/sss.2015.15.1.151
http://dx.doi.org/10.3390/s18030831
http://www.ncbi.nlm.nih.gov/pubmed/29522498
http://dx.doi.org/10.1155/2013/709724
http://dx.doi.org/10.1016/j.measurement.2013.11.046
http://dx.doi.org/10.1142/S0219455416400204
http://dx.doi.org/10.1016/j.ndteint.2017.07.012
http://dx.doi.org/10.1016/j.matdes.2017.03.088
http://dx.doi.org/10.1016/j.measurement.2017.04.001
http://dx.doi.org/10.1016/j.matdes.2011.08.022
http://dx.doi.org/10.1177/1475921716670573
http://dx.doi.org/10.3390/ma9040223
http://www.ncbi.nlm.nih.gov/pubmed/28773347
http://dx.doi.org/10.1016/j.measurement.2018.03.022
http://dx.doi.org/10.1177/1475921717746952
http://dx.doi.org/10.1177/1550147718803312
http://dx.doi.org/10.1016/j.ijpvp.2007.10.007
http://dx.doi.org/10.1023/A:1009442132064
http://dx.doi.org/10.1016/S0029-5493(01)00334-X
http://dx.doi.org/10.1016/j.ultras.2008.07.006
http://dx.doi.org/10.1121/1.381146


Sensors 2019, 19, 492 18 of 18

31. Lee, H.Y.; Nikbin, K.M.; O’Dowd, N.P. A generic approach for a linear elastic fracture mechanics analysis of
components containing residual stress. Int. J. Press. Vessel. Pip. 2005, 82, 797–806. [CrossRef]

32. Sanderson, R.M.; Shen, Y.C. Measurement of residual stress using laser-generated ultrasound. Int. J. Press.
Vessel. Pip. 2010, 87, 762–765. [CrossRef]

33. Javadi, Y.; Najafabadi, M.A. Comparison between contact and immersion ultrasonic method to evaluate
welding residual stresses of dissimilar joints. Mater. Des. 2013, 47, 473–482. [CrossRef]

34. Sadeghi, S.; Najafabadi, M.A.; Javadi, Y.; Mohammadisefat, M. Using ultrasonic waves and finite element
method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum
plates. Mater. Des. 2013, 52, 870–880. [CrossRef]

35. Chaki, S.; Bourse, G. Stress level measurement in prestressed steel strands using acoustoelastic effect.
Exp. Mech. 2009, 49, 673–681. [CrossRef]

36. Gandhi, N.; Michaels, J.E.; Lee, S.J. Acoustoelastic Lamb wave propagation in biaxially stressed plates.
J. Acoust. Soc. Am. 2012, 132, 1284–1293. [CrossRef]

37. Wali, Y.; Njeh, A.; Wieder, T.; Ghozlen, M.B. The effect of depth-dependent residual stresses on the
propagation of surface acoustic waves in thin Ag films on Si. NDT E Int. 2007, 40, 545–551. [CrossRef]

38. Wang, Z.J.; Chen, D.D.; Zheng, L.Q.; Huo, L.S.; Song, G.B. Influence of axial load on electromechanical
impedance (emi) of embedded piezoceramic transducers in steel fiber concrete. Sensors 2018, 18, 1782.
[CrossRef]

39. Allen, D.R.; Sayers, C.M. The measurement of residual-stress in textured steel using an ultrasonic velocity
combinations technique. Ultrasonics 1984, 22, 179–188. [CrossRef]

40. Lipeles, R.; Kivelson, D. Theory of ultrasonically induced birefringence. J. Chem. Phys. 1977, 67, 4564–4570.
[CrossRef]

41. Crecraft, D.I. The measurement of applied and residual stresses in metals using ultrasonic waves. J. Sound Vib.
1967, 5, 173. [CrossRef]

42. Herzer, H.R.; Becker, M.M.; Schneider, E. The acousto-elastic effect and its use in NDE. In Handbook of
Advanced Non-Destructive Evaluation; Ida, N., Meyendorf, N., Eds.; Springer: Cham, Switzerland, 2018;
pp. 1–17.

43. Djerir, W.; Ourak, M.; Boutkedjirt, T. Characterization of the critically refracted longitudinal (L-CR) waves
and their use in defect detection. Res. Nondestruct. Eval. 2014, 25, 203–217. [CrossRef]

44. Palanichamy, P.; Joseph, A.; Jayakumar, T.; Raj, B. Ultrasonic velocity measurements for estimation of grain
size in austenitic stainless steel. NDT E Int. 1995, 28, 179–185. [CrossRef]

45. Lhémery, A.; Calmon, P.; Chatillon, S.; Gengembre, N. Modeling of ultrasonic fields radiated by contact
transducer in a component of irregular surface. Ultrasonics 2002, 40, 231–236. [CrossRef]

46. Zou, D.J.; Liu, T.J.; Liang, C.F.; Huang, Y.C.; Zhang, F.Y.; Du, C.C. An experimental investigation on the health
monitoring of concrete structures using piezoelectric transducers at various environmental temperatures.
J. Intell. Mater. Syst. Struct. 2015, 26, 1028–1034. [CrossRef]

47. Liu, H.B.; Li, Y.P.; Li, T.; Zhang, X.; Liu, Y.K.; Liu, K.; Wang, Y.Q. Influence factors analysis and
accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR)
wave. Appl. Acoust. 2018, 141, 178–187. [CrossRef]

48. Vangi, D.; Virga, A. A practical application of ultrasonic thermal stress monitoring in continuous welded
rails. Exp. Mech. 2007, 47, 617–623. [CrossRef]

49. Blinka, J.; Sachse, W. Application of ultrasonic-pulse-spectroscopy measurements to experimental stress
analysis. Exp. Mech. 1976, 16, 448–453. [CrossRef]

50. Javadi, Y.; Azari, K.; Ghalehbandi, S.M.; Roy, M.J. Comparison between using longitudinal and shear waves
in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual
stresses. Res. Nondestruct. Eval. 2017, 28, 101–122. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijpvp.2005.05.001
http://dx.doi.org/10.1016/j.ijpvp.2010.10.001
http://dx.doi.org/10.1016/j.matdes.2012.12.069
http://dx.doi.org/10.1016/j.matdes.2013.06.032
http://dx.doi.org/10.1007/s11340-008-9174-9
http://dx.doi.org/10.1121/1.4740491
http://dx.doi.org/10.1016/j.ndteint.2007.02.004
http://dx.doi.org/10.3390/s18061782
http://dx.doi.org/10.1016/0041-624X(84)90034-9
http://dx.doi.org/10.1063/1.434598
http://dx.doi.org/10.1016/0022-460X(67)90186-1
http://dx.doi.org/10.1080/09349847.2014.890262
http://dx.doi.org/10.1016/0963-8695(95)00011-L
http://dx.doi.org/10.1016/S0041-624X(02)00143-9
http://dx.doi.org/10.1177/1045389X14566525
http://dx.doi.org/10.1016/j.apacoust.2018.07.017
http://dx.doi.org/10.1007/s11340-006-9016-6
http://dx.doi.org/10.1007/BF02324101
http://dx.doi.org/10.1080/09349847.2015.1123786
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Absolute Stress in Structural Steel Members 
	Ultrasonic Stress Measurement Methods 
	Goals and Objectives of This Study 

	Theory 
	Theoretical Derivation of the Shear-Wave Pulse Echo Spectrum 
	Theoretical Derivation of the Shear-Wave Amplitude Spectrum 
	Theoretical Derivation of the Shear-Wave Phase Spectrum 
	Uniaxial Stress Measurement Using the Shear-Wave Pulse Echo Spectrum 

	Experimental Studies 
	Equipment and Sample 
	Influence of the Uniaxial Stress on the Shear-Wave Amplitude Spectrum 
	Influence of Uniaxial Stress on the Shear-Wave Phase Spectrum 
	Parameter Calibration of the Stress Measurement Formula 

	Results and Discussion 
	Influence of Uniaxial Stress on Shear-Wave Amplitude Spectrum 
	Influence of Uniaxial Stress on Shear-Wave Phase Spectrum 
	Comparison of the Amplitude and Phase Spectra 
	Parametric Calibration for the Stress Measurement Formula 

	Conclusions 
	References

