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Abstract: In this paper, a bi-level Delta-Sigma modulator-based MEMS gyroscope design is presented
based on a Model Predictive Control (MPC) approach. The MPC is popular because of its capability
of handling hard constraints. In this work, we propose to combine the 1-bit nature of the bi-level
Delta-Sigma modulator output with the MPC to develop a 1-bit processing-based MPC (OBMPC). This
paper will focus on the affine relationship between the 1-bit feedback and the in-loop MPC controller,
as this can potentially remove the multipliers from the controller. In doing so, the computational
requirement of the MPC control is significantly alleviated, which makes the 1-bit MEMS Gyroscope
feasible for implementation. In addition, a stable constrained MPC is designed, so that the input will
not overload the quantizer while maintaining a higher Signal-to-Noise Ratio (SNR).

Keywords: MEMS gyroscope; digital control; model predictive control; sigma delta modulation

1. Introduction

A high-performance micro-machined MEMS gyroscope is appealing to many researchers as it
is advantageous in terms of power, cost and flexibility over the bulky and expensive macroscopic
gyroscopes. When an MEMS gyroscope is moving in a direction and an angular velocity is applied
to the gyroscope, the sensing element will experience a displacement as a result of Coriolis force.
The incorporation of the Delta-Sigma (∆∑) modulator to the gyroscope sensing element is one of the
most promising approaches to implement the MEMS gyroscope due to the circuit simplicity and the
benefits of incorporating the sensing element in a feedback control loop [1] to improve the sensing
stability. The ∆∑ modulation-embedded MEMS gyroscope was first introduced in [2], and ever since
has become a popular research topic in the literature [3–7].

As an efficient A/D conversion method, the ∆∑ modulator can be embedded into many industrial
applications, e.g., [8–11]. Along with the development of the Microelectromechanical Systems
(MEMS), the ∆∑ modulator-based gyroscopes and accelerometers may be used in many applications.
For instance, it is possible to choose MEMS gyroscopes as the sensing device for small satellite missions,
e.g., [12]. However, due to the non-linear nature of the quantizer, the extra integrators in the gyroscope
transfer function may cause stability issues in the control loop. Moreover, the compensator will also
introduce extra poles in the control loop and consequently affect the noise-shaping performance of
the system [5]. Additional integrators, serving as usual noise shaping solutions, are adopted in the
feedback loop to attenuate the magnitude of the impulse response of the noise transfer function (NTF)
at low frequencies (see e.g., [13] for different ∆∑ modulator-based MEMS gyroscope structures). This
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methodology is analogous to a PID (Proportional-Integral-Derivative) control system, in which the
performance of the designed system depends on the experience of the designer [14].

Among various ∆∑ modulation methods, the ones with bi-level quantizers are more attractive
because of their circuit simplicity and the binary nature of the quantizer outputs. They have been
proven to be an efficient alternative to the multi-level quantizers [15]. Such bi-level quantizers are used
to develop the multiplier free analog to digital (A/D) converters, e.g., [16], to achieve the simplest
digital hardware circuitry. Based on the bi-level quantizer, the concept of 1-bit processing has been
widely investigated in the context of finite-impulse-response (FIR) filters [17], infinite-impulse-response
(IIR) filters e.g., [18], and digital communication e.g., [19,20]. One of the many successful applications
of 1-bit processing is in audio applications (e.g., [21,22]), where the 1-bit coding scheme is used
to develop high frequency (64 or 128 times 44.1 kHz) encoding technology for the audio industry.
A multiplier free control system has been proposed by [23], namely, the 1-bit processing control system.
As the signals are in the 1-bit format, multipliers can be removed by choosing a modified controller
structure [24].A 1-bit processing-based MPC (OBMPC) method was then developed in [25] to extend
the 1-bit processing-based control system to advanced control algorithm applications.

Inspired by the 1-bit processing-based A/D conversion and 1-bit processing-based control systems,
an implementation of a novel OBMPC for the MEMS gyroscope is developed in this work. The authors
provide the design of an MPC algorithm for the bi-level ∆∑ modulator-based MEMS gyroscope (1-bit
MEMS gyroscope) and discusses the potential issues of implementing such an OBMPC-based MEMS
gyroscope. A new OBMPC structure is designed to implement the 1-bit MEMS gyroscope with a high
sampling rate. As one of major benefits of the MPC algorithm, the proposed OBMPC structure can
include the constraints in the quantizer inputs, which serve as the stabilization technique for the ∆∑
modulator while providing a better SNR when quantizer overloading occurs.

The rest of this paper is organized as follows. Section 2 describes the ∆∑ Modulator-based MEMS
gyroscope. Section 3 details the design of the OBMPC-based MEMS gyroscope. Experimental results
are described in Section 4. Finally, conclusions are presented in Section 5.

2. ∆∑ Modulator-Based MEMS Gyroscope

A typical approach to design a ∆∑ modulator-based MEMS gyroscope is to treat the MEMS
gyroscope as a ∆∑ modulation-based control loop. For most MEMS gyroscopes, the angular motion
is determined by measuring the vibration of the proof mass, which is excited due to Coriolis force.
The sense mode of the MEMS gyroscope can then be regarded as a spring damper dynamic system
responding to Coriolis force, and hence can be modeled by two integrators in series. Figure 1 shows
a system level diagram of a mechanical sensor.
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modulator-based accelerometer under Coriolis force, e.g., [26,27]. The continuous-time transfer
function of the mechanical sensor can be denoted as:

Hm(s) =
1
m

s2 + ω0
Q s + ω02 (1)

where m is the mass of the sensing element, ω0 is the resonant frequency and Q is the quality factor.
High-quality factors are generally required to achieve high sensitivity of the sensor (200–250 for the
sense mode and 35,000–45,000 for the drive mode [28]). Due to the phase shift introduced by the
mechanical sensing element, a simple lead compensator must be included to stabilize the control loop.
Other sensor fusion technologies are also available, e.g., [29–31], but are outside of the scope of this
work. The output of the compensator can be regarded as the input of the ∆∑ modulator, which serves
as an interface to digitalize the sensor signal. The resulting digital bit stream can be translated into an
electrostatic force as the feedback to the control loop of the sensor [32].

To further analyze the stability and performance of the ∆∑ modulator-based MEMS gyroscope,
one can treat the sensing component and the compensator as two second order loop filters, and then
analyze the entire control loop as a high order ∆∑ modulator. The structure of the ∆∑ modulator-based
MEMS gyroscope is shown in Figure 2.
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Like any other A/D conversion method, the ∆∑ Modulation process introduces quantization noise
into the MEMS control loop. Such quantization noise, coupled with mechanical noise and electrical
noise, may cause large gyroscope bias and instability of the control loop. Filtering techniques are
therefore required to decrease the in band noise. Filters can be embedded into the control loop before
the A/D conversion as the ∆∑ modulator operates at over sampling rate (OSR) and can be constrained
into a narrow frequency band. Also, the bandwidth requirements of the electronic components needed
for implementation in the integrated circuit are relatively demanding as a high OSR is eventually
required to achieve a good SNR.

One way to minimize the quantization noise is to increase the order of the ∆∑ modulator in
the control loop at a cost of circuit complexity. A well designed high-order ∆∑ modulator-based
MEMS gyroscope can filter most of the noise from the ∆∑ modulator loop. For instance, the results
obtained in [33] proved that a SNR of 93 dB can be achieved with a relatively low OSR of 500, including
realistic values for electronic noise introduced. Also, the integrators can be replaced with resonators,
e.g., [26,28], to build a band-pass ∆∑ modulator. In this work, a bi-level ∆∑ modulator is used in the
1-bit MEMS gyroscope. A third order 1-bit MEMS gyroscope with an embedded resonator is shown in
Figure 3.

More ∆∑ modulator-based MEMS gyroscope implementations can be found in a review paper [1].
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3. OBMPC Structure for the 1-bit MEMS Gyroscope

In order to design a ∆∑ modulator-based MEMS gyroscope with guaranteed stability while
maintaining a reasonable SNR, in this section, we adopt an MPC approach to implement the MEMS
gyroscope. This approach uses the 1-bit feedback from the ∆∑ modulator and therefore can be defined
as the 1-bit processing-based Model Predictive Control (OBMPC) in this paper.

3.1. ∆∑ Modulator with Parallel State Variables

The control objective is to find the integrator output which has minimized quantization error.
The digital signal (e.g., a sampled continuous-time signal) a(k) shall be considered as the output of the
MEMS gyroscope system and the input to a high order ∆∑ modulator. An nth order ∆∑ modulator
structure is shown in Figure 4.
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The state-space equations of the proposed structure can be written as

xM(k + 1) = AMxM(k) + BMa(k)− CMlm(k)

yM(k) = DM


xM1

xM2
...

xMn

 (2)
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where xM(k) ∈ Rn is the state vector, AM =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

, BM =


b1

b2

b3
...

bn

, CM =


c1

c2

c3
...

cn

, DM = [d1, d2, . . . dn], xM ∈ R, yM(k) ∈ R, k ∈ N. lM(k), where lM(k) , q∆(yM(k)), is the

quantizer output and a(k) ∈ R is the modulator input. To ensure that the input does not overload the
controller, the state variables are required to be clipped. Specifically speaking, as presented in [34], for
a second-order ∆∑ Modulator, with unit feedback gain, the state bound can be presented as{

|x1|max = |uin|+ 2

|x2|max = (5−|uin |)2

8(1−|uin |)
(3)

where uin is the modulator input, x1 and x2 are, respectively, the states for the first and second
integrators. The clipping principle is further generalized in [35] with different feedback gains. Ref. [36]
provided state bounds analysis for the third-order ∆∑ Modulators. Although the principles discussed
above are designed for sinusoidal inputs, they are fairly strict from the design point of view and can be
considered as sufficient conditions for most designs [37]. To further simplify the problem, as suggested
in [37,38], the clipping threshold can only be set to the last integrator. The variable gain method [39] can
be used as the design guide of the hard constraints of the last integrator in the control loop. In practical
cases, one can find out a “safe” threshold by studying the impulse response of a stable modulator.

The asymptotical stability of such ∆∑ modulators can be designed by moving all the eigenvalues
of AM inside the unit circle. The modulator is oversampled so that a(k) can be considered as constant
within n time steps where n � OSR, i.e., a(k) = a(k + 1) . . . = a(k + n). x1(k), x2(k) . . . xn(k) are the
state variables for the nth integrator. lM is weighted by a bi-level quantizer, where lM ∈ {∆,−∆}.
The quantization level ∆ is standardized as 1 and

→
l M(k) is scaled by c1, c2, . . . cn according to the

quantization level. In this particular case, the state matrix
→
AM can be transformed into the Jordan

canonical form by replacing
→
x M with PT

−1xM as used in [39],where PT =


...

...
...

...
ρ1 ρ2 · · · ρn
...

...
...

...

 and

ρ1, ρ2 . . . ρn are the eigenvalues of AM. Equation (3) then becomes:{
xM(k + 1) = AMxM(k) + BMa(k)− CMlM(k)

yM(k) = DMxM(k)
(4)

where AM = PT AMP−1
T , BM = PT BM, CM = PTCM. xM ∈ R, yM(k) ∈ R.

The main benefit for this structure is that the state variables are now decoupled. To further
simplify the problem, define DM , [1, 1, · · · , 1]. The structure of the ∆∑ modulator with parallel state
variables can then be reconstructed as shown in Figure 5.
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In Figure 5, ρ1, ρ2 . . . ρn are the eigenvalues of AM. It is worth noting that the inclusion of linear
feedback paths other than the resonators results in a diagonal canonical form of AM. It is possible to
extend such parallel structures to many ∆∑ modulator structures if the state matrix AM is similar to
a diagonal matrix. In the following subsection, we shall assume that a simple diagonal state matrix is
used. Then, each state variable can be easily clipped, or constrained, by the designer. Designing and
implementing a clipper is one of the easiest ways to stabilize a ∆∑ modulator. The main challenge,
however, lies in how to choose a reasonable clipping level while retaining the high SNR when the
input does not overload the quantizer. In practical missions, if the non-ideal integrators and noises
are taken into consideration, rigorous clipper level (typically much higher than the input signal for
higher order ∆∑ Modulators, e.g., 90 times of the input signal for a third order ∆∑ Modulator), may
result in low SNR at the noisy instants, even when the stability of the control loop can be guaranteed.
Moreover, as a non-linear approach, the clipping technique will bring additional non-linearity to the
∆∑ Modulator, which is also a non-linear system itself, so that the stability analysis is even harder to
perform (e.g., [40]). Hence, an OBMPC controller is proposed to be applied to such ∆∑ modulators.
The proposed controller has the ability to handle hard constraints (i.e., the clipping thresholds) on all
the state variables. Also, the order reduction is discussed in [39] for some particular ∆∑ modulators,
which may help to decrease the online computation effort (if required) of the proposed method.

In some other cases, however, the use of resonators will result in a non-diagonal AM. These
cases are studied in [39] and can be analyzed on a system-by-system basis. Generally, not all the
state variables can be decoupled for the ∆∑ modulator structure with resonators. On the other hand,
they can be written as a parallel state structure with a certain level of decoupling. Hence, it is still
possible to decouple some of the state variables in most non-diagonal structures. For example, consider
a third-order ∆∑ modulator with a resonator on the second and the third integrator. In this case,
only the first integrator can be decoupled, which means it can be restructured to be in parallel with
the other two integrators. In such a structure, the first and the third state variables are explicitly
known. However, this will only require the study of the impulse response of a first-order NTF
and a second-order NTF, respectively, which is easier than studying the third-order NTF directly
to determine a reasonable a clipper level. The worst case is that none of the state variables can be
decoupled. Hence, only the last state variable can be directly constrained. It is still possible to stabilize
the modulator as suggested in [38]. However, the clipping action will result in a relatively low SNR in
comparison to the individually clipped ∆∑ modulator. In the following section, we assume that the
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state matrix of the ∆∑ modulator in the proposed mission is designed to be diagonal. This was chosen
to simplify the analysis such that case-by-case studies need not be performed for the proposed method.

3.2. OBMPC-based MEMS Gyroscope Using 1-bit Processing

3.2.1. Linearization Assumption and Problem Formulation

As discussed above, if the state variables can be decoupled, such that the constraints applied on the
state variable are linearly independent, the OBMPC can be implemented with a relatively simple circuit
under the framework of 1-bit processing control system. This means that the Karush-Kuhn-Tucker
(KKT) [41] condition is sufficient to address such a problem. By linearizing the quantization noise [30],
Figure 5 can be presented as seen in Figure 6.Sensors 2019, 19, x FOR PEER REVIEW  7 of 20 
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In Figure 6, eM(k) is the filtered quantization noise. According to Figure 6,

lM(k) = yM(k) + eM(k). (5)

Define N(z) and S(z) as discrete linear time invariant filter representing the respective NTF and
the Signal transfer Function (STF). S(z) can be presented in state space form as{

xM(k + 1) = APxM(k) + BSaM(k)
yM(k) = CSxM(k)

(6)

where AP = AM − CMDM, BS = BM, CS = DM. Similarly, by letting aM(k) = 0, N(z) in state space
form is given as: {

xM(k + 1) = APxM(k) + BNeM(k)
lM(k) = CN xM(k) + eM(k)

(7)

where BN = CM, CN = DM. Additionally, define E(k) as the unfiltered quantization noise, where

E(k) = (lM(k)− S(z)aM(k)) (8)

Therefore,
eM(k) = N(z)−1(lM(k)− S(z)aM(k)) (9)
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The state space function for N(z)−1 can be presented as:{
x f (k + 1) = AFx f (k) + BFE(k)

eM(k) = CFx f (k) + E(k)
(10)

where AF = AM, BF = CM, CF = −DM, and x f ∈ R is the state variable of N(z)−1.

3.2.2. Unconstrained OBMPC Implementation

The goal here is to implement a control structure that minimizes the filtered quantization noise
eM(k). A conceptual view of an OBMPC-based ∆∑ modulator is shown in Figure 7:Sensors 2019, 19, x FOR PEER REVIEW  8 of 20 
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In Figure 7, uM = [uM1, uM2 . . . uMn]
T is the control input that attempts to minimize the filtered

quantization noise in Equation (11). An OBMPC is used in the modulation loop. The benefits of doing
this are two-fold: Firstly, hard constraints can be easily included for each decoupled state variable,
which provides more flexibility for the designer and the stability criteria can be easily acquired.
Secondly, future predictions can be included in the control structure. Theoretically speaking, if the
prediction horizon is long enough, then the quantization noise should tend towards zero.

Based on Figures 2 and 7, a structure of the OBMPC based MEMS gyroscope can be designed as
shown in Figure 8.
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In Figure 8, ã(k) is the signal applied to the MEMS gyroscope, a(k) is the sensing signal picked
up by the MEMS gyroscope which is the narrow band of interest around the gyroscope resonant
frequency and lM(k) is the quantizer output under the OSR. The optimal solution uM

∗(k) has an
affine relationship between the quantized output and multi-bit coefficients and therefore forms a 1-bit
processing structure. Specifically, define HM(z) and HC(z) as the transfer function of the discretized
gyroscope dynamic model and the compensator, respectively. For the OBMPC controller presented
above, define the prediction horizon N and vectors:

⇀
e M(k) , [e(k|k)e(k + 1|k) . . . e(k + N|k)]T ;

⇀
u M(k) , [uM(k|k)uM(k + 1|k) . . . uM(k + N − 1|k)]T ;

⇀
E(k) , [E(k|k) E(k + 1|k) . . . E(k + N − 1|k)]T .

According to Equations (9) and (10):
⇀
e M(k) = FMxM(k) + ϑM

⇀
E(k)

⇀
E(k) =

⇀
l M(k)− S(z)

⇀
a (k)

(11)

where FM =


CF

CF AF
CF AF

2

...
CF AF

N

; ϑM =


DF 0 0 · · · 0

CFBF DF 0 · · · 0
CF AFBF CFBF DF · · · 0

...
...

...
. . .

...
CF AF

N−1BF CF AF
N−2BF CAF

N−3BF · · · DF

.

⇀
l M ∈ RN and

⇀
a (k) ∈ RN are the predicted modulator input and output, respectively, along

the prediction horizon. The cost function of Equation (11) can be built to minimize the filtered
quantization noise:

J
(

xM,
⇀
u M(k)

)
= min

⇀
u M(k)

{∣∣∣∣∣∣x f (k + N|k)
∣∣∣∣∣∣2

PM
+

N−1

∑
i=0

(∣∣∣∣∣∣x f (k + i|k)
∣∣∣∣∣∣2

QM
+ ||uM(k + i)||2RM

)}
(12)

where PM, QM and RM are positively defined weighting matrices. Define the main loop filter
L(z) , (zI − AM)−1 and a control input uM = [uM1, uM2 . . . uMn]

T as shown in Figure 8. Under the
context of the MPC algorithm, if no constraint is applied, the MPC gain can be obtained by solving
Equation (12) as:

KM = −Φ−1Ω (13)

where Ω , Σ
Np
i=1(∑

i−1
j=0 AF

i−j−1BF)QM AF
i ∈ RNp×n, and Φ ,

Σ
Np
i=1(∑

i−1
j=0 AF

i−j−1BF)QM(∑i−1
j=0 AF

i−j−1BF)
T
+ RM ∈ RNp×Np , where QM , diag(QM, QM . . . .PM) ∈

RNpn×Npn, and RM = diag(RM, RM . . . .RM) ∈ RNp×Np .
The global optimal solution of Equation (12) can be found as:

⇀
E
∗
(k) = −KMx f (k) (14)

Based on Equation (11), the state variable of N(z)−1 can be derived as:

x f (k) = (zI − AF)
−1BF(S(z)a(k)− lM(k)) (15)

By substituting Equation (15) into Equation (14), Equation (16) is obtained:

⇀
E
∗
(k) = −KM(zI − AF)

−1BF(S(z)a(k)− lM(k))) (16)
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By substituting Equation (11) into Equation (16) and applying the receding horizon principle,
the optimal modulator output l∗(k) can be found as:

lM
∗(k) = q

(
[1, 0 . . . ., 0]

(
S(z)a(k) + KM(zI − AF)

−1BF(S(z)a(k)− lM(k))
))

(17)

Let the quantizer input be:

yM(k) = [1, 0 . . . ., 0]
(

S(z)a(k) + KM(zI − AF)
−1BF(S(z)a(k)− lM(k))

)
(18)

According to Equation (18), given the main loop filter L(z), the control input uM(k) can be
determined as:

uM
∗(k) = [1, 0 . . . ., 0]L(z)−1(

[
1, z . . . zn−1

]
S(z)a(k) + KM(zI − AF)

−1BF(S(z)a(k)− lM(k)) (19)

By reformatting Equation (19), we obtain:

uM
∗(k) = [1, 0 . . . ., 0]L(z)−1((

[
1, z . . . zn−1]+ KM(zI − AF)

−1BF)S(z)a(k)− KM(zI − AF)
−1BFlM(k)) (20)

By assigning L0 = L(z)−1((
[
1, z . . . zn−1]+ KM(zI − AF)

−1BF)S(z)), and L1 =

L(z)−1KM(zI − AF)
−1BF, Equation (20) can be re-written as:

uM
∗(k) = [1, 0 . . . ., 0](

⇀
L 0a(k)−

⇀
L 1lM(k)) (21)

Furthermore define HA(z) , K1HM(z) HC(z), then according to Figure 8

a(k) , HA(z)(ã(k)− K2lM(k)) (22)

By substituting Equation (22) into Equation (21), the optimal control input can be obtained as:

uM
∗(k) = [1, 0 . . . ., 0](L0HA(z)ã(k)− (L1 + L0HA(z)K2)lM(k)) (23)

where L_0 = L(z)−1((
[
1, z . . . zn−1]+ KM(zI − AF)

−1BF)S(z), and L1 = L(z)−1KM(zI − AF)
−1BF.

Note that the gyroscope output ã relatively slow comparing to the oversampled modulator output.
Hence, ã can be regarded as a constant signal within l time steps (l = OSR), i.e., ã(k) = ã(k + 1) . . . =
ã(k + l) and the first component in Equation (23), i.e., L0HA(z)ã(k), can be calculated under a relatively
low sampling rate. If the quantization levels are standardized into ±1, i.e., lM(k) = ±1, it can be seen
from Equation (23) that the optimization is based on the gyroscope output ã(k) and the bi-level
modulator output. Hence, for the second component in Equation (23), i.e., (L1 + L0HA(z)K2)lM(k),
the multiplications in the proposed structure are between a 1-bit signal and a multi-bit controller
coefficient. This operation, in fact, just changes the sign of the multi-bit coefficient, which removes the
multiplier from the controller, forming a multiplier free structure.

3.2.3. Hard Constraints on OBMPC based MEMS Gyroscope

The design of the ∆∑ modulator with parallel state variables provides more flexibility in terms of
designing the constraints of each state variable. The constraint levels can be determined by studying
the impulse response of each integrator or simply according to Equation (3). In the proposed parallel
state structure, even if the state variable cannot be fully decoupled, the structure in each branch will
still be relatively simple (typically second order if the coupling is merely caused by the resonator).
Hence, it is relatively easy to determine a reasonable constraint level to each state variable.

Given a set of constraints applied to the state variables:

GMxM(k) ≤ γM (24)
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where GM and γM are acquired based on the state bound for each integrator which can guarantee
the stability of the modulator. The Hildreth’s QP procedure [42] is used in this work as an iteration
method for the MPC algorithm. The same method has been adopted in [43] as an iteration method for
the MPC algorithm.

When a set of active constraints is applied to the quantizer input a(k), the optimal solution can be
solved iteratively by introducing the modified Lagrange factor λ:

uM
∗(k) = L0 ã(k)− L1lM(k)− λ (25)

where λ ∈ Rp and λi = Si + W(i,:)(zI − AF)
−1BF(S(z)a(k)− lM(k))). S and W are the corresponding

matrices are solved during the dual level iteration process. Hildreth’s QP algorithm is based on an
element-by-element search and it does not require any matrix inversion. Therefore, the program will
continue without interruption even when the rows of G are not linearly independent (e.g., more than
one constraints are active). Also, λ is a near-optimal solution in a finite iteration loop. The iteration
expression of Hildreth’s QP procedure is given in the following equation:

λ
m+1
i = max

(
0, ωm+1

i

)
(26)

where ωm+1
i = − 1

hii

[
ki + ∑i−1

j=1 hijλ
m+1
j + ∑n

j=i+1 hijλ
m
j

]
, and m means the mth iteration, the scalar

hii is the iith element in the matrix H = GMΦ−1GM
T and ki is the ith element in the vector

K = γM + GMGΦ−1Ωx̃(k). λ(k) is calculated according to the previous one, λ(k− 1), which can
either be 0 or an affine function of the quantized measurement x̃(k− 1). Given a finite number of
iteration, λ can be solved as a near optimal solution even if two or more constraints are active at the
same time. Therefore, even if λ(k) cannot be solved explicitly, a set of near optimal control input U(k)
can still be found as an affine function over the state feedback x̃(k).

If one or several of the constraints are violated, then λi will be calculated accordingly. Note that
since both λi and the global optimal solution presented in Equation (24) have an affine relationship
with the 1-bit feedback lM(k) (once again a(k) will be considered as constant within several time steps),
the arithmetic block of the proposed OBMPC controller can process all the fast sampled operations
with simple conditional-negates (CN) and bit shifters, and therefore achieves the 1-bit processing
structure. In the proposed parallel structure, since the state variables are linearly independent, a simple
active set method can be used to efficiently find the optimal KM and then in turn, find Ha and Hl.

4. Direct Implementation Method Using the OBMPC Approach

In the proposed structure, the hard constraints can be directly included into each of decoupled
state variables according to the impulse response of each integrator. This can greatly simplify the design
process. It is worth noting that Equation (13) is not strictly compliant with the 1-bit processing structure
since ã(k) is the multi-bit counterpart of the analog signal. Modulating ã(k) into a 1-bit signal is not
appropriate as this may increase the circuit complexity and introduce additional quantization noise
into the control loop. However, as the system is oversampled, ã(k) is relatively slow in comparison
to the sampling rate. Hence, the computation burden is mainly caused by the second component
in Equation (13), i.e., (L1 + L0HA(z)K2)lM(k). If the bi-level quantizer is adopted, then the explicit
relationship between the multi-bit parameters and the bi-level quantized signal can provide a multiplier
free structure. Hence, the circuit simplicity of the 1-bit ∆∑ modulator will be preserved.

Essentially, the proposed OBMPC changes the zeros of the NTF by finding the optimal solution
that minimizes the filtered quantization noise and therefore improves the performance of the system.
For applications where the ∆∑ modulator is to be constructed using analog components (i.e., controllers
are not feasible in the modulation loop), the MPC approach can still be treated as a design guideline to
design a higher order ∆∑ modulator. The KM that is solved by the MPC can change the zeros of the
NTF and therefore affect the noise shaping characteristics of the modulator. According to Equation (23),
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define Ha(z) = [ L01
b1

, L02
b2

. . . L0n
bn

]
T

and Hl(z) = [− L11
c1

,− L12
c2

. . .− L1n
cn

]
T

, then Figure 8 can be simplified
as Figure 9.
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The KM in Figure 9 can be regarded as the functional scaling factor on each integrator to achieve

a certain
⇀
L0 and

⇀
L1. By designing the appropriate values for PM and QM (i.e., to satisfy AM

TPM AM +

QM = PM), the modulator can be safely scaled while the stability of the control loop is guaranteed.
However, a major disadvantage of this approach is that the constraints cannot be directly included
which means clipping or a different stabilization technique needs to once again be used in the modulator.

5. Numerical Example

In the interest of justifying the OBMPC controller in the MEMS gyroscope design, the simulation
in this section focuses on the sense mode of the gyroscope. The input signal is acted upon by the proof
mass of a second order spring and damping mechanical system as stated in Equation (1). The proof
mass of the sense mode is m = 1.96× 10−9 kg. The quality factor is set as Q f = 100 and the resonance
frequency of the mechanical system is 4000Hz. The quantization level is standardized into ±1 V,
and translated into the electrostatic feedback force by the gain of the voltage to force conversion
K2 = 3.35× 10−9 V/N. The input signal is first defined as a periodic input signal operating at 64 rad/s
with an amplitude of 0.6 rad/s.

The structure of the MEMS gyroscope is shown in Figure 10a. The sampling time is set to
1.625 × 10−9 s (OSR = 200). A lead compensator is used to deal with the phase shift introduced
by the mechanical sensing element. A simple second order ∆∑ modulator is presented here as

AM =

[
1 0
0 0.2

]
, BM =

[
0.2
0.2

]
, CM =

[
0.2
0.2

]
, DM =

[
1 1

]
. The state space realization is

shown in Equation (27):
xM(k + 1) =

[
1 0
0 0.2

]
xM(k) +

[
0.2
0.2

]
aM(k)−

[
0.2
0.2

]
lM(k)

yM(k) =
[

1 1
][ xM1

xM2

] (27)

The filter N(z)−1 can then be denoted as:
x f (k + 1) =

[
1 0
0 0.2

]
x f (k)−

[
0.2
0.2

]
E(k)

e(k) =
[
−1 −1

]
x f (k) + E(k)

(28)
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If no constraint is applied and N = 4, then KM can be found as

KM =


−0.1584 −0.0240
−0.1411 −0.0040
−0.1245 −0.0002
−0.1064 −0.0005

 (29)

Consequently,
⇀
L 0 and

⇀
L 1 can be found as:

⇀
L 0 =

z2 − 1.2365z + 0.2111
z2 − 0.8z− 0.04

(30)

⇀
L 1 =

0.0365z− 0.0111
0.4z− 0.24

(31)

Based on the above equations, the control structure is shown in Figure 10b in comparison of
a second order ∆∑ modulator structure.Sensors 2019, 19, x FOR PEER REVIEW  13 of 20 
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Figure 10. (a) Simulation structure of the ∆∑ modulator based MEMS gyroscope; (b) Simulation
structure of the OBMPC-based MEMS gyroscope.

We first assume the system is ideal (e.g., no electrical noises and internal distortion exist). Then the
angular system input is a sinusoidal input. The delay caused by the filter is compensated in the generated
result. A second order ∆∑ modulator based gyroscope is designed for benchmarking purposes.

The tracking trajectory and the spectra of both systems are plotted in Figure 11. As shown
in Figure 11a,c, both systems show good tracking results to the input signal. The amplitude of
the quantizer input shows some difference but none of them reached the constraint (as shown in
Figure 11b). It can be seen from Figure 11c that the spectra are not much different (as expected) since
no constraints are applied to the system. However, the OBMPC tends to be better than its benchmark
when higher frequency is applied. This is due to the fact that the low pass filter in the designed system
is less sufficient in the benchmark than the one in the OBMPC structure. This point will be further
verified in the following simulations.
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Figure 11. Results for the ∆∑ modulator-based MEMS gyroscopes with Amplitude = 0.6 rad/s: (a) MEMS
gyroscopes with sinusoidal input; (b) Comparison of the quantizer input; (c) Spectra comparison.

The amplitude of the input signal shall now be increased to 1.1 rad/s, so that the quantizer will
be overloaded. Constraints and clippers are set to both systems respectively according to Equation
(2). The tracking trajectory and the spectra of both systems are plotted in Figure 12. In this scenario,
the OBMPC-based MEMS gyroscope shows a notable improvement in comparison to its benchmark.



Sensors 2019, 19, 730 15 of 20

The trajectory of the amplitude is closer to the input signal around the overloading area (as shown in
Figure 12a,c) and the quantizer input is nicely shaped (as shown in Figure 12b) as the hard constraints
are handled better by the OBMPC than the clipper. The spectra also show that the OBMPC based
MEMS gyroscope performs better at both the peak (as shown in Figure 12c) and at higher input
frequency (as shown in Figure 12b). The OBMPC based ∆∑ modulator shows less noise leakage at the
higher frequency as the OBMPC controller improves the original low pass filter in the loop.

Sensors 2019, 19, x FOR PEER REVIEW  15 of 20 

 

 

 
(a) 

 

 
(b) 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

Time (Seconds)

Am
pl

itu
de

 (r
ad

/s
)

 

 

1-bit MEMS gyroscope without OBMPC (clipped)
Sinusoidal input (Truth)
1-bit MEMS gyroscope with OBMPC (Constrained)

0.018 0.019 0.02 0.021 0.022 0.023

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time(Seconds)

Am
pl

itu
de

 (r
ad

/s
)

 

 

1-bit MEMS gyroscope without OBMPC (clipped)
Sinusoidal input (Truth)
1-bit MEMS gyroscope with OBMPC (Constrained)

101 102 103 104 105 106

10-5

10-4

10-3

10-2

10-1

100

Frequency(Hz)

Si
ng

le
-s

id
e 

Am
pl

itu
de

 S
pe

ct
ra

 

 

1-bit MEMS gyroscope without OBMPC (Clipped)
1-bit MEMS gyroscope with OBMPC (Constrained)

101.8 101.9

10-0.6

10-0.5

10-0.4

10-0.3

10-0.2

10-0.1

100

Frequency(Hz)

Si
ng

le
-s

id
e 

Am
pl

itu
de

 S
pe

ct
ra

 

 

1-bit MEMS gyroscope without OBMPC (Clipped)
1-bit MEMS gyroscope with OBMPC (Constrained)

Figure 12. Cont.



Sensors 2019, 19, 730 16 of 20

Sensors 2019, 19, x FOR PEER REVIEW  16 of 20 

 

 
(c) 

Figure 12. Results for the OBMPC-based MEMS gyroscope with Amplitude = 1.1 rad/s (a) MEMS 
gyroscope with sinusoidal input; (b) Spectra comparison; (c) Comparison of the quantizer input. 

To further discuss the character of the proposed MEMS gyroscope, the OBMPC-based MEMS is 
compared with its benchmark under different sampling frequencies. The SNR and the MSE of the 
quantization noise are plotted in Figure 13. 

 
(a) 

 
(b) 

Figure 13. (a) SNR and (b) MSE of the quantization noise with different sampling frequency. 

It can be seen that under high sampling frequencies (> 10  Hz), the OBMPC-based MEMS 
gyroscope provide better SNR and lower noise level than its benchmark due to the use of MPC 
controller. Moreover, since the amplitude of the modulator input signal is important to the 
performance of the Δ∑ modulator based system, the SNR and MSE of the quantization noise under 
different input signal amplitudes are obtained as shown in Figure 14. 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-6

-4

-2

0

2

4

6

Time (Seconds)

Q
ua

nt
iz

er
 In

pu
t (

ra
d/

s)

 

 

1-bit MEMS gyroscope without OBMPC (Clipped)
1-bit MEMS gyroscope with OBMPC (Constrained)

104 105 106101

102

103

104

Frequency

SN
R

 

 

Δ∑ modulator Based MEMS Gyro

Δ∑ modulator Based MEMS Gyro with OBMPC

104 105 1060

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10-3

Frequency (Hz)

M
ea

n 
Sq

ua
re

 V
al

ue
 fo

r F
ilt

er
ed

 N
oi

se

 

 

Δ∑ modulator  based Gyro

Δ∑ modulator based Gyro with OBMPC

Figure 12. Results for the OBMPC-based MEMS gyroscope with Amplitude = 1.1 rad/s (a) MEMS
gyroscope with sinusoidal input; (b) Spectra comparison; (c) Comparison of the quantizer input.

To further discuss the character of the proposed MEMS gyroscope, the OBMPC-based MEMS is
compared with its benchmark under different sampling frequencies. The SNR and the MSE of the
quantization noise are plotted in Figure 13.
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Figure 13. (a) SNR and (b) MSE of the quantization noise with different sampling frequency.

It can be seen that under high sampling frequencies (>104 Hz), the OBMPC-based MEMS
gyroscope provide better SNR and lower noise level than its benchmark due to the use of MPC
controller. Moreover, since the amplitude of the modulator input signal is important to the performance
of the ∆∑ modulator based system, the SNR and MSE of the quantization noise under different input
signal amplitudes are obtained as shown in Figure 14.
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Figure 14. (a) MSE and (b) SNR of the quantization noise with different input amplitude.

Figure 14 once again shows that the OBMPC based MEMS gyroscope provides better SNR and
lower noise level than its benchmark due to the use of MPC controller. As the input amplitude
approaches the quantization level, the quantization noise become even higher due to the integrators
in the loop and may trigger the clippers or constraints in the respective design circuits. In this case,
the clipper only chops the amplitude of the quantizer input rather than calculating the optimal value
towards the cost function of the noise transfer function. Hence, the OBMPC-based MEMS gyroscope
provides better SNR over the conventional ∆∑ modulator-based MEMS gyroscope. It is worth noting
that if the amplitude of the input signal is much higher than the quantization level, then the system
will no longer track the input signal and both systems will need to be redesigned (e.g., change the
quantization level or the loop gain).

Finally, a random input with a random noise of relatively high amplitude and low frequency
added to each of the integrators shall be simulated. The response of the ∆∑ modulator-based MEMS
gyroscope for this scenario is given in Figure 15. It can be seen that the OBMPC-based MEMS gyroscope
tracks the input signal better than its benchmark, especially around the quantization level, which
proves the benefits of using the OBMPC controller in the MEMS gyroscope.
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Figure 15. Comparisons between the OBMPC gyroscope and the conventional ∆∑ modulator-
based gyroscope.

6. Conclusions

In this paper, an OBMPC algorithm for the 1-bit MEMS gyroscope was introduced. The challenges
of the ∆∑ modulator-based MEMS gyroscope are mainly the randomness of the sensor input and the
noise introduced by the mechanical and electrical systems. Hence, it is essential to improve the SNR
while maintaining the robustness of the control system of the gyroscope control loop. In this work,
we propose to include an OBMPC algorithm in the ∆∑ modulator-based gyroscope. Such a structure
improves the SNR by minimizing the filtered quantization noise. As a result, constraints applied on
the modulator state variables can be included in the controller directly, and an optimized gain can be
determined so that the coefficients can be safely scaled. Due to the 1-bit nature of the modulated signal,
if the state variable can be decoupled, so that the constraints applied to the state variable are linearly
independent, the OBMPC can be implemented with relatively simple circuit under the framework of
the 1-bit processing control system. Note that it is not necessary to apply constraints to all the state
variables to stabilize the sensing output. Hence, if some of the modulator states cannot be decoupled,
the constraint can be applied to the last state variable in that branch.

Simulation results show that the OBMPC-based MEMS gyroscope with a 2nd-order transfer
function can provide better SNR than its conventional counterpart, especially when the signal
amplitude is near the constrained levels. Also, the constraints of the MEMS gyroscopes can be
designed to achieve guaranteed stability. For a higher order MEMS gyroscope model, the whole
feedback loop with the OBMPC controller, the dynamic model and the delta sigma modulator can be
regarded as a higher order delta sigma modulator. In this case, this will increase the system’s noise
shaping capability and subsequently improve the signal-to-noise ratio.
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