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Abstract: Recently, the demand for human activity recognition has become more and more urgent.
It is widely used in indoor positioning, medical monitoring, safe driving, etc. Existing activity
recognition approaches require either the location information of the sensors or the specific domain
knowledge, which are expensive, intrusive, and inconvenient for pervasive implementation. In this
paper, a human activity recognition algorithm based on SDAE (Stacking Denoising Autoencoder)
and LightGBM (LGB) is proposed. The SDAE is adopted to sanitize the noise in raw sensor data
and extract the most effective characteristic expression with unsupervised learning. The LGB
reveals the inherent feature dependencies among categories for accurate human activity recognition.
Extensive experiments are conducted on four datasets of distinct sensor combinations collected by
different devices in three typical application scenarios, which are human moving modes, current
static, and dynamic behaviors of users. The experimental results demonstrate that our proposed
algorithm achieves an average accuracy of 95.99%, outperforming other comparative algorithms
using XGBoost, CNN (Convolutional Neural Network), CNN + Statistical features, or single SDAE.

Keywords: human activity recognition; indoor positioning; deep learning; Stacking Denoising
Autoencoder; LightGBM

1. Introduction

With the development of the healthy life and smart home concept, human activity recognition
(HAR) has been increasingly studied and applied in Human–Computer Interaction (HCI), and Mobile
and Pervasive Computing [1]. One of the purposes of HAR is indoor positioning [2]. As the landmark
of indoor positioning, elevators and escalators detect whether a human is currently taking them by
judging moving modes to calibrate the indoor positioning results. Human physical motion recognition
can also be used in indoor navigation by combining with the wireless signals [3]. Another feasible
objective of HAR is static behavior recognition for safe driving [4], and scientific exercise [5]. Moreover,
HAR can also be used for dynamic behavior recognition in healthcare monitoring [6]. This process
will detect whether the patients or the elderly experience a sudden fall and raise the alarm promptly
to protect the personal safety of the users. In addition, other applications include bilateral links for
advertising, entertainment, games, and multimedia visualization guidance [7,8].

At present, the HAR methods are mainly divided into HAR based on vision [9,10] and HAR
based on sensors. Vision-based HAR has high recognition accuracy, but it brings with it high power
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consumption and privacy problems. As for HAR based on sensors, the more sensors a user carries, the
more detailed the classification items that can be achieved [11,12]. However, smartphones have inherent
advantages (such as having various integrated sensors and computing ability, as an essential gadget in a
human’s daily life), thus, resulting in smartphones becoming a prominent tool for HAR [13]. Generally,
sensors-based HAR is performed in four fundamental steps: data collection, data segmentation, feature
extraction, and classification.

As for data collection, the first part of HAR, there are multiple factors. The first is the pose of
smartphones which may be typing [14], swinging [14], phoning [14], in pocket [14,15], in hand [15],
and on waist [16]. The second factor is the collection frequency. The researchers have tried multiple
possibilities such as 50 Hz [17], 76.25 Hz [18], 100 Hz [19], and 120 Hz [20]. Besides, there are various
publicly available datasets that provide strong support for human activities recognition such as
UCI [16], WISDM [21], HASC [22], and RealWorld HAR [23].

Following data collection is data segmentation. The existing works considered time segments
of size 200 in 10 s [21], 300 in 7.5 s [5], 512 in 6.7 s [18], 50 in 1 s, and 128 in 2.56 s [13]. The authors
of [14,24] have done research on the impact of sliding window length in indoor human motion modes
and pose pattern recognition based on smartphone sensors and reveal that a window length between
2.5 s and 3.5 s provides an optimal tradeoff between recognition performance and speed for motion
mode recognition.

According to the feature construct method, the current feature extraction methods of HAR are
divided into the artificial feature construction method [15,20,21,25,26] and deep learning feature
construction method [13,17,27–29]. Tran et al. [26] added the features of the frequency domain into
consideration and Sang et al. [20] imported the fractal dimension. Khalifa et al. [30] introduced the
concept of kinetic energy collection. Cao et al. [31] proposed a Group-based feature extraction method.
However, to find the most efficient and effective features, the programmers must have prior expert
knowledge, or they must do a large amount of empirical study to learn which features are useful [32].
To overcome the above limitation, many researchers have used a deep learning method for HAR, such
as CNN (convolutional neural network) [33–35], a deep neural network [36], or a recurrent neural
network [19]. Among them, many kinds of researches based on CNN have achieved remarkable
results. Chen et al. [27] realized the HAR based on CNN and analyzed the influence of different
parameters on classification accuracy. Ignatov et al. [13] combines the features extracted by CNN with
the statistical features and introduced them into the classification network together to improve the
accuracy of classification.

After extracting the feature of the sensor data, various classification methods have been tried
for HAR. As traditional machine learning methods, Support Vector Machine (SVM) [25,26], Random
Forest (RF) [37], Logistic Regression (LR) [20], eXtreme Gradient Boost (XGB) [20], and Light Gradient
Boosting Machine (LGB) have been deeply studied. Sang et al. [20] compared the classification accuracy
of different classifiers with the same features, such as LR, Decision Tree (DT), SVM, and XGB. Bayat et al.
came from the perspective of classifier fusion and found that Multilayer Perceptron (MP) + LigitBoost +
SVM will achieve the best classification effect. As for deep learning method, the classification network
varies with the specific algorithm. Chen et al. used an elementary Convolutional Neural Network [27].
Almaslukh et al. put both the features of statistics and the features learned from the convolutional
layers into the fully connected layer for classification [17]. The variants of the CNN are also commonly
used for human activity recognition method [28,29]. Inoue et al. [19] utilized a deep recurrent neural
network to realize activity recognition with high throughput which refers to the short time at a time
from raw accelerometer data. After adding a fully connected layer behind the output of encoding
layers, a single SDAE network can also be constructed for human activity recognition.

Table 1 lists the mainly HAR algorithms based on the different combinations of feature extraction
methods and feature classification methods. As can be seen, the algorithms based on deep learning
feature extraction methods often achieve better performance.
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Table 1. The further experimental results of the related work.

Reference Dataset Algorithm Accuracy

[37]
[37]
[25]
[26]
[20]
[15]
[27]
[13]
[17]
[28]
[29]
[36]
[19]
[38]
[39]

WISDM
UCI
UCI

Non-public
Non-public
Non-public
Non-public

UCI
RealWorld

HAR
Non-public
PAMAP2

Non-public
HASC

UCI
UCI

Artificial features + Dropout
Artificial features + Random Forest

Artificial features + SVM
Artificial features + SVM

Hierarchical artificial features + LR//DT/SVM/XGB
Artificial features + MP+LigitBoost+SVM

CNN
CNN + statistical features
CNN + statistical features

binary sensor convolution neutral network
deep dilated convolution + long short term memory

deep neural networks + hidden Markov models
deep recurrent neural network

sparse autoencoder + SVM
stacked autoencoder

85.36%
76.26%
89.00%
85.59%

-
91.15%
93.80%
97.63%
98.00%
94.70%

-
93.52%
95.42%
92.16%
97.90%

Although many works focus on HAR, there are still many deficiencies in the accuracy, latency,
and power consumption. The observation noise of the sensor is the key reason for the low recognition
accuracy. Recently, stacked autoencoder (SAE), as a classical unsupervised learning algorithm, has
shown high feature extraction [40,41] and data compression [42,43] performance that matches the
current state-of-the-art [41]. Vincent et al. [44,45] modified the traditional SAE to learn useful features
from corrupted data and developed the stacked denoising autoencoder (SDAE) that eliminates sensor
observation noise by signal reconstruction. The SDAE model has the potential to eliminate noise and
extract robust unsupervised feature in practice. Nevertheless, few researchers have used SDAE as an
independent feature extraction module in HAR. A deep convolutional autoencoder (CAE) network
proposed in [46] utilizes autoencoder to initialize the weights of the following convolutional layers.
Another network named AE-LRCN [47] uses the autoencoder layer to remove the inherent noise of the
input data. Thus, it is necessary to carry out the task of HAR based on features extracted from SDAE.

Unlike traditional HAR algorithms, this paper proposes an fusion method of Stacked Denoising
Autoencoder [45] and LightGBM [48] for human activity recognition based on inertial sensor data
of smartphone and highlights the classification of four different daily activities under three typical
scenarios of human moving modes, current static behavior, and current dynamic behavior. The main
contributions of this paper are as follows:

• We proposed a method which combines the feature extraction ability of deep learning with the
classification ability of decision tree. We make advantage of SDAE to filter the occasional sensor
noise (caused by the low-cost MEMS and complex human activities) and use the automatically
obtained features for accurate human activity recognition The Boosting K-Fold LGB is used to
realize accurate classification of the user behaviors.

• We proposed a little trick of k-Fold based on the idea of Boosting. By repeating the error
classification samples in the validation set of the previous fold, the attention of the nth fold
error samples can be improved in the n + 1th fold training.

• We selected four datasets under three typical application scenarios, to verify the algorithm
proposed in this paper and prove that this model can achieve high accuracy in multiple data sets
and multiple classification problems.

• We also implemented the state-of-art algorithm based on XGB [49], CNN [50], CNN + statistical
features [13], and single SDAE [2]. Then, we compared the proposed algorithm and the state-of-art
algorithm on the same datasets.
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The remainder of this paper is structured as follows: our proposed methodology is presented in
Section 2. Section 3 describes and discusses our experiments. The conclusion is provided in Section 4.

2. Materials and Methods

2.1. System Architecture

In this paper, we employ smartphone embedded sensors for human moving modes, static and
dynamic behavior recognition. As shown in Figure 1, the proposed algorithm includes four steps
including data acquisition, data preprocessing, unsupervised feature extraction based on SDAE, and
supervised behavior classification based on K-Fold LGB.
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For describing conveniently, we introduce the notations used in this paper. We use N for the
number of the sensors. Let k, k = 1, 2 . . .N represent the original data collected from the kth sensor and
dk represent the dimension of the kth sensor. After the sliding window with a size of w and a stride
length of s, k is divided into N samples, each of which is represented by xk

i , i = 1, 2, . . . , N, xk
i ∈ Rw×dk

.
After splicing and standardization, the input of the kth SDAE model will be obtained, which is

represented by
→
x

k
i ,
→
x

k
i ∈ Rwdk

.

2.2. Data Pre-Process

The data pre-process aims to change the sensor data collected at a fixed frequency into the input
of the SDAE network. The specific processing process is described below.

Data Segmentation. In each experiment conducted by each person, the result is a sensor data
sequence which has indefinite length. A sliding window with a size of 2.56 s is used to capture sample
data on the different datasets. The final shape of the samples is shown in Section 3.1.

Data Reshaping. To match the input shape of SDAE, it is necessary to reshape the sample
obtained in the previous step. In this paper, we use the axis as the module to splice. If the sample
shape after the first step is (N′, P′, M′), then the reshaped sample shape is (N′, P′ ×M′).

Data Standardization. This paper adopted the max–min standardization method before feeding
the sample data into the SDAE network. The paper adopted the max–min standardization method.
The following procedure is performed for the ith column of data (x[:, i], i = 1, 2, · · · P′ ×M′) for the
samples obtained from the previous step:

x[:, i] =
x[j, i]−min(x[:, i])

max(x[:, i])−min(x[:, i])
, i = 1, 2, · · · , P′ ×M′, j = 1, 2, · · ·N′ (1)

Algorithm 1. Data Pre-process

Input: A time-series matrix d, sliding window size l, sliding window step s
Output: A matrix of final train samples, A matrix of final test samples
1. result = []
2. Initialize the flag number start = 0
3. while start < len(d)
4. if start + l < len(d)
5. temp = d.iloc[start:start+l, :] //data segmentation
6. reshaped_temp = reshape(temp, [1, l×d.shape [1]]) //data reshaping
7. result.append(reshaped_temp)
8. start = start +s
9. end if
10. end while
11. X_train, X_test = train_test_split(test_size = 0.3)
12. //data standardization
13. for col in X_train.cols
14. col_max = max(X_train.iloc[:, col])
15. col_min = min(X_train.iloc[:, col])
16. X_train.iloc[:, col] = (X_train.iloc[:, col] – col_min)/(col_max – col_min)
17. X_test.iloc[:, col] = (X_test.iloc[:, col] – col_min)/(col_max – col_min)
18. end for
19. return X_train, X_test

The pseudo code of Algorithm 1 shows the data pre-process implementation. This algorithm
receives a time-series matrix d = [d1, · · · , di, · · · dn], a variable l represents the size of the sliding
window, and a variable s represents the step of the sliding window. For matrix d, di is a m-dimension
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vector where m represents the number of the axes of all the sensors. The algorithm output is defined
by a2-dimension list named “finalsamples” with a shape of [n|s− 1, l, m].

2.3. Unsupervised Feature Extraction

In this section, we introduce unsupervised feature extraction based on SDAE and demonstrates
the effectiveness of the extracted features.

2.3.1. Feature Extraction

SDAE come from a deep network scheme which stacks multiple denoising autoencoder together
to learn complicated features [45]. Each denoising autoencoder consists of four layers: input, imnoise,
hidden, and output layers. The hidden layer and the output layer are called the encoding layer and the
decoding layer, respectively. To thoroughly learn the data variation rules of each sensor, we specifically
construct a separated SDAE network. Each sensor data is passed into an SDAE network separately for
data forward propagation and parameter reverse learning.

Assuming that there are nk layers of kth SDAE, then at the lth layer, a complete set of
encoding–decoding operations is performed. Given the pre-processed vector of the kth sensor named
il
→
x

k
i

, the imnoise layer of denoising autoencoder first transforms it by

nl
→
x

k
i

= fnoi

(
il
→
x

k
i

; θk,l
noi

)
(2)

where fnoi(·) is the noising function, θk,l
noi is the probability of dropout in this paper. By using the

dropout layer, a certain number of input sensor data are randomly chosen and forced to be zero. The
encoding layers are trained to fill in these blanks and reconstruct these corrupted inputs of sensor data.
Let el

→
x

k
i

be the output of encoding layer, calculated by a function of

el
→
x

k
i

= fenc(n→
x

k
i
; θk,l

enc) (3)

where fenc(·) represents the encoding function and θk,l
enc is the noised-to-hidden parameters. The el

→
x

k
i

obtained by the encoding function is the feature learned in the current layer. Let fdec represent the
decoding function, θk,l

dec represent the decoding parameters, and the final output of the denoising
autoencoder data will be expressed as

dl
→
x

k
i

= fdec(el
→
x

k
i

; θk,l
dec) = fdec( fenc( fnoi

(
il
→
x

k
i

; θk,l
noi

)
; θk,l

enc); θk,l
dec) (4)

In Formula 4, θk
noi is a super parameter that needs to be defined manually. While θk

enc, θk
dec are

parameters that need to be trained and adjusted through the back-propagation process, where the loss
function is defined to minimize the mean square error between the decoded data and the input data,
which is

(θk,l
enc
∗, θk,l

dec
∗) = arg min

θk,l
enc ,θk,l

dec

‖dl
→
x

k
i

− il
→
x

k
i

‖2
(5)

In this so-called “denoising” way, we can reduce the influence from the inherent noise of sensor
data collected by smartphones and focus on retrieving the information we need, or the so-called
“useful features”. Then in the stacked structure, once the lth layer are trained, the SDAE scheme then
leverages the outputs to train the l + 1th layer. After fine-tuning of the layers, we obtain the final
“useful features” by

e→
x

k
i
= fenc(· · · fenc(

→
x

k
i ; θk,1

enc); · · · θk,nk

enc ) (6)
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When all the feature extraction tasks are completed, the features of each sensor are pieced together

again to form the final feature vector e→
x i

= e→
x

1
i

∣∣∣∣e→x 2
i

∣∣∣∣· · ·∣∣∣∣e→x N
i

. Together with the label yi, i = 1, 2, . . . N,

it forms the input of supervised feature classification layer.

2.3.2. Analysis of the Feature Performance

To evaluate the influence of the features extracted by SDAE, we leverage the inner-class dispersion
matrix and the outer-class dispersion to describe the distribution of samples.

The inner-class dispersion matrix of the class Ωi is defined as

S(i)
W =

1
Ni

Ni

∑
k=1

(X(i)
k −m(i))(X(i)

k −m(i))
T

(7)

where the X(i) represents the ith class sample set and the m(i) is the mean of all the samples in X(i).
The total inner-class dispersion matrix is defined as

SW =
M

∑
i=1

P(Ωi)S
(i)
W =

M

∑
i=1

P(Ωi)
1
Ni

Ni

∑
k=1

(X(i)
k −m(i))(X(i)

k −m(i))
T

(8)

where M donates the number of the sample classes, and the P(Ωi) is the probability of the ith class
samples in the total number of samples. For the outer-class dispersion, the dispersion matrix is
defined as

S(ij)
B = (m(i) −m(j))(m(i) −m(j))

T
(9)

SB =
1
2

M

∑
i=1

P(Ωi)
M

∑
j=1

P(Ωj)S
(ij)
B =

1
2

M

∑
i=1

P(Ωi)
M

∑
j=1

P(Ωj)(m(i) −m(j))(m(i) −m(j))
T

(10)

We use the trace of the dispersion matrix as a measure of the sample divergence. That is tr(S(i)
W )

represents the divergence of each sample in ith class to the mean vector. And the tr(SW) is the mean
measure of the feature variance of all the classes. The S(ij)

B donates the dispersion between ith and jth

classes while the SB is a measurement of the mean dispersion between the mean of each class and the
global mean vector. So the feature extracted by the SDAE should make the inner-class divergence as
small as possible and the outer-class divergence as large as possible.

We selected six types of sample data and compared the sample dispersion before and after
using SDAE. Table 2 lists the total inner and outer class divergence of the Original data and the
extracted feature

Table 2. The total inner and outer class divergence of the Original data and the Extracted feature.

Evaluation Indicator Original Data Extracted Feature

inner-class divergence 8.0264 0.2064
outer-class divergence 6.9440 0.8646

The inner-class divergence has been reduced by nearly 97.5% from the original data to the
extracted feature. Although the outer-class divergence also decreases, the proportion of the decline
is much smaller than the inter-class divergence. For the original data, the inner-class divergence is
greater than the outer-class divergence. But for the extracted features, the outer-class divergence is
more than four times the inner-class divergence.

Tables 3 and 4 list the specific inner and outer class divergence of the Original data and the
Extracted feature. The upper left corner is the calculation result of the original data, and the lower right
corner is for the extracted features. As can be seen from the table comparison, the feature extracted by
SDAE has a significant effect. For example, the inner-class divergence of WALK is 10.50, larger than
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the outer-class divergence between WALK and SIT on the original data. After the feature extraction,
the inner-class divergence changes to 0.09 while the outer-class divergence becomes 0.49, which is
more than five times that. Therefore, both total and specific divergence demonstrate that the SDAE has
obvious advantages in excavating the hidden features of various types of data.

Table 3. The specific inner and outer class divergence of the Original data.

Category WALK WALKUP WALKDOWN SIT STAND LAY

WALK 10.50 0.48 0.06 3.95 0.05 45.21
WALKUP 13.25 0.77 6.79 0.77 50.39 0.05

WALKDOWN 17.73 3.30 0.05 43.29 0.77 3.95
SIT 2.46 3.29 26.81 0.05 6.79 0.06

STAND 0.98 43.56 3.29 3.30 0.77 0.48
LAY 7.03 0.98 2.46 17.73 13.25 10.50

Table 4. The specific inner and outer class divergence of the Extracted feature.

Category WALK WALKUP WALKDOWN SIT STAND LAY

WALK 0.09 0.23 0.32 0.49 0.12 5.69
WALKUP 0.23 0.21 0.4 0.67 0.64 6.03

WALKDOWN 0.32 0.4 0.23 0.49 0.39 5.63
SIT 0.49 0.67 0.49 0.37 0.41 3.38

STAND 0.12 0.64 0.39 0.41 0.04 5.48
LAY 5.69 6.03 5.63 3.38 5.48 0.27

To visually verify the validity of the extracted features from the SDAE model, we selected several
features and made the numerical distribution diagram of all the samples in each category on a certain
feature, which is shown in Figure 2.
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Figure 2. The feature values between different categories. (a) Shows the different distributions of a
certain feature value between static classes and dynamic classes. (b) Displays the data distribution and
cumulative probability of a certain feature on the dynamic class and (c) shows that on the static class.

Figure 2a show that the feature values of the three categories in the static state are 100% distributed
in the range of 0.735−0.750, while the values of the other three categories in the dynamic state are
mostly distributed in the range of 0.75−0.90, with almost no overlap. In Figure 2b, although the
distribution of the sixth feature value among the three dynamic categories overlaps to a certain extent,
it still has strong classification ability. For example, 93% values of the WALK class are distributed
between 0.74 and 0.80, while 61% for WALKUP class and for WALKDOWN, only 43%. As for the
sixty-ninth feature on the three static classes shown in Figure 2c, the classification effect is particularly
noticeable. The feature values of the LAY class are distributed between 0.4 and 0.9, with no overlap
with other classes. For the STAND and SIT, there is only 38% overlap.
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Although a single feature has shown a certain classification ability, it still has a lot of limitations.
Therefore, we need a powerful classifier to deal with the 90-dimensional features learned by SDAE to
achieve the best classification effect.

2.4. Supervised Classification

To make full use of the features extracted by SDAE for high-precision classification, we selected
the LGB algorithm as a supervised classification method. This section gives a simple introduction to
the advantages and calculation methods of LGB, and explains the Boosting K-fold algorithm proposed
in this paper.

2.4.1. Classification Algorithm

With the labeled training dataset C= {(e →x i
, yi)}N

i=1 gained from the unsupervised feature
extraction layer, the LGB algorithm will be used. LGB is a new GBDT implementation with
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) that meet the
requirements of efficiency and scalability under the situation of high dimension and a large amount of
data. Researches show that LGB will speed up the training process of conventional GBDT by up to
20 times while achieving almost the same accuracy [48].

2.4.2. Boosting K-fold

In k-fold cross-validation, the original sample is randomly partitioned into k equal sized
subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing the
model, and the remaining k − 1 subsamples are used as training data. The cross-validation process is
then repeated k times, with each of the k subsamples used exactly once as the validation data.

In this paper, we use the idea of boosting into the process of five-fold cross-validation. The change
process of the dataset is shown in Figure 3. In this algorithm, the five-fold cross-validation is a serial
process. At first, the original data, as shown in Figure 3a, was initially divided into five parts.
During the first fold training, the samples that were misclassified in the verification set were selected
Figure 3b. In the second fold of training, the misclassified samples we first copied to achieve the
purpose of increasing the weight, and then were used as the training set Figure 3c. So on, the error
samples in the verification set were marked and copied for the third fold of training Figure 3d. Repeat
this process until all training is completed.
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Figure 3. The schematic diagram of boosting K-Fold LGB. The training sets of each fold are determined
by the previous fold’s predicted results.

The pseudo code of Algorithm 2 shows the implementation of Boosting K-Fold LGB.
This algorithm receives the whole train data and label named “X” and “Y” as input. The trained LGB
models will be used for prediction and this process is not shown in Algorithm 2.
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Algorithm 2: Supervised Feature Classification

Input: Training data named X, training label named Y, test data named X_test
Output: The predict result of X_test
1. kfold_data = StratifiedKFold (folds_num = 5)
2. misjudgedX = []
3. misjudgedY = []
4. for train_index, val_index in kfold_data.split(X, Y)
5. tra_x, val_x, tra_y, eval_y = X[train_index], X[val_index], Y[train_index], Y[val_index]
6. if len(misjudgedX) ! = 0
7. tra_x = vstack ([tra_x, misjudgedX])
8. tra_y = hstack([tra_y, misjudgedY])
9. end if
10. model = lightgbm.train(tra_x, tra_y)
11. val_pred = model.predict(val_x)
12. misjudgedX = val_x[argwhere(val_y ! = val_pred)]
13. misjudgedY = val_y[argwhere(val_y ! = val_pred)]
14. test_pred.append(model.predict(X_test))
15. end for
16. final_pred = []
17. for line in test_pred
18. final_pred.append(argmax(bincount(line)))
19. end for
20. return final_pred

2.5. Models for Comparison

In this section, we provide a brief introduction to four algorithms that are used in the literature
for comparison with the method proposed in this paper. These are single SDAE, XGB, CNN, and CNN
+ Statistic Features.

2.5.1. HAR Based on SingleSDAE

A single SDAE model can also be directly used for multiple classification problems. In this paper,
the effects of single SDAE and SDAE+LGB were also compared. The pre-train phase of single SDAE is
the same as 3-B. And the difference between them is that a softmax layer will be superimposed on the
trained encoding network for category prediction for single SDAE. The reverse propagation process is
the same as that of a neural network. The algorithm schematic diagram is shown in Figure 4.

Sensors 2019, 19 FOR PEER REVIEW  10 

 

7.   tra_x = vstack ([tra_x, misjudgedX]) 

8.   tra_y = hstack([tra_y, misjudgedY]) 

9.  end if 

10.  model = lightgbm.train(tra_x, tra_y) 

11.  val_pred = model.predict(val_x) 

12.  misjudgedX = val_x[argwhere(val_y ! = val_pred)] 

13.  misjudgedY = val_y[argwhere(val_y ! = val_pred)] 

14.  test_pred.append(model.predict(X_test)) 

15. end for 

16. final_pred = [] 

17. for line in test_pred 

18.  final_pred.append(argmax(bincount(line))) 

19. end for 

20. return final_pred 

2.5. Models for Comparison 288 

In this section, we provide a brief introduction to four algorithms that are used in the literature 289 
for comparison with the method proposed in this paper. These are single SDAE, XGB, CNN, and 290 
CNN + Statistic Features. 291 

2.5.1. HAR Based on SingleSDAE 292 

A single SDAE model can also be directly used for multiple classification problems. In this paper, 293 
the effects of single SDAE and SDAE+LGB were also compared. The pre-train phase of single SDAE 294 
is the same as 3-B. And the difference between them is that a softmax layer will be superimposed on 295 
the trained encoding network for category prediction for single SDAE. The reverse propagation 296 
process is the same as that of a neural network. The algorithm schematic diagram is shown in  297 
Figure 4. 298 

 299 

Figure 4. The single SDAE network for classification. After the training of stacking denoising encoders, 300 
an output layer is added on the top of the encoding network. By performing the gradient descent on 301 
the supervised loss, the classification result of single SDAE can be obtained. 302 

2.5.2. HAR Based on XGB 303 

The XGB algorithm is one of the common machine learning algorithms in HAR. In this paper, 304 
we construct a complete set of feature engineering by studying the internal laws of data sets. Then 305 
the XGB algorithm is called for classification. The accuracy of XGB will be compared with the 306 
algorithm proposed in this paper. The characteristics of the data are constructed as Table 5. 307 

 308 
 309 
 310 

 Figure 4. The single SDAE network for classification. After the training of stacking denoising encoders,
an output layer is added on the top of the encoding network. By performing the gradient descent on
the supervised loss, the classification result of single SDAE can be obtained.

2.5.2. HAR Based on XGB

The XGB algorithm is one of the common machine learning algorithms in HAR. In this paper, we
construct a complete set of feature engineering by studying the internal laws of data sets. Then the
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XGB algorithm is called for classification. The accuracy of XGB will be compared with the algorithm
proposed in this paper. The characteristics of the data are constructed as Table 5.

Table 5. The feature engineering of XGB algorithm.

Sensors Cluster Features

Acceleration
Vertical component mean, variance, standard deviation, median,

minimum, maximum, range, quartile

Horizontal component mean, variance, standard deviation, median,
minimum, maximum, range, quartile

Acceleration &Gyroscope &
Magnetic

Modulus value

mean, variance, standard deviation,
median, minimum, maximum, range,

quartile, kurtosis, skewness, root mean,
square, integral, double integral,
autocorrelation, 7 FFT features

Three axes value Pearson correlation coefficient between
three axes

Pressure
6s’s windows Change value, standard deviation

10s’s windows Change value, standard deviation

2.5.3. HAR Based on CNN

As a classic supervised deep learning method, CNN can also be used in HAR. This paper studied
the accuracy under the CNN algorithm either. Taking the UCI-HAR data set as an example, the CNN
network structure adopted in this paper is shown in Figure 5. One dimensional convolution operation
was performed on the three sensor data respectively. The characteristics obtained by convolution were
stretched into a one-dimensional vector. Then the completed input vector of the fully connected layer
can be obtained by splicing the feature vector of each sensor. After three full connection operations, the
output will be obtained, in which the ith-dimension represents the probability that the current sample
belongs to the ith-class.
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Each convolutional network is for a set of data in a sensor. Then the outputs of the convolutional
network are spliced together to be the input of the fully connected layer.
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Considering that CNN is only an algorithm for comparison, we directly adopted the optimal
parameters in the paper [27], only slightly changing the network structure of CNN according to
different data formats of the input.

2.5.4. HAR Based on CNN+ Statistic Features

We also implement a state-of-art HAR algorithm for comparison with our own method.
The method proposed in [13] presents a user-independent deep learning-based approach for online
human activity recognition by using CNN for local feature extraction together with simple statistical
features that preserve information about the global form of time series. The results published in [13]
show that this method demonstrates state-of-the-art performance while requiring low computational
cost and no manual feature engineering.

3. Experiments and Evaluation

To evaluate the performance of the proposed algorithm, we carried out a set of experiments
described in this section.

3.1. Datasets

For the evaluation of the generalization ability of the algorithm we proposed, we tested four
datasets from three typical scenarios. These datasets are elaborated below and the number of specific
sample for each category of each dataset is shown in Table 6.

Table 6. The sample number of each category on each dataset. The HMM contains both HMMwithPre
and HMMwithoutPre.

Dataset Category Abbreviation Number of
Samples

Sample Percent of
Each Human

Activity

HMM

Stilling
Walking

Elevator_up
Elevator_down

Escalator_up
Escalator_down

Walking_up
Walking_down

STI
WAL
ELU
ELD
ESU
ESD

WAU
WAD

1325
2216
685
730

2216
1598
864

1029

12.42%
20.78%
6.42%
6.84%

20.78%
14.98%
8.10%
9.65%

HSBD

Walking
Walking_up

Walking_down
Standing

Sitting
Laying

WAL
WAU
WAD
STA
SIT

LAY

1772
1544
1406
1777
1906
1944

17.12%
14.91%
13.58%
17.17%
18.41%
18.78%

HDBD

Stand-to-sit
Sit-to-stand

Sit-to-lie
Lie-to-sit

Stand-to-lie
Lie-to-stand

S2SI
SI2S
SI2L
L2SI
S2L
L2S

697
192

1193
879

1753
870

12.48%
3.43%

21.36%
15.74%
31.39%
15.58%

The Human Moving Modes with Pressure (HMMwithPre): This dataset is from a variety of
smartphones (HUAWEI NXT-TL00, NXT-AL10, Samsung G9200, MIX 2, and MI 5s) positioned
horizontally in the user’s hand to collect data from an accelerometer, gyroscope, magnetic, and air
pressure sensor at a 100 Hz sampling rate. Twenty-five (25) subjects participated in data collection: 20
men and 5 women from 20 to 50 years old, of 165−192 cm height and 48−80 kg weight. Let n represents
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the length of the sequence. The processed data were built from 50%-overlapping sliding windows
with 256 samples. Since the sampling frequency was 100 Hz, each data frame lasted 2.56 s, with every
new frame available every 1.28 s. Finally, the sample shape obtained is ((n|128)− 1, 256, 10).

The Human Moving Modes without Pressure (HMMwithoutPre): This dataset is a variation of
the HMMwithPre, which was derived from the original HMMwithPre data by removing the pressure
sensor data. With the same sliding window size and step as HMMwithPre, the final sample shape is
((n|128)− 1, 256, 9).

The Human Static Behavior Dataset (HSBD): This dataset (https://archive.ics.uci.edu/ml/
datasets/Human+Activity+Recognition+Using+Smartphones) is from a single smartphone (Samsung
Galaxy S2) positioned on the user’s waist to collect the total accelerometer, the estimated body
accelerometer and gyroscope data at a 50 Hz sampling rate. Thirty (30) subjects aged 19−48 years
participated in data collection. The processed data were built from no-overlapping sliding windows
with 2.56 s. Since the sampling frequency was 50 Hz, each data frame contains 128 samples. Finally,
the sample shape obtained is (n|128, 128, 9)

The Human Dynamic Behavior Dataset (HDBD): This dataset (http://archive.ics.uci.edu/ml/
datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions) is from a
single smartphone (Samsung Galaxy S2) positioned on the user’s waist to collect the total accelerometer,
the estimated body accelerometer and gyroscope data at a 50 Hz sampling rate. It is an updated version
of the HSBD. After removing the data which has the same label with HSBD, the training samples were
extracted. Considering the small number of datasets, a 0.16 s sliding window is adapted to obtain the
samples, the shape of which is ((n|8)− 1, 128, 9).

3.2. Evaluation Metrics

In order to comprehensively evaluate the performance of HAR, we used four evaluation accuracy
(A), precision (P), recall (R), F1-score (F1) to evaluate the classification results. For this multi-classification
problem, the calculation steps of P, R, and F1 is shown below.

Step1: For each activity category, count the number of samples of predicting this class as this class
(TP), predicting other classes as this class (FP), predicting this class as other classes (TN).

Step2: Calculate Pk, Rk, F1k under each category by the statistics of the first step. The calculation
formula is as follows:

Pk =
TP

TP + FP
, Rk =

TP
TP + FN

, f 1k =
2× Pk × Rk

Pk + Rk
(11)

Step3: Average the results under all the categories obtained in the second step.

3.3. Network Structure of SDAE

SDAE network is composed of multiple encoding layers and decoding layers, the number of cells
of which are different. The network structure of our SDAE for each dataset is summarized in Table 7,
where the n_layer represents the number of the encoder layers, the n_hidden represents the number
of cells in each layer of the encoding layer, and the dropout represents the rate at which input data
is discarded.

Table 7. The network structure for SDAE.

Dataset n_Layer n_Hidden Dropout Batchsize Epoch

HMMwithPre 3 [150,70,20] for Pre
others [400,200,40] 0.4 32 20

HMMwithoutPre 3 [400,200,30] 0.4 32 4
HSBD 2 [100,30] 0.4 32 2
HDBD 1 [30] 0.4 32 20

http://archive.ics.uci.edu/ml/ datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/ datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
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3.4. Classification Performance

In the first experiment, we evaluated our proposed method on the HMMwithPre,
HMMwithoutPre, HSBD, and HDBD datasets. The recognition results are presented as confusion
matrices in Figure 6 and summarized as average recognition accuracy in Table 8.
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Table 8. Average recognition accuracy of our proposed method on the different datasets.

Dataset Accuracy

HMMwithPre
HMMwithoutPre

HSBD
HDBD

95.73%
93.70%
98.22%
96.31%

For each dataset, the data on the diagonal occupies an absolute proportion. With the HMMwithPre
dataset, the recognition accuracy is 95.73% while there is a large possibility that the elevator_up and
elevator_down are misjudged and also 1% of the walking_up and walking_down data are judged as
walking. As for HMMwithoutPre dataset, all but the stilling categories have a certain probability of
being misjudged. Among them, the probability that the elevator_down is judged as others and the
others being judged as escalator up is the highest. For HSBD, three categories of motion (walking,
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walking up, walking_down) and three categories of rest (sitting, lying, standing) can be perfectly
separated. In the rest categories, the misjudgment rate between standing and sitting was higher.
With the HDBD, the samples of misjudgement mainly focus on the discrimination of standing or
sitting to lying, and lying to standing or sitting, which is consistent with the classification result
of HSBD.

The experiment result has shown that the algorithm proposed in this paper achieves a good
classification effect on multiple datasets, especially on the discrimination of motion and rest data.
In the categories of human moving modes, escalator and elevator have a relatively high misjudgement
rate, while for the data of user behavior, the distinction between standing and sitting is the difficulty of
the classification.

3.5. Comparison of Different Models

In the second experiment, to compare the other classification performance with the algorithm
proposed in this paper, we implemented additional single SDAE algorithms, XGB, CNN, and the CNN
+ Statistical features algorithm proposed in [13]. The experimental results are shown below.

3.5.1. Comparison with Single SDAE

The classification result of single SDAE is shown in Table 9 comparing with SDAE+LGB. The
difference between them is that the former uses a fully connected layer for classifying rather than LGB.
As shown in the table, the accuracy of single SDAE is about 10% lower than that of SDAE+LGB but
varies little among the four datasets, which verifies the robustness of SDAE to extract effective features.

Table 9. The evaluation score of single SDAE on four datasets.

Dataset Model Accuracy Precision Recall F1-score

HMMwithPre SDAE
SDAE+LGB

86.04%
95.73%

87.22%
95.76%

86.04%
95.73%

86.01%
95.73%

HMMwithoutPre SDAE
SDAE+LGB

84.42%
93.70%

84.77%
93.74%

84.42%
93.70%

84.37%
93.70%

HSBD SDAE
SDAE+LGB

84.63%
98.22%

86.58%
98.23%

84.62%
98.22%

84.79%
98.22%

HDBD SDAE
SDAE+LGB

79.14%
96.31%

80.65%
96.33%

79.14%
96.31%

78.38%
96.31%

3.5.2. Comparison with XGB

Table 10 shows the evaluation score of XGB. As for HMMwithPre, by the XGB algorithm achieves
an accuracy of 95.06% which fully demonstrates the effectiveness of the proposed feature. However, the
10s’ sliding window of pressure data will cause a long time delay and affect the real-time performance
of recognition. With the HMMwithoutPre dataset, the performance XGB dropped significantly by
almost 10% simply because it was missing four pressure-dependent features. Experimental results
show that the performance of XGB greatly depends on the effectiveness of features.
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Table 10. The evaluation score of XGB on four datasets.

Dataset Model Accuracy Precision Recall F1-score

HMMwithPre XGB
SDAE+LGB

95.06%
95.73%

95.06%
95.76%

95.06%
95.73%

95.03%
95.73%

HMMwithoutPre XGB
SDAE+LGB

85.47%
93.70%

85.41%
93.74%

85.47%
93.70%

85.12%
93.70%

HSBD XGB
SDAE+LGB

94.05%
98.22%

94.07%
98.23%

94.05%
98.22%

94.05%
98.22%

HDBD XGB
SDAE+LGB

80.12%
96.31%

80.21%
96.33%

80.12%
96.31%

79.99%
96.31%

3.5.3. Comparison with CNN

The performance of CNN is shown in Table 11 with an average accuracy of 89.52% on the four
datasets. The experimental results show that the CNN algorithm has good robustness and will get
similar results on multiple data sets. However, CNN still has shortcomings in feature extraction, which
limits its accuracy.

Table 11. The evaluation score of CNN on four datasets.

Dataset Model Accuracy Precision Recall F1-score

HMMwithPre CNN
SDAE+LGB

90.77%
95.73%

90.77%
95.76%

90.57%
95.73%

90.77%
95.73%

HMMwithoutPre CNN
SDAE+LGB

88.64%
93.70%

88.31%
93.74%

88.42%
93.70%

88.31%
93.70%

HSBD CNN
SDAE+LGB

85.83%
98.22%

85.84%
98.23%

85.83%
98.22%

85.83%
98.22%

HDBD CNN
SDAE+LGB

92.84%
96.31%

93.84%
96.33%

92.97%
96.31%

92.97%
96.31%

3.5.4. Comparison with CNN+Statistical Features

The comparison results on the all datasets are shown inTable 12. As can be seen from the table,
the accuracy of the CNN + Statistical features algorithm varies greatly on distinct datasets, from
78.11% to 97.63%. Compared with CNN, this algorithm has a great improvement in HSBD, but a
sharp decrease in HDBD. This indicates that the algorithm is not robust, mainly because the features
extracted manually are not universal.

Table 12. The comparison of evaluation score of [13] on four datasets.

Dataset Model Accuracy Precision Recall F1-score

HMMwithPre [13]
SDAE+LGB

93.24%
95.73%

93.15%
95.76%

93.24%
95.73%

93.19%
95.73%

HMMwithoutPre [13]
SDAE+LGB

86.31%
93.70%

86.15%
93.74%

86.31%
93.70%

86.05%
93.70%

HSBD [13]
SDAE+LGB

97.63%
98.22%

97.68%
98.23%

97.63%
98.22%

97.62%
98.22%

HDBD [13]
SDAE+LGB

78.11%
96.31%

78.11%
96.33%

78.11%
96.31%

78.10%
96.31%
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3.5.5. Analysis of Comparison Results

From the experiment results, the highest accuracy on different classification methods is achieved
by using SDAE+LGB. As for the single SDAE algorithm, the learning ability of the fully connected
layer added after the encoding layers are limited. It’s difficult for it to make full use of the features
acquired by encoding–decoding network learning. For the XGB algorithm, the accuracy of recognition
largely depends on the effectiveness of the extracted feature. Meanwhile the accuracy of the CNN
algorithm is affected by many super parameters, and it’s difficult to find an optimal combination to
achieve the ideal accuracy of identification network. When together with the statistical features, the
robustness of CNN will drop significantly.

4. Conclusions

In this paper, we propose a human activity recognition algorithm combining the feature extraction
ability of SDAE and the classification ability of LGB and demonstrate its capability to produce a robust
HAR. The evaluation was performed on four distinct datasets under different combination of sensors,
various sensor positions, and three typical application scenarios which are human moving modes,
current static behavior, and dynamic behavior change. For comparison, we also implemented the
single SDAE, XGB, CNN, and a state-of-art algorithm and compared it with the SDAE+LGB algorithm
on each dataset.

Extensive experimental results demonstrate that our proposed algorithm is more generic and
robust than other state-of-art algorithms. There are two main reasons for this. One is that the features
learned by SDAE are more capable of showing the variation law of sensor data than those constructed
manually. The other is that for the same features, the classification capability of LGB is better than that
of a simple fully connected layer.

For the future work, we plan to conduct further research along the following lines. First, we will
explore the usage of unlabeled data generated during the user’s use to improve the existing model
incrementally. Second, we will construct an effective indoor positioning algorithm by combining the
classification results of human moving modes with Pedestrian Dead Reckoning (PDR). Third, we will
translate the classification results of HAR into practical semantic layer expression, which can provide
suggestions for human daily life.

5. Patents

The proposed method is applying for a patent and now has been handed over to the agency.

Author Contributions: X.G., and H.L. conceived the framework and designed the algorithm and experiments;
X.G. wrote the paper and performed experiments; X.G. and L.Y. analyzed the data; Q.W., F.Z. and Y.Z. guided the
paper writing and reviewed the paper. All authors read and approved the final manuscript.

Funding: This work was supported in part by the National Key Research and Development Program
(2018YFB0505200), the BUPT Excellent Ph.D. Students Foundation (CX2018102), the National Natural Science
Foundation of China (61872046 ,61374214) and the Open Project of the Beijing Key Laboratory of Mobile Computing
and Pervasive Device.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Elamvazuthi, I.; Izhar, L.; Capi, G. Classification of Human Daily Activities Using Ensemble Methods Based
on Smartphone Inertial Sensors. Sensors 2018, 18, 4132.

2. Gu, F.; Khoshelham, K.; Valaee, S.; Shang, J.; Zhang, R. Locomotion Activity Recognition Using Stacked
Denoising Autoencoders. IEEE Internet Things J. 2018, 5, 2085–2093. [CrossRef]

3. Pei, L.; Liu, J.; Guinness, R.; Chen, Y.; Kuusniemi, H.; Chen, R. Using LS-SVM Based Motion Recognition for
Smartphone Indoor Wireless Positioning. Sensors 2012, 12, 6155–6175. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JIOT.2018.2823084
http://dx.doi.org/10.3390/s120506155
http://www.ncbi.nlm.nih.gov/pubmed/22778635


Sensors 2019, 19, 947 18 of 20

4. Yan, S.; Teng, Y.; Smith, J.S.; Zhang, B. Driver behavior recognition based on deep convolutional neural
networks. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 636–641.

5. Siirtola, P.; Röning, J. User-Independent Human Activity Recognition Using a Mobile Phone: Offline
Recognition vs. Real-Time on Device Recognition. In Advances in Intelligent and Soft Computing; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 151, ISBN 9783642287640.

6. Fook, V.F.S.; Thang, P.V.; Htwe, T.M.; Qiang, Q.; Wai, A.A.P.; Jayachandran, M.; Biswas, J.; Yap, P. Automated
Recognition of Complex Agitation Behavior of Dementia Patients Using Video Camera. In Proceedings of
the 2007 9th International Conference on e-Health Networking, Application and Services, Taipei, Taiwan,
19–22 June 2007; pp. 68–73.

7. Abowd, G.D.; Atkeson, C.G.; Hong, J.; Long, S.; Kooper, R.; Pinkerton, M. Cyberguide: A Mobile Context
Aware Tour Guide. Wirel. Netw. 1997, 3, 421–433. [CrossRef]

8. Alt, F.; Shirazi, A.S.; Pfeiffer, M.; Holleis, P.; Schmidt, A. TaxiMedia: An Interactive Context-Aware
Entertainment and Advertising System. In Proceedings of the 2009 2nd Pervasive Advertising Workshop,
Lübeck, Germany, 28 September–2 October 2009.

9. Chen, Y.-J.; Cheng, S.-C.; Yang, C.-K. Unsupervised Learning of Space-time Symmetric Patterns in RGB-D
Videos for 4D Human Activity Detection. In Proceedings of the 2017 17th International Symposium on
Communications and Information Technologies (ISCIT), Cairns, Australia, 25–27 September 2017.

10. Ni, B.; Pei, Y.; Moulin, P.; Yan, S. Multilevel Depth and Image Fusion for Human Activity Detection.
IEEE Trans. Cybern. 2013, 43, 1383–1394. [PubMed]

11. Bharti, P.; De, D.; Chellappan, S.; Das, S.K. HuMAn: Complex Activity Recognition with Multi-modal
Multi-positional Body Sensing. IEEE Trans. Mob. Comput. 2018. [CrossRef]

12. De Leonardis, G.; Rosati, S.; Balestra, G.; Agostini, V.; Panero, E.; Gastaldi, L.; Knaflitz, M. Human
Activity Recognition by Wearable Sensors: Comparison of different classifiers for real-time applications.
In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications
(MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6.

13. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural
Networks. Appl. Soft Comput. 2018, 62, 915–922. [CrossRef]

14. Wang, G.; Li, Q.; Wang, L.; Wang, W.; Wu, M.; Liu, T. Impact of sliding window length in indoor human
motion modes and pose pattern recognition based on smartphone sensors. Sensors 2018, 18, 1965. [CrossRef]
[PubMed]

15. Bayat, A.; Pomplun, M.; Tran, D.A. A Study on Human Activity Recognition Using Accelerometer Data from
Smartphones. Procedia Comput. Sci. 2014, 34, 450–457. [CrossRef]

16. Micucci, D.; Mobilio, M.; Napoletano, P. UniMiB SHAR: A Dataset for Human Activity Recognition Using
Acceleration Data from Smartphones. Appl. Sci. 2017, 7, 1101. [CrossRef]

17. Almaslukh, B.; Artoli, A.; Al-Muhtadi, J. A Robust Deep Learning Approach for Position-Independent
Smartphone-Based Human Activity Recognition. Sensors 2018, 18, 3726. [CrossRef] [PubMed]

18. Mannini, A.; Sabatini, A.M. Machine Learning Methods for Classifying Human Physical Activity from
On-Body Accelerometers. Sensors 2010, 10, 1154–1175. [CrossRef] [PubMed]

19. Inoue, M.; Inoue, S.; Nishida, T. Deep recurrent neural network for mobile human activity recognition with
high throughput. Artif. Life Robot. 2018, 23, 173–185. [CrossRef]

20. Sang, V.; Yano, S.; Kondo, T. On-Body Sensor Positions Hierarchical Classification. Sensors 2018, 18, 3612.
[CrossRef] [PubMed]

21. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SIGKDD
Explor. Newsl. 2011, 12, 74–82. [CrossRef]

22. Kawaguchi, N.; Nishio, N.; Ogawa, N.; Iwasaki, Y.; Kaji, K.; Terada, T.; Murao, K.; Inoue, S.; Kawahara, Y.;
Sumi, Y. Hasc challenge: Gathering large scale human activity corpus for the real-world activity
understandings. In Proceedings of the 2nd Augmented Human International Conference (AH’11), Tokyo,
Japan, 13 March 2011; ACM Press: New York, New York, USA, 2011; pp. 1–5.

23. Sztyler, T.; Stuckenschmidt, H. On-body localization of wearable devices: An investigation of position-aware
activity recognition. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and
Communications (PerCom), Sydney, Australia, 14–19 March 2016; pp. 1–9.

http://dx.doi.org/10.1023/A:1019194325861
http://www.ncbi.nlm.nih.gov/pubmed/23996589
http://dx.doi.org/10.1109/TMC.2018.2841905
http://dx.doi.org/10.1016/j.asoc.2017.09.027
http://dx.doi.org/10.3390/s18061965
http://www.ncbi.nlm.nih.gov/pubmed/29912174
http://dx.doi.org/10.1016/j.procs.2014.07.009
http://dx.doi.org/10.3390/app7101101
http://dx.doi.org/10.3390/s18113726
http://www.ncbi.nlm.nih.gov/pubmed/30388855
http://dx.doi.org/10.3390/s100201154
http://www.ncbi.nlm.nih.gov/pubmed/22205862
http://dx.doi.org/10.1007/s10015-017-0422-x
http://dx.doi.org/10.3390/s18113612
http://www.ncbi.nlm.nih.gov/pubmed/30356012
http://dx.doi.org/10.1145/1964897.1964918


Sensors 2019, 19, 947 19 of 20

24. Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition.
Sensors 2014, 14, 6474–6499. [CrossRef] [PubMed]

25. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human Activity Recognition on Smartphones
Using a Multiclass Hardware-Friendly Support Vector Machine. In Ambient Assisted Living and Home Care;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 216–223. ISBN 9783540342915.

26. Tran, D.N.; Phan, D.D. Human Activities Recognition in Android Smartphone Using Support Vector Machine.
In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation
(ISMS), Bangkok, Thailand, 25–27 January 2016; pp. 64–68.

27. Chen, Y.; Xue, Y. A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer.
In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon,
China, 9–12 October 2015; pp. 1488–1492.

28. Liu, G.; Liang, J.; Lan, G.; Hao, Q.; Chen, M. Convolution neutral network enhanced binary sensor
network for human activity recognition. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA,
30 October–3 November 2016; pp. 1–3.

29. Xi, R.; Li, M.; Hou, M.; Fu, M.; Qu, H.; Liu, D.; Haruna, C.R. Deep Dilation on Multimodality Time Series for
Human Activity Recognition. IEEE Access 2018, 6, 53381–53396. [CrossRef]

30. Khalifa, S.; Lan, G.; Hassan, M.; Seneviratne, A.; Das, S.K. HARKE: Human Activity Recognition from Kinetic
Energy Harvesting Data in Wearable Devices. IEEE Trans. Mob. Comput. 2018, 17, 1353–1368. [CrossRef]

31. Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V. GCHAR: An efficient Group-based Context—aware
human activity recognition on smartphone. J. Parallel Distrib. Comput. 2018, 118, 67–80. [CrossRef]

32. Heaton, J. An empirical analysis of feature engineering for predictive modeling. In Proceedings of the
SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; Volume 2016, pp. 1–6.

33. Jiang, W.; Koutsonikolas, D.; Xu, W.; Su, L.; Miao, C.; Ma, F.; Yao, S.; Wang, Y.; Yuan, Y.; Xue, H.; et al.
Towards Environment Independent Device Free Human Activity Recognition. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking (MobiCom’18), New Delhi, India,
29 October–2 November 2018; ACM Press: New York, New York, USA, 2018; Volume 87, pp. 289–304.
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