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Abstract: The active aircraft defense problem is investigated for the stochastic scenario wherein
a defending missile (or a defender) is employed to protect a target aircraft from an attacking missile
whose pursuit guidance strategy is unknown. For the purpose of identifying the guidance strategy,
the static multiple model estimator (sMME) based on the square-root cubature Kalman filter is
proposed, and each model represents a potential attacking missile guidance strategy. Furthermore,
an estimation enhancement approach is provided by using pseudo-measurement. For each model in
the sMME, the model-matched cooperative guidance laws for the target and defender are derived
by formulating the active defense problem as a constrained linear quadratic problem, where an
accurate defensive interception and the minimum evasion miss distance are both considered. The
proposed adaptive cooperative guidance laws are the result of mixing the model-matched optimal
cooperative guidance laws in the criterion of maximum a posteriori probability in the framework
of the sMME. By adopting the adaptive cooperative guidance laws, the target can facilitate the
defender’s interception with the attacking missile with less control effort. Also, simulation results
show that the proposed guidance laws increase the probability of successful target protection in the
stochastic scenario compared with other defensive guidance laws.

Keywords: adaptive cooperative guidance; multiple model adaptive estimator; square-root cubature
Kalman filter; estimation enhancement; active defense

1. Introduction

With the development of advanced pursuit guidance laws, an attacking missile can intercept
a low-maneuverability target accurately. In order to protect the target, a widely discussed topic in recent
years is the active defense countermeasure, whereby a defending missile (or a defender) is launched
from the target or a target-friendly platform to intercept the attacking missile. There are several
approaches to investigating the active defense problem, including optimal control [1–5], differential
game [6–10], sliding mode control [11], and line-of-sight guidance [12,13]. In [1–5], the authors used
optimal control theory to derive cooperative guidance laws for target and defender with the assumption
that the pursuit guidance law of an attacking missile is fixed and known. In [6–10], the authors adopted
differential game theory to analyze the dynamic conflicts and design the associated guidance laws.
In [11], a cooperative guidance law based on sliding model control was proposed, and its objective was
to make the zero-effort miss distance and zero-effort relative velocity of missile–defender engagement
both zero. In [12,13], the main idea was the use of line-of-sight guidance to ensure that the defender
remains on the line joining the target and attacking missile, and thus, the defender will block the
attacking missile.
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In all of the above work, the active aircraft defense was discussed for deterministic scenarios,
where the maneuvers and state information of each aircraft are exactly known and directly used
to calculate the guidance commands. However, in practical applications, the guidance strategy of
enemy aircraft is unknown, and the state information needs to be estimated from noisy measurements.
Therefore, it is necessary to add a preprocessed module (i.e., estimation module) to deal with the
stochastic scenarios of measurement noise and unknown guidance strategy. Also, the performance of
the closed loop of guidance and estimation needs further analysis. This is an important motivation
for the present effort to investigate the combined estimation and guidance algorithm in the
stochastic scenario.

In [14,15], multiple-model adaptive estimators were presented to identify the purist guidance
strategy of a homing missile. In [14], a multiple-model adaptive evasion strategy that enables a target’s
evasion of a homing missile was proposed, and in [15], cooperative multiple-model adaptive guidance
for the defender and target was designed. Inspired by [14,15], adaptive cooperative guidance laws for
the target and defender in the stochastic scenario are proposed; the proposed approach combines the
sMME-SRCKF and model-matched optimal cooperative guidance laws. The sMME-SRCKF refers to
the static multiple model estimator (sMME) that adopts the square-root cubature Kalman filter (SRCKF)
as the model-matched nonlinear filter, and each model of the sMME-SRCKF represents a potential
guidance law of the attacking missile. The output of the sMME-SRCKF includes a state estimate and
model probability, where the former is used to calculate the model-matched cooperative guidance
commands, and the latter is used to mix the model-matched guidance laws in the criterion of maximum
a posteriori probability. Although the adaptive guidance laws in this paper and in Reference [15] are
both designed using a similar approach, which combines an adaptive estimator and model-matched
optimal cooperative guidance laws, they are very different. First, the most important difference is that
the core of adaptive guidance laws, i.e., the model-matched cooperative guidance laws, are totally
different. In [15], the authors designed the defender’s guidance law by using the known future
maneuver of the protected target; in the case of a target using a bang–bang maneuver, the optimal
switch time of this maneuver was solved to minimize the control effort of the defender. However, in
this study, without knowing the information of the future target, the optimal cooperative guidance laws
for the defender and target were derived together by solving a constrained linear quadratic problem.
Second, the criterion to mix model-matched cooperative guidance laws in this paper is maximum
a posteriori probability criterion. Compared with the use of the minimum mean-square-error criterion
in [15], the criterion used in this study can reduce the computational burden. Third, the model-matched
filter described in this paper is SRCKF, which has two advantages (see Sections 3.1 and 5.3.1) compared
with the extended Kalman filter (EKF) used as a model-matched filter in [15].

The main contribution of this work includes the following aspects. (i) The adaptive cooperative
guidance laws can increase the probability of successful target protection in the stochastic active
defense scenario, since it is designed to apply to the entire duration of active defense engagement
rather than solely the defender–missile engagement, as in [1–4,15]. Thus, an additional chance for
the target to evade the attacking missile is presented if the defender fails to intercept the attacking
missile because it is negatively affected by stochastic factors; this issue demonstrated in Section 5.2. (ii)
The model-matched cooperative guidance laws are designed to consider the two sufficient conditions
of successful active defense, i.e., small defender–missile miss distance and minimum missile–target
evasion distance. In [5], the authors also considered both of these conditions, but the two-dimensional
generalized dead-zone functions require computation to generate guidance commands, which seems a
little complex. On the other hand, the cooperative guidance laws in this paper are easily computed.
(iii) Estimation enhancement is analyzed by using pseudo-measurement, and a guideline is provided
for adjusting the location geometry of active defense to acquire good-quality estimation and then to
improve further the performance of adaptive cooperative guidance laws.

This paper is organized as follows. In Section 2, the kinematic equations and estimation model of
active aircraft defense are introduced. In Section 3, the sMME-SRCKF is proposed, and the estimation



Sensors 2019, 19, 979 3 of 26

enhancement analysis is presented. The adaptive cooperative guidance laws for defender and target
are derived in Section 4. The performance of the proposed guidance laws and filtering approach is
analyzed in Section 5, and some remarkable conclusions are drawn in Section 6.

2. Preliminary

2.1. Kinematic Equations of Active Defense

The active aircraft defense contains three aircraft: an attacking missile denoted as M, an evading
target denoted as T, and a defender denoted as D. The attacking missile uses an interception guidance
law to pursue the evading target. The defender, which is launched from the target or a target-friendly
platform, tries to kill the attacking missile before it intercepts the target. The active aircraft defense can
be divided into two engagements, which are defender–missile (D–M) engagement and missile–target
(M–T) engagement. The geometry of active aircraft defense is shown in Figure 1. The X-axis is selected
as the initial line-of-sight (LOS) of M–T engagement, and the Y-axis is normal to the X-axis. The
subscripts T, D, and M represent the target, defender, and attacking missile, respectively. (xi, yi), Vi,
ai, and γi, where i = T, D, M, represent the position, velocity, acceleration, and flight-path angle of
each aircraft, and ai is normal to its velocity. aiN is the acceleration component along the Y-axis, and
it satisfies aiN = ai cos γi, where i = T, D, M. λMT and λMD are the LOS angles of M–T and D–M
engagements; rMT and rMD are the relative distances of M–T and D–M; and yMT and yMD are the
relative displacements along the Y-axis.
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Figure 1. The geometry of active aircraft defense.

In this paper, there are three assumptions: (i) The M–T and D–M engagements occur around the
triangle-collision courses, so both types of engagements can be linearized around the initial LOS of
M–T (or the X-axis). This can be realized at the endgame of engagement, since most of the guidance
error has been removed after the midcourse guidance. (ii) The set of the attacking missile’s guidance
laws contains proportional navigation (PN), augmented proportional navigation (APN), and optimal
guidance law (OGL) (shown in Equations (3) and (4)); the attacking missile uses one of them to pursue
the target, and it is unknown to the defender–target team. (iii) The aircraft’s dynamics is represented
by arbitrary-order linear equations [1]:

q̇qqi = AAAiqqqi + bbbiuiN , i = T, D, M
aiN = CCCiqqqi + diuiN , i = T, D, M

(1)
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where qqqi represents the internal state vector of the aircraft with the dimension dim(qqqi) = ni for
i=T, D, M; and uiN is the control command component along the Y-axis and satisfies uiN=ui cos γi,
where ui is the total control command perpendicular to the velocity. If an aircraft has first-order
dynamics with time constant τi, then we have AAAi = −1/τi, bbbi = 1/τi, CCCi = 1, and di = 0. If an aircraft
has ideal dynamics, then we have AAAi = 0, bbbi = 0, CCCi = 0, and di = 1. This means that the acceleration
is equal to the guidance command, which can be obtained immediately without delay. For example, if
an aircraft uses the thrust vector control engine, then the acceleration dynamics is nearly ideal.

On the basis of the linearization assumption, the D–M interception time t fMD and M–T interception
time t fMT are approximately calculated as

t fMD '
rMD0

VM0 cos(γM0 + λMD0) + VD0 cos(γD0 − λMD0)

t fMT '
rMT0

VM0 cos(γM0 − λMT0) + VT0 cos(γT0 + λMT0)

(2)

where the subscript 0 indicates the initial instant.
According to [1], under the linearization assumption, the traditional attacking missile’s guidance

laws can be written in the general form of Equation (3), which is a function of the M–T engagement’s
relative variables and possibly the control of the target.

uMN = [k1, k2, kkkM, kkkT ][yMT , ẏMT , qqqT
M, qqqT

T ]
T + kuT uTN (3)

The pursuit guidance laws of PN, APN, and OGL have the following forms:

PN : k1 =
NPN

t2
goMT

; k2 =
NPN

tgoMT

; kkkM = [000]1×nM ; kkkT = [000]1×nT ; kuT = 0.

APN : k1 =
NAPN

t2
goMT

; k2 =
NAPN

tgoMT

; kkkM = [000]1×nM ; kkkT =
NAPNCCCT

2
; kuT =

NAPNdddT
2

.

OGL : k1 =
NOGL

t2
goMT

; k2 =
NOGL

tgoMT

; kkkM =
−NOGLψ(θMT)CCCM

θ2
MT

; kkkT =
NOGLCCCT

2
; kuT =

NOGLdddT
2

.

(4)

where Nj, with j = {PN, APN, OGL} as the navigation gains; tgoMT is the time-to-go of M–T
engagement, i.e., tgoMT=t fMT − t; and ψ(θMT) = e−θMT + θMT − 1, with θMT = tgoMT

/
τM. NPN and

NAPN are constants between 3 and 5, and NOGL satisfies

NOGL=
6θ2

MTψ(θMT)

3+6θMT−6θ2
MT+2θ3

MT−3e−2θMT−12θMTe−θMT
(5)

Defining the state vector of active defense as

XXX = [yMT , ẏMT , qqqT
M, qqqT

T , yMD, ẏMD, qqqT
D]

T (6)

and using the attacking missile’s guidance law in Equation (3), the kinematic equation of active defense
is

Ẋ̇ẊX = AAA(t)XXX + BBBT(t)uTN + BBBD(t)uDN (7)

where

AAA(t) =

[
AAA11(t) AAA12(t)
AAA21(t) AAA22(t)

]
(8)
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AAA11(t)=


0 1 [000]1×nM [000]1×nT

−dMk1 −dMk2 −CCCM−dMkkkM CCCT−dMkkkT
bbbMk1 bbbMk2 AAAM + bbbMkkkM bbbMkkkT
[000]nT×1 [000]nT×1 [000]nT×nM AAAT

 , AAA12(t) = [000](nM+nT+2)×(nD+2)

AAA21(t) =

 0 0 [000]1×nM [000]1×nT

dMk1 dMk2 CCCM+dMkkkM dMkkkT
[000]nD×1 [000]nD×1 [000]nD×nM [000]nD×nT

 , AAA22(t) =

 0 1 [000]1×nD

0 0 −CCCD
[000]nD×1 [000]nD×1 AAAD


(9)

and

BBBT(t) =



0
dT − dMkuT

bbbMkuT

bbbT
0

dMkuT

[000]nD×1


, BBBD(t) =

[000](nM+nT+3)×1
−dD
bbbD

 (10)

2.2. Estimation Model

According to Figure 1, the kinematic equation of the attacking missile is described as

ẋM = VM cos γM

ẏM = VM sin γM

γ̇M = CCCMqqqM+dMuMN
VM cos γM

q̇qqM = AAAMqqqM + bbbMuMN

V̇M = 0

(11)

Defining the state vector of the attacking missile as XXXM = [xM, yM, γM, qqqT
M, VM]T , Equation (11)

can be rewritten as
ẊXXM = f (XXXM, uMN) (12)

Assuming the defender and target track the attacking missile with infrared radar, the measurement
model of active defense during D–M engagement (i.e., t ∈ [0, t fMD ]) is

zzz(k) =

[
zMT(k)
zMD(k)

]
= h(XXXM(k)) + υυυ(k) =

arctan
(

yT−yM
xT−xM

)
arctan

(
yM−yD
xD−yM

)+

[
υMT(k)
υMD(k)

]
(13)

where zzz(k) = [zMT(k), zMD(k)]
T represents the measurements of M–T and D–M LOS angles, and

υυυ(k)= [υMT(k), υMD(k)]
T is a mutually independent zero-mean white Gaussian noise. The covariance

matrix of measurement noise is

RRR(k) =

[
σ2

MT(k) 0
0 σ2

MD(k)

]
(14)

where σ2
MT(k) and σ2

MD(k) are the variances of υMT(k) and υMD(k), respectively.
After the missile–defender engagement terminates (i.e., t ∈ (t fMD , t fMT ]), only the target uses its

sensor to track the attacking missile, and then the measurement model becomes

zzz(k) = zMT(k) = arctan
(

yT − yM
xT − xM

)
+ υMT(k) (15)
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Thus, the estimation model is built by using the process model of Equation (11) and the
measurement model of Equation (13) or (15), and then the nonlinear Kalman filter can be used
to estimate the state of the attacking missile.

3. Guidance Identification and State Estimation

3.1. Static Multiple Model Estimator

In this subsection, a method called the sMME-SRCKF is proposed to deal with the scenario of an
unknown guidance strategy of an attacking missile. The sMME, also known as the multiple-model
adaptive estimator [16], is used to identify the guidance law; meanwhile, the square-root cubature
Kalman filter (SRCKF) is employed as the model-matched filter. The SRCKF is a square-root version of
the cubature Kalman filter, which is proved as a good nonlinear Kalman filter having good numerical
stability, low computational complexity, and satisfactory filtering accuracy as compared with other
methods [17–19]. Because of its good performance, the improved estimation algorithms based on the
cubature Kalman filter are widely used in target tracking and navigation systems [20–22]. Thus, the
SRCKF is adopted as the model-matched filter. The sMME addresses a set of the potential models of
the system, and then the model-matched SRCKF is set up to yield model-conditioned state estimate
and error covariance. Assuming that there are N potential attacking missile guidance laws, the
guidance commands are defined as uj

MN , with j = 1, 2, · · · , N. Then, by substituting uMN = uj
MN into

Equation (11), N estimation models are obtained on the basis of the process model shown in Equation
(11) and the measurement model shown in Equation (13) or (15). On the basis of these estimation
models, the algorithm of the sMME-SRCKF is described in the following three steps.

Step 1: Run N parallel SRCKFs to yield each model-conditioned state estimate and error covariance,
namely, X̂̂X̂X j

M(k|k) and PPPj(k|k) (see Equations (A11) and (A15)). The original work of the SRCKF is
introduced in [17]. However, the filtering problem in this section is a little different from the one in [17],
since the process equation (shown in Equation (11)) is a differential equation rather than a difference
equation, as in [17]. Thus, the evaluation of the propagated cubature points in the time update needs
revising. In other words, according to Equation (11), we use the fourth-order Runge–Kutta method to
calculate the integration to obtain the propagated cubature points. The details of using the SRCKF to
estimate the attacking missile’s state information are given in Appendix A.

Step 2: Model probability update. The jth model probability µj(k) is obtained according to the
Bayes’ formula, which is

µj(k) =
Λj(k)µj(k− 1)

∑N
i=1 Λi(k)µi(k− 1)

(16)

where Λj(k) is the jth model-conditioned likelihood function, computed as

Λj(k) =
exp[−0.5(z̃̃z̃zj(k|k))T

(PPPj
zz(k|k− 1))−1(z̃̃z̃zj(k|k))]√

(2π)n
∣∣∣PPPj

zz(k|k− 1)
∣∣∣ (17)

where z̃zzj(k|k) and PPPj
zz(k|k− 1) are the jth model-conditioned innovation and innovation covariance

(see Equation (A10)).
Step 3: Update the state estimate (i.e., X̂̂X̂XM(k|k)) and error covariance (i.e., PPP(k|k)) by combining

the model-conditioned state estimate and error covariance, as shown in Equations (18) and (19).

X̂̂X̂XM(k|k) =
N

∑
j=1

µj(k)X̂̂X̂X j
M(k|k) (18)

PPP(k|k) =
N

∑
j=1

µj(k)
{

PPPj(k|k) +
[
X̂̂X̂X j

M(k|k)− X̂̂X̂XM(k|k)
] [

X̂̂X̂X j
M(k|k)− X̂̂X̂XM(k|k)

]T
}

(19)
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According to the above steps of the sMME-SRCKF, the schematic structure of the sMME-SRCKF
is shown in Figure 2, where SRCKF1 to SRCKF N represent N parallel Kalman filters.

SRCKF1

1ˆ ( 1 | 1)
M
k k- -X

1( 1 | 1)k k- -P

SRCKF N

ˆ ( 1 | 1)N

M
k k- -X ( 1| 1)N

k k- -P

Model Probability Update

( )kz ( )kz

1( )kL ( )N
kL1( 1)km - ( 1)N

km -

1( ), , ( )N
k km m ( )N ( )( )m mm m, ,, ,, ,, ,, ,

State Estimate and covariance combination

1ˆ ( | )
M
k kX 1( | )k kP ( | )N

k kP
ˆ ( | )N

M
k kX

ˆ ( | )
M
k kX ( | )k kP

Figure 2. The structure of adaptive cooperative guidance laws.

There are two reasons for adopting the SRCKF to estimate the state of the attacking missile.
First, the SRCKF is a more accurate nonlinear filter than the traditional extended Kalman filter (EKF)
and unscented Kalman filter (UKF) [17–19]. Second, by using the EKF in [15], the authors needed

to compute the complex Jacobin matrix of Equation (12), defined as FFFj
x =

∂ f (XXXM ,uj
MN)

∂XXXM
, for the step

of state prediction in each model. However, the derivation of the Jacobin matrix is complex, since
uj

MN is a function of XXXM. Additionally, the authors needed to compute the transition matrix on

the basis of FFFj
x, i.e., ΦΦΦM(k, k − 1) = eFFFj

xT , and it is a little hard to calculate. However, the SRCKF
adopted here is derivative-free for undesirable Jacobians and the transition matrix, and we only need
to compute the cubature points in the state prediction (see Equations (A1) and (A2)), which is easier to
calculate. Comparisons between the performance of SRCKF and EKF and between the performance of
sMME-SRCKF and sMME-EKF are presented in Section 5.3.1.

3.2. Estimation Enhancement Analysis

In this subsection, the method of enhancing the estimation performance is discussed. The
estimation module is processed before the guidance module, and the state estimate is used for
computing the adaptive guidance laws (see Section 4.2). Thus, the estimation results have a great
impact on the performance of adaptive cooperative guidance. For example, if the sMME-SRCKF can
identify the exact guidance strategy of the attacking missile as soon as possible, then the command
error of adaptive cooperative guidance will be reduced. Otherwise, a part of the target and defender’s
control effort will be wasted as a result of the uncertain strategy of the attacking missile. Also, the
more accurate the estimation, the larger the probability that the defender–target team is successful.
For this purpose, we analyze the influence of the active defense location geometry on the estimation
performance and then use it as a guideline to improve the estimation performance.

The analysis of estimation enhancement is based on the concept of pseudo-measurement described
in [23]. According to Figure 1, the position of the attacking missile can be calculated by using the noisy
measurements as

_
x M = xD −

rDT cos(zMT − θDT) cos(zMD)

sin(zMT + zMD)
,

_
y M = yD +

rDT cos(zMT − θDT) sin(zMD)

sin(zMT + zMD)
(20)
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where

rDT =

√
(xD − xT)

2 + (yD − yT)
2 , θDT = arctan

(
xD − xT
yT − yD

)
(21)

According to the measurement model of Equation (13), we have zMT = λMT + υMT and zMD =

λMD + υMD. Since υMT and υMD are small, Equation (21) can be linearized around λMT and λMD as
_
x M ' xM +

rDT cos(λMD + θDT) cos(λMD)

sin2(λMT + λMD)
υMT +

rDT cos(λMT − θDT) cos(λMT)

sin2(λMT + λMD)
υMD

_
y M ' yM −

rDT cos(λMD + θDT) sin(λMD)

sin2(λMT + λMD)
υMT +

rDT cos(λMT − θDT) sin(λMT)

sin2(λMT + λMD)
υMD

(22)

where xM and yM are the true values of the position and are defined as

xM = xD −
rDT cos(λMT − θDT) cos(λMD)

sin(λMT + λMD)
, yM = yD +

rDT cos(λMT − θDT) sin(λMD)

sin(λMT + λMD)
(23)

According to Equation (22),
_
x M and

_
y M can be viewed as pseudo-measurements at time step k,

which has a non-stationary normal distribution, defined by

_x M ∼ N(xM, σ2
xM

) , _y M ∼ N(yM, σ2
yM

) (24)

where
σ2

xM
=

r2
DTcos2(λMD + θDT)cos2(λMD)

sin4(λMT + λMD)
σ2

MT +
r2

DTcos2(λMT − θDT) cos2(λMT)

sin4(λMT + λMD)
σ2

MD

σ2
yM

=
r2

DTcos2(λMD + θDT)sin2(λMD)

sin4(λMT + λMD)
σ2

MT +
r2

DTcos2(λMT − θDT)sin2(λMT)

sin4(λMT + λMD)
σ2

MD

(25)

According to Equation (25), if λMT + λMD approaches zero, (i.e., the difference between the M–T
LOS angle and the D–M LOS angle is small), then the variances of pseudo-measurement (i.e., σ2

xM
and

σ2
yM

) will increase significantly, and increased variance causes a deterioration in estimation accuracy,
especially in the estimation of position. Thus, the estimation performance depends on the location
geometry of the defender and target. In order to achieve a good-quality estimation, the difference
between the M–T LOS angle and the D–M LOS angle should remain far from zero, which means that
the trajectories of the defender and target should be separated clearly with respect to the attacking
missile. This conclusion is used as a guideline for choosing an appropriate initial geometry of active
defense to improve estimation performance, which is shown in Section 5.3.2.

4. Adaptive Cooperative Guidance Laws

4.1. Model-Matched Optimal Cooperative Guidance Laws

4.1.1. Optimization Problem Formulation

For the identified guidance law of the attacking missile, the linearized kinematic equations
are shown in Equations (7)–(10); on the basis of those, the optimal defensive guidance problem is
formulated. The success of the defender–target team is defined as one of the following two sufficient
conditions: (i) the D–M miss distance is small, and (ii) the M–T miss distance is larger than the lethal
radius of the attacking missile. Here, both conditions are considered in designing cooperative guidance
laws to achieve the largest probability of successful target protection, since the defender may fail to
intercept the attacking missile due to its poor dynamics, acceleration saturation, or the negative effect
of stochastic factors. For this purpose, a further target evasion maneuver is considered to increase the
probability of successful active defense.
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The objective function is defined as

J =
1
2

αy2
MD(t fMD ) +

1
2

∫ t fMD

0
u2

DN(τ)dτ +
β

2

∫ t fMT

0
u2

TN(τ)dτ (26)

where
∣∣∣yMD(t fMD )

∣∣∣ is the D–M miss distance, and α and β are positive penalty weights. The terminal
constraint is defined as ∣∣∣yMT(t fMT )

∣∣∣ ≥ ρ (27)

where
∣∣∣yMT(t fMT )

∣∣∣ is the M–T miss distance, and ρ is the expected evasion miss distance, which
is larger than the lethal radius of the attacking missile. The guidance optimization problem is the
minimization of the cost function in Equation (26) with the terminal constraint of Equation (27) based
on the kinematic equation in Equation (7).

The M–T and D–M zero-effort miss distances, i.e., |ZMD(t)| and |ZMT(t)|, are introduced to
reduce the optimization problem’s order; they are defined as

ZMT(t) = DDDMTΦΦΦ(t fMT , t)XXX(t) , t ∈ [0, t fMT ] ; ZMD(t) =

{
DDDMDΦΦΦ(t fMD , t)XXX(t) , t ∈ [0, t fMD ]

ZMD(t fMD ), t ∈ (t fMD , t fMT ]
(28)

where DDDMD =[0, 0, [000]1×nM , [000]1×nT , 1, 0, [000]1×nD ], DDDMT =[1, 0, [000]1×nM , [000]1×nT , 0, 0, [000]1×nD ] and ΦΦΦ are
the transition matrices associated with Equation (7). The physical meaning of |ZMD(t)| and |ZMT(t)|
is the miss distance that the defender and target would achieve under the following condition:
neither the defender nor the target would apply any control commands, while the attacking missile
would still employ the guidance law from the current time instant to the final interception time.
From Equation (28), we have ZMD(tfMD )= yMD(tfMD ) and ZMT(tfMT )= yMT(tfMT ). Since the defender’s

guidance command only works in the D–M engagement, then uDN(t) ≡ 0 for t ∈
(

t fMD , t fMT

]
is

obtained. Therefore, the cost function of Equation (26) can be rewritten as

J =
1
2

αZ2
MD(t fMT ) +

1
2

∫ t fMT

0
u2

DN(τ) + βu2
TN(τ)dτ (29)

The derivatives of zero-effort miss distances with respect to time are

ŻMT(t) = fTMT (t)uTN(t) , ŻMD(t) = fTMD (t)uTN(t) + fDMD (t)uDN(t) (30)

where

fTMD (t) = DDDMDΦΦΦetd(t fMT , t)BBBT , fDMD (t) = DDDMDΦΦΦetd(t fMT , t)BBBD , fTMT (t) = DDDMTΦΦΦ(t fMT , t)BBBT
(31)

and ΦΦΦetd(t fMT , t) =

{
ΦΦΦ(t fMD , t) , t ≤ t fMD

000 , t > t fMD

. The derivation of Equations (30) and (31) is shown in

Appendix B.
On the basis of the dynamic model of Equation (30), the optimal guidance problem is

order-reduced by using the cost function of Equation (29) with the terminal constraint as∣∣∣ZMT(t fMT )
∣∣∣ ≥ ρ (32)

4.1.2. Derivation of Optimal Cooperative Guidance Laws

Before solving the above optimal guidance problem, the following auxiliary optimization problem
is considered: the terminal inequality constraint (i.e., Equation (32)) is replaced with the equality
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constraint of fixed M–T missile distance, i.e., ZMT(t fMT ) = y f , where y f is an arbitrary real number

satisfying
∣∣∣y f

∣∣∣ ≥ ρ. The Hamilton of the auxiliary problem is

H =
1
2

u2
DN +

β

2
u2

TN + λ1 fTMT uTN + λ2 fTMD uTN + λ2 fDMD uDN (33)

By applying ∂H
∂uTN

= 0 and ∂H
∂uDN

= 0 [24], the optimal control commands are obtained as

uo
TN(t) =

−λ1 fTMT (t)− λ2 fTMD (t)
β

, uo
DN(t) = −λ2 fDMD (t) (34)

Using adjoint equation λ̇1(t) = − ∂H
∂ZMT(t)

, λ̇2(t) = − ∂H
∂ZMD(t) and transversal condition[

∂(0.5αZ2
MD(t))

∂ZMD(t) − λ2(t)
]
|t=t fMT

=0, we have

λ1(t) = constant, λ2(t) = αZMD(t fMT ) (35)

Integrating Equation (30), the following equations are obtained:
ZMT(t fMT ) = ZMT(t) +

∫ t fMT

t
fTMT (τ)u

o
TN(τ)dτ

ZMD(t fMT ) = ZMD(t) +
∫ t fMT

t
fTMD (τ)u

o
TN(τ) + fDMD (τ)u

o
DN(τ)dτ

(36)

Substituting Equations (34) and (35) into Equation (36), λ1(t) and λ2(t) are determined as

λ1(t) =
y f−ZMT(t)

F1
+ α F2

F1

ZMD(t)F1+ZMT(t)F2−y f F2

F1−αF1F3+αF2
2

, λ2(t) = α
ZMD(t)F1+ZMT(t)F2−y f F2

F1−αF1F3+αF2
2

(37)

where

F1 =
∫ t fMT

t −
f 2
TMT

(τ)

β dτ , F2 =
∫ t fMT

t
fTMT (τ) fTMD (τ)

β dτ , F3 =
∫ t fMT

t −
f 2
TMD

(τ)

β − f 2
DMD

(τ)dτ (38)

Thus, the optimal control commands of the auxiliary problem are determined by substituting
Equations (37) and (38) into Equation (34).

Then, the optimal guidance problem can be solved by looking for the optimal value of y f in∣∣∣y f

∣∣∣ ≥ ρ to minimize the cost function. Substituting Equations (34) and (37) into Equation (29), we can
rewrite the cost function as

J =
(αF1F3 − F1)

L1F1
y2

f +
−2L2

L1F1
y f +

L2
3F1F3 − L2

2 + 2L2L3F2 + (L2
3F1/α2)

L2
1F1

(39)

where

L1 = F1 − αF1F3 + αF2
2 , L2 = (αF1F3 − F1)ZMT(t) + αF1F2ZMD(t) , L3 = αF1ZMD(t) + αF2ZMT(t) (40)

According to Equation (38), we have F1 < 0 and F3 < 0. According to Equation (40), we have
L1 < 0, which is proved in Appendix C. Therefore, (αF1F3−F1)

L1F1
> 0 is obtained, and the optimal value

y∗f is solved as
y∗f = z∗MT ·ξ(|z∗MT |−ρ)+ρ·sign(z∗MT)·ξ(ρ− |z∗MT |) (41)

where

z∗MT = ZMT(t) +
αF1F2ZMD(t)

αF1F3 − F1
(42)
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and

ξ(τ) =


1 , τ > 0

1/2 , τ = 0

0 , τ < 0

, sign(τ) =

{
1 , τ ≥ 0

−1 , τ < 0
(43)

Replacing y f with y∗f in Equation (37) and then substituting it into Equation (34), the optimal
cooperative guidance laws for the defender and the target are

u∗TN(t) = −
(α fTMT (t)F1F2+α fTMD (t)F2

1 )ZMD(t)
βF1(F1−αF1F3+αF2

2 )
+

( fTMT (t)F1−α fTMT (t)F1F3−α fTMD (t)F1F2)(ZMT(t)−y∗f )

βF1(F1−αF1F3+αF2
2 )

u∗DN(t) =
−α fDMD (t)(ZMD(t)F1+ZMT(t)F2−y∗f F2)

F1−αF1F3+αF2
2

(44)

Here, a special case is considered, which is ρ = 0. By substituting ρ = 0 into Equation (41), the
following equation is obtained as

y∗f = ZMT(t) +
αF1F2ZMD(t)

αF1F3 − F1
(45)

Then, substituting Equation (45) into Equation (44), the optimal cooperative guidance laws become

u∗TN(t) =
α fTMD (t)ZMD(t)

β(αF3 − 1)
, u∗DN(t) =

α fDMD (t)ZMD(t)
αF3 − 1

(46)

Remark 1. For the D–M engagement, the cooperative guidance laws in the special case of ρ = 0
(i.e., Equation (46)) are equal to the cooperative guidance laws presented in [2] (see (53)∼(54) in [2]). This is
because if ρ = 0, the terminal constraint of Equation (32) is removed, and the optimization problem becomes the
minimization of the cost function of Equation (26) on the basis of Kinematic Equations (7)–(10); this problem is
identical to the one presented in [2]. Therefore, the cooperative guidance laws in this special case can be regarded
as the guidance laws that consider only one sufficient condition of successful active defense, i.e., small D–M miss
distance.

4.1.3. Target Evasion Guidance after Termination of Missile–Defender Engagement

After D–M engagement terminates, the active defensive engagement becomes M–T
pursuit–evasion engagement. In this engagement, the flight time satisfies t fMD < t ≤ t fMT . According
to Equations (31) and (38), we have fTMD (t) = 0, fDMD (t) = 0, F2 = 0 and F3 = 0. Then, substituting
them into Equation (44), the guidance command of the target can be written as

u∗TN =


fTMT [ZMT(t)−ρ·sign(ZMT(t))]

βF1
, |ZMT(t)| < ρ

0, |ZMT(t)| ≥ ρ
(47)

The guidance law in Equation (47) has the same form of the optimal evasion guidance law
with a specific miss distance in [25] (see (20) in [25]). This is because after the D–M terminates, the
optimization problem becomes one of minimizing the control effort of the target with the M–T miss
distance constraint, and this is the same as the minimum-effort evasion guidance problem in [25]. If
the attacking missile or pursuer uses the same pursuit guidance law shown in Equation (3), then both
of the evasion guidance laws are same.

4.2. Adaptive Cooperative Guidance Laws

In Section 4.1, the model-matched optimal cooperative guidance laws are derived with
perfect information. However, in the stochastic scenario, perfect information is unavailable.
Thus, the estimated information of the filter is used to compute the guidance laws. In the
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sMME-SRCKF, the model-conditioned state estimation of the jth model can be obtained as X̂̂X̂X j
M =[

x̂j
M, ŷj

M, γ̂
j
M, (q̂̂q̂qj

M)T , V̂ j
M

]T
, and it is used to calculate the estimated state of active defense as

X̂̂X̂X
j
= [ŷj

MT , ˆ̇yj
MT , (q̂̂q̂qj

M)T , qqqT
T , ŷj

MD, ˆ̇yj
MD, qqqT

D]
T (48)

where

ŷj
MT = yT − ŷj

M , ˆ̇yj
MT = VT sin γT − V̂ j

M sin γ̂
j
M , ŷj

MD = ŷj
M − yD , ˆ̇yj

MD = V̂ j
M sin γ̂

j
M −VD sin γD (49)

Then, the model-conditioned estimation of zero-effort miss distances is

Ẑj
MT(t) = DDDMTΦΦΦ(t fMT , t)X̂̂X̂X

j
(t) , t ∈ [0, t fMT ] ; Ẑj

MD(t) =

{
DDDMDΦΦΦ(t fMD , t)X̂̂X̂X

j
(t) , t ∈ [0, t fMD ]

Ẑj
MD(t fMD ) , t ∈ (t fMD , t fMT ]

(50)

The jth model-matched cooperative guidance laws (i.e., u∗j
TN(k) and u∗j

DN(k)) are obtained by

replacing ZMD(t) and ZMT(t) with Ẑj
MD(t) and Ẑj

MT(t) in Equation (44).
The adaptive cooperative guidance laws are derived by mixing the model-matched optimal

guidance laws in the criterion of maximum a posteriori probability as

uA
TN(k) = u∗j

TN(k) , uA
DN(k) = u∗j

DN(k) , j = arg max(µi(k))
i∈{1,2,··· ,N}

(51)

Equation (51) shows that the model-matched cooperative guidance commands with the largest
model probability are chosen as the adaptive cooperative guidance commands. If there are multiple
models that have the same maximum probability, then we choose an arbitrary one to generate the
adaptive cooperative guidance laws. For example, the simple way is to always choose the smallest
value of j when there are multiple values.

In [15], the authors used the minimum mean-square-error criterion to generate the adaptive
guidance commands, which are formulated as

uA
TN(k) =

N

∑
j=1

µj(k)u∗j
TN(k) , uA

DN =
N

∑
j=1

µj(k)u∗j
DN(k) (52)

where the adaptive guidance commands are weighted sums of all model-matched guidance commands.
According to Equation (52), at each guidance time instant, each model-matched cooperative guidance
law needs calculating, and the calculation burden is a little heavy. The advantage of using the criterion
of maximum a posteriori probability is that only one model-matched optimal cooperative guidance
law needs computing at each guidance time instant. Thus, this will reduce the computational burden.

The structure of adaptive cooperative guidance laws in the framework of the sMME-SRCKF is
shown in Figure 3, where the output of the sMME-SRCKF (i.e., model-conditioned state estimation
X̂̂X̂X j

M(k|k) and model probability µj(k)) is used to generate the adaptive guidance law. In Figure 3,
guidance models 1–N represent N models based on Kinematic Equations (7)–(10) with the associated
guidance law of the attacking missile. On the basis of the guidance model, the matched cooperative
guidance laws (i.e., u∗j

TN(k) and u∗j
DN(k)) are obtained by using Equation (44). The adaptive cooperative

guidance laws are obtained by combining the model-matched cooperative guidance laws in the
criterion of maximum a posteriori probability.
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Figure 3. The structure of adaptive cooperative guidance laws.

5. Simulations

In this section, the performance of the adaptive cooperative guidance laws and estimation
approach is analyzed. The simulation conditions are as follows. The initial positions of three aircraft
are (xM0, yM0) = (0, 0)m, (xT0, yT0) = (8000, 0)m, and (xD0, yD0) = (8000, 0)m; and the velocities
are VM = 700 m/s, VT = 350 m/s, and VD = 450 m/s. It is assumed that the three aircraft have
first-order dynamics with time constants of τM = 0.4 s, τD = 0.4 s, and τT = 0.1 s. The accelerations of
the attacking missile, defender, and target are limited to 150 m/s2, 120 m/s2, and 80 m/s2, respectively.
The penalty weights in the cost function are set as α = 106 and β = 1. The control efforts of the three

aircraft are defined as CEi =
∫ t fMT

0 |uiN(τ)|dτ, with i = M, T, D. It is assumed that the maximum miss
distance for successful interception is 5 m, so the defender or attacking missile will fail to intercept
their targets beyond this range. Thus, the condition for successful active defense is rMD(t fMD )<5 m or
rMT(t fMT )>5 m.

5.1. Optimal Cooperative Guidance with Perfect Information

In this subsection, the performance of model-matched optimal cooperative guidance with perfect
information is tested. The attacking missile uses the proportional navigation (PN) guidance law, and
NPN = 3. First, the performance of optimal cooperative guidance laws with different initial flight-path
angles is discussed. The initial flight-path angle of the attacking missile is set as γM0 = 20◦, and the
initial flight-path angles of the defender and target are obtained from the sets {γD0} = {25◦, 30◦} and
{γT0} = {20◦, 25◦, 30◦}, respectively. The minimum expected evasion distance is set as ρ = 10 m. In
the simulation, although the defender intercepts the attacking missile at the end of D–M engagement,
we continue simulating the M–T engagement until it is completed in order to see the results of M–T
engagement. The simulation results are shown in Table 1 and Figures 4 and 5. In Table 1, we see that the
D–M miss distances all approach zero, which demonstrates that the defender intercepts the attacking
missile accurately. The M–T miss distance is almost equal to or a little larger than 10 m, which illustrates
that the target achieves the expected minimum evasion distance. The reason that all of the M–T miss
distances are close to the expected minimum evasion distance (i.e., 10 m) is as follows. After D–M
engagement terminates, according to the evasion guidance law shown in Equation (47), if ZMT(t) ≥ ρ,
then the maneuver of the target becomes zero, which makes ZMT(t) decrease; after ZMT(t) < ρ, then
the defender will execute an evasion maneuver to increase ZMT(t) until ZMT(t) ≥ ρ again. Thus,
ZMT(t) oscillates around ρ within a very small range, and the resultant M–T miss distances are close
to ρ. Figures 4 and 5 give the trajectories and guidance commands of the three aircraft in the case of
[γM0, γT0, γD0] = [20◦, 25◦, 30◦]. In Figure 4, the solid lines represent the trajectories during the D–M
engagement, and the dotted lines represent the trajectories after the D–M engagement. In Figure 4, the
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defender intercepts the attacking missile at the end of D–M engagement, and meanwhile, the target
evades the attacking missile at the end of M–T engagement. In Figure 5, the guidance commands refer
to uiN (i = T, D, M). The defender’s guidance command terminates at about 7.41 s because the D–M
engagement terminates at that time. In the first 5.5 s, the guidance command of the target is small, and
then the pursuit guidance command of the attacking missile is also small. As a result, the defender
uses a small guidance command to pursue the attacking missile. After that, the target employs a larger
evasion maneuver; then, the guidance command of the attacking missile increases, and this makes the
defender use an aggressive maneuver to intercept the attacking missile.

Table 1. Simulation results with different flight-path angles. D—defender; M—missile; T—target.

[γM0, γT0, γD0] D–M Miss Distance (m) M–T Miss Distance (m)

[20◦, 20◦, 25◦] 0.0022 10.3023
[20◦, 20◦, 30◦] 0.0027 11.5965
[20◦, 25◦, 25◦] 0.006 10.7112
[20◦, 25◦, 30◦] 0.0017 11.1289
[20◦, 30◦, 25◦] 0.0014 11.0299
[20◦, 30◦, 30◦] 0.0164 10.4282
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Figure 4. The trajectories of three aircraft in the case of [γM0, γT0, γD0] = [20◦, 25◦, 30◦].
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Figure 5. The guidance commands of three aircraft in the case of [γM0, γT0, γD0] = [20◦, 25◦, 30◦].
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Next, the performance of optimal cooperative guidance laws with different minimum evasion
distances is presented. The minimum evasion distances are set as {ρ} = {0, 10, 15, 20}, and the
initial flight-path angles are [γM0, γT0, γD0] = [20◦, 25◦, 30◦]. The simulation results are shown in
Table 2 and Figure 6. In Table 2, rMD(t fMD ) and rMT(t fMT ) represent the D–M and M–T miss distances.
From Table 2, we see that the larger the value of ρ, the more control effort each aircraft needs. Also,
except for the case of ρ = 20 m, for which the D–M miss distance is a little large, all the other D–M miss
distances are almost equal to zero. In the cases of ρ = 15 m and ρ = 20 m, the M–T miss distances are
smaller than the expected minimum evasion miss distances. These results can be explained by Figure 6.
In Figure 6, it is seen that the larger the value of ρ, the more aggressive the evasion maneuver used
by the target uses, and as a consequence, the attacking missile and defender need more control effort
to pursue their targets. Also, it is seen that the defender suffers command saturation for the longest
time period in the case of ρ = 20 m, and that leads to a somewhat large D–M miss distance. Also, the
target suffers relatively severe guidance command saturation in the case of ρ = 15 m and ρ = 20 m,
and as a result, the target fails to reach the expected evasion miss distance. According to Table 2 and
Figure 6, guidance command saturation is an important factor that influences the results of cooperative
guidance laws.
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Figure 6. Guidance commands of three aircraft with different ρ.

Table 2. Simulation results in different cases.

Simulation Case rMD(t fMD) (m) rMT(t fMT ) (m) CEM (m/s) CET (m/s) CED (m/s)

ρ = 0 m 0.0031 0.071 109.6531 56.8811 59.8561
ρ = 10 m 0.0017 11.1289 354.9131 193.5426 81.5393
ρ = 15 m 0.0619 10.2815 379.1928 204.7415 129.7482
ρ = 20 m 2.7552 9.5650 393.9062 208.7452 173.0856

In addition, there is another important factor that has a great impact on guidance performance
via numerous simulations: the time constant of first-order dynamics. For example, increasing the
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time constant of the attacking missile to τM = 0.6 s, and keeping the other parameters the same,
then in the case of ρ = 20 m, the simulation results are rMD(tfMD ) = 0.0388 m and rMT(tfMT ) = 26.24 m.
This example demonstrates that the defender can intercept the attacking missile accurately while the
target meets the requirement for evasion miss distance. This is because the attacking missile becomes
slow to respond to the guidance command in the case of a large time constant, and thus, the defender
easily intercepts the attacking missile while the agile target is able to evade the attacking missile easily.

As a conclusion, guidance command limits and time constants both have an influence on the
performance of optimal cooperative guidance laws. Here, we suggest setting the parameter ρ in
cooperative guidance as follows: if the command limits of the defender and target are much larger than
the attacking missile, or if the time constants of the target are much smaller than that of the attacking
missile, then we can choose a large ρ to achieve both accurate defensive interception and large evasion
miss distance. Otherwise, we need to choose a small ρ or even ρ = 0 to focus on achieving accurate
missile–defender miss distance. Additionally, according to the simulation results, the advantage of
cooperative guidance laws is that the defender can intercept the maneuverable attacking missile with
relatively smaller control effort with the help of the target. This advantage stems from the fact that the
target employs a "lure" maneuver so that the attacking missile flies toward the defender.

5.2. Adaptive Cooperative Guidance Laws

Two adaptive cooperative guidance laws are defined, i.e., ACGL1 and ACGL2, and the expected
minimum evasion distances in ACGL1 and ACGL2 are set as ρ = 10 m and ρ = 0 m, respectively.
According to Remark 1, ACGL2 can be regarded as the adaptive guidance law that only considers a
small D–M miss distance, which is identical to the cooperative guidance law considered in [2]. ACGL1
is the proposed cooperative guidance that considers both successful conditions, namely, a small D–M
miss distance and the minimum M–T evasion distance.

The simulation conditions are as follows: the attacking missile uses the PN guidance law
with NPN = 3, and the initial flight path angles are [γM0, γT0, γD0] = [20◦, 25◦, 30◦]; both the
measurement sampling period and guidance command period are 0.02 s, and the blind range is
500 m. The blind range refers to the minimal measuring range. When the defender approaches the
attacking missile with a distance of less than 500 m, then the measurement model changes from
Equations (13) to (15). The initial condition of the filter is sampled from a Gaussian distribution,
i.e., X̂XXM(0|0) ∼ N(XXXM(0), PPP0), where XXXM(0) is the true initial state of the attacking missile, and
PPP0 = diag{4002, 4002, (3π/180)2, 102, 202} is the initial covariance.

First, the stochastic case in which measurement noise exists, and the attacking missile’s guidance
law is known, is considered. In this case, the number of models in the sMME-SRCKF is 1, and thus,
the filter becomes the SRCKF. Four cases with different measurement noises are considered—Case 1:
σMT(k) = σMD(k) = 0.005 rad; Case 2: σMT(k) = σMD(k) = 0.02 rad; Case 3: σMT(k) = σMD(k) =

0.05 rad; and Case 4: σMT(k) = σMD(k) = 0.08 rad. The success probability of ACGL1 and ACGL2 are
shown in Table 3. From Table 3, it is seen that if the measurement noise is small (i.e., Case 1), the success
probabilities of ACGL1 and ACGL2 are both 100%. However, as the measurement noise increases,
the success probability of ACGL1 becomes larger than that of ACGL2. When the measurement noise
increases, it generates a larger estimation error and, as a result, a larger error in the guidance commands.
ACGL2 only considers the accurate interception by the defender. Thus, once the defender misses the
attacking missile because of guidance error, the active defense fails. On the contrary, for ACGL1, the
target will take evasive measures after the failed D–M engagement, thus increasing the probability of
success. This is the advantage of ACGL1 that can lead to a better performance in a noisy environment
compared with ACGL2.

Next, another stochastic case is considered: the attacking missile’s guidance strategy is unknown,
and we use the sMME-SRCKF to identify the guidance strategy. The set of guidance laws contains PN
with NPN = 3, 4, 5, APN with NAPN = 3, 4, 5, and OGL. The initial probability of each guidance model is
1/7. The actual guidance law of the attacking missile is PN with NPN = 3. Three cases of measurement
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noise are set as follows. Case 1: σMT(k) = σMD(k) = 0.02 rad; Case 2: σMT(k) = σMD(k) = 0.05 rad;
and Case 3: σMT(k) = σMD(k) = 0.08 rad. For each case, a 1000-run Monte Carlo simulation was
completed. The success probability of ACGL1 in Case 1, Case 2, and Case 3 is 86.6%, 67.8%, and 57.2%,
respectively; that of ACGL2 in Case 1, Case 2, and Case 3 is 84.5%, 47.1%, and 36.1%, respectively.
These results show that ACGL1 still performs better than ACGL2. The simulation results of ACGL1
in Case 1 are shown in Figures 7 and 8. Figure 7 shows the root-mean-square error (RMSE) of the
estimator. The RMSE of the estimated scalar x̂ is defined as [16]

RMSE(x̂) =

√√√√√NMC
∑

i=1
(x− x̂i)

2

NMC
(53)

where NMC represents the number of Monte Carlo simulations. For example, the position RMSE is
defined as

RMSE(Pos) =

√√√√ 1
NMC

NMC

∑
i=1

(xM − x̂M,i)
2 + (yM − ŷM,i)

2 (54)

where (x̂M,i , ŷM,i) is the estimated position for the ith Monte Carlo simulation. In Figure 7, each
RMSE converges as time moves forward, which demonstrates that the sMME-SRCKF works well.
In Figure 8, the model probability of the sMME-SRCKF in a single simulation is presented, and the PN
class refers to PN guidance laws with NPN = 3, 4, 5, and the APN class refers to APN guidance laws
with NAPN = 3, 4, 5. Figure 8 shows that the model probability of the PN class increases to 1, and the
other model’s probability reduces to zero at about 4 s. The sMME-SRCKF can be assumed to identify
the correct guidance law of the attacking missile at about 4 s, since the model probability of PN with
NPN = 3 plays a dominant role, i.e., the model probability of PN with NPN = 3 is larger than 85% for
the most time from 4 s to the end.

Table 3. Successful probability of two adaptive cooperative guidance laws (ACGL) with different
measurement noise.

Case 1 Case 2 Case 3 Case 4

ACGL1 100% 99.9% 93.9% 83.1%
ACGL2 100% 88% 57.5% 47.4%
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Figure 7. Estimation error of the sMME-SRCKF (static multiple model estimator with square-root
cubature Kalman filter) in Case 1.
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Figure 8. Model probability of the sMME-SRCKF for one Monte Carlo simulation in Case 1.

As a conclusion, it is demonstrated that the proposed adaptive guidance law that considers
two successful conditions has a larger probability of a successful active defense compared with the
adaptive guidance law that only considers one successful condition.

5.3. Estimation Performance Evaluation

5.3.1. Comparison of Filtering Approaches

For a fair comparison of different filtering approaches, perfect information is used for calculating
the cooperative guidance laws. Using this approach, the performance evaluation of the filter is
separated from the closed-loop system of guidance and estimation. Two scenarios are simulated for
evaluating the performance of different filtering approaches. In the first scenario, it is assumed that the
guidance law of the attacking missile is known, and the measurement noise is σMT(k) = σMD(k) =
0.01 rad. Then, the EKF and SRCKF are used to estimate the state of the attacking missile. In the
second scenario, it is assumed that the guidance law of the attacking missile is unknown, and the
measurement noise is σMT(k) = σMD(k) = 0.02 rad. The sMME-EKF and sMME-SRCKF are used to
track the attacking missile. Except for the measurement noise, the simulation conditions of the two
scenarios are the same as those shown in Section 5.2. The attacking missile uses PN with NPN = 3,
and the expected minimum evasion distance of the cooperative guidance laws is set as ρ = 10. As
indicated in Section 3.1, the complex Jacobian matrix needs computing to implement the EKF and
sMME-EKF. For the sake of brief exposition, the derivation of the Jacobian matrix is omitted here,
and the process of the sMME-EKF can be referred to [15]. A 1000-run Monte Carlo simulation was
performed in both scenarios, and the simulation results are shown in Figures 9 and 10.

According to the simulation results, D–M engagement is terminated at 6.94 s, and M–T
engagement is terminated at 7.9 s. Note that during D–M engagement, two sensors are used to
track the attacking missile; after the termination of D–M engagement, only a sensor on the target works
to track the attacking missile. From Figure 9, it is seen that the performance of the SRCKF is a little
better than that of EKF during the D–M engagement (i.e., 0–6.94 s); after that, the performance of the
SRCKF is much better than that of EKF (i.e., 6.94–7.9 s). In Figure 10, it is seen that the performance
of the sMME-SRCKF is almost the same as that of the sMME-EKF during the D–M engagement
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(i.e., 0–6.94 s), while the sMME-SRCKF performs better than the sMME-EKF after the termination of
D–M engagement (i.e., 6.94–7.9 s). The simulation results demonstrate the superiority of the SRCKF or
sMME-SRCKF, especially after the termination of D–M engagement. This is because only one sensor
with angular measurement is used to track the attacking missile at this phase, and then the nonlinearity
of the estimation problem becomes more serious. Furthermore, the SRCKF and sMME-SRCKF are
derivative-free for undesirable Jacobians and the transition matrix. It is convenient to implement
the SRCKF and sMME-SRCKF for various guidance laws of attacking missile. For example, if a new
guidance law is added to the sMME filter, then the additional derivation of the Jacobian matrix and
calculation of the transition matrix are needed for the sMME-EKF. However, this is not required in the
sMME-SRCKF.
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Figure 9. Estimation errors of the extended Kalman filter (EKF) and SRCKF: (a) position
root-mean-square error (RMSE), (b) velocity RMSE.
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Figure 10. Estimation errors of the sMME-EKF and sMME-SRCKF: (a) position RMSE, (b) acceleration
RMSE.

5.3.2. Estimation Enhancement Test

According to the analysis in Section 3.2, it is concluded that the LOS angle difference will influence
the estimation performance. Thus, the estimation performance is tested with different initial LOS
angles. Here, two cases are compared. In Case 0, all the initial conditions are as shown at the beginning
of Section 5. In Case 1, the initial position and flight-path angle of the defender are changed to
(xD0, yD0) = (8000, 2000)m and γD0 = −15◦, and the rest of the initial conditions are the same as
those of Case 0. The absolute initial LOS angle differences in Case 0 and Case 1 are 0◦ and 14◦,
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respectively. The stochastic scenario of an unknown guidance strategy of the attacking missile is
considered. The set of guidance laws contains PN with NPN = 3, 4, 5, APN with NAPN = 3, 4, 5, and
OGL, and the initial probability of each guidance model is set as 1/7. The measurement noise is
σMT(k) = σMD(k) = 0.02 rad, and the attacking missile uses the PN guidance law with NPN = 3.
ACGL1 in Section 5.2 is used as the adaptive guidance law. A 1000-run Monte Carlo simulation was
completed, and the probability of success in Case 1 is 91.2%, which is better than that in Case 0 (i.e.,
86.6%). Also, the probability of rMD(t fMD ) < 5 m in Case 1 is 68.9%, which is larger than that of 63.1%
in Case 0. The increased success probability in Case 1 benefits from the estimation enhancement,
whose results are shown in Figures 11 and 12. Figure 11 shows the RMSEs of position, flight-path
angle, acceleration, and velocity in the first 6 s. It shows that the RMSEs of position and velocity in
Case 1 converge more rapidly than those in Case 0. The position RMSE in Case 1 at 6 s is 27 m, which is
much smaller than that of 115 m in Case 0. The RMSEs of flight-path angle and acceleration in Case 0
and Case 1 perform in a similar way. In Figure 12, the average model probabilities of PN with NPN = 3
in Case 0 and Case 1 are shown. The average model probability is introduced as an index to represent
the change in model probability in the Monte Carlo simulation, and it is more reliable to use this index
than to use the model probability in a single Monte Carlo simulation. The average model probability
of the jth model ūj(k) is defined as

ūj(k) =
1

NMC

NMC

∑
i=1

uj
i(k) (55)

where uj
i(k) is the jth model probability at the ith MC simulation, and NMC is the number of Monte

Carlo simulations. From Figure 12, it is seen that the average model probability of PN guidance law
with NPN = 3 in Case 1 is always larger than that in Case 0 after 4 s, so the sMME-SRCKF in Case 1
can identify the right guidance strategy faster on the average. The faster the sMME-SRCKF identifies
the right model, the more accurate the generated guidance command, and the larger the probability of
a successful active defense. Thus, it is helpful to choose an engagement geometry with a large initial
LOS angle difference to yield good estimation and guidance performance.
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Figure 11. Estimation RMSE of the sMME-SRCKF in Case 0 and Case 1.
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Figure 12. Average model probability of PN with NPN = 3 in Case 0 and Case 1.

6. Conclusions

In this paper, adaptive cooperative guidance for a target and defender is proposed to deal with the
stochastic active defense problem. Adaptive cooperative guidance combines a multiple-model adaptive
estimator and optimal control. The sMME-SRCKF is designed as a nonlinear adaptive estimator that
can identify the guidance strategy and estimate the state of the attacking missile efficiently. By solving
the optimal defensive problem, the model-matched cooperative guidance laws are obtained that
can satisfy criteria of both an accurate defensive interception and the expected minimum evasion
distance. The cooperation between the target and defender is established by using the cooperative
guidance laws, and the advantage of this cooperation makes it possible to use a low-maneuverability
defending missile (the cost of this low-maneuverability missile is cheap) to intercept an advanced and
high-maneuverability attacking missile. Also, the adaptive cooperative guidance law performs better
in the stochastic scenario, and it is more robust than the adaptive guidance law that only considers
small D–M miss distance. Furthermore, the estimation enhancement analysis provides an approach to
improving the performance of the estimation and guidance.

This paper focuses on the design of cooperative guidance laws in planar active defense
engagement. For the general three-dimensional active defense engagement, it can be decoupled
into two perpendicular planar engagements, and then the proposed guidance laws can be
applied to both planar engagements. Further work lies in extending this proposed solution to
three-dimensional engagement.
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Abbreviation

AAA , AAA11 , AAA12 , AAA21 , AAA22 , BBBT , BBBD state-space model matrices of active defense
AAAi , bbbi , CCCi , dddi state-space model matrices of aircraft’s internal dynamics
aM , aT , aD acceleration of attacking missile, target, and defender
aMN , aTN , aDN acceleration component of attacking missile, target, and defender along the Y-axis
k1 , k2 , kkkM , kkkT , kuT guidance parameters of the attacking missile
NPN , NAPN , NOGL navigation gains of PN, APN, and OGL
nM , nT , nD dimension of the internal state vector of the attacking missile, target, and defender
qM , qT , qD internal state vector of the attacking missile, target, and defender
RRRk measurement noise covariance matrix at time instant k
t fMD , t fMT , tgoMT D–M and M–T interception time, time-to-go of M–T engagement
uM , uT , uD guidance command of the attacking missile, target, and defender
uMN , uTN , uDN guidance command of the attacking missile, target, and defender along the Y-axis
uA

TN , uA
DN adaptive guidance laws of the target and defender

XXX , XXXM state vector of active defense kinematic model and state vector of the attacking missile

X̂̂X̂X j jth model-conditioned state estimate of active defense
X̂̂X̂XM(k|k) , PPP(k|k) state estimate and error covariance of attacking missile

X̂̂X̂X j
M(k|k) , PPPj(k|k) jth model-conditioned state estimate and error covariance of the attacking missile

yMD , yMT , ẏMD , ẏMT D–M and M–T relative displacements and relative velocity along the Y-axis
ZMD , ZMT D–M and M–T zero-effort miss distances
zzz(k) , zMD(k) , zMT(k) measurement vector, D–M and M–T angle measurement at time instant k
z̃zzj(k|k) , PPPj

zz(k|k− 1) jth model-conditioned innovation and innovation covariance at time instant k
α , β penalty weights in the cost function
γM , γT , γD flight-path angle of the attacking missile, target, and defender
Λj(k) , µj(k) jth model-conditioned likelihood function and jth model probability
λMD , λMT D–M and M–T line-of-sight angle
ννν , νMD , νMT white Gaussian noise vector, D–M and M–T angle measurement noise
ρ , ΦΦΦ expected evasion miss distance, transition matrix
τM , τT , τD time constant of the attacking missile, target and defender

Appendix A.

The algorithm for using the SRCKF to estimate the model-conditioned state of the attacking
missile is shown as follows. The variables with the subscript j represent the variables of the jth model.
According to [17], the SRCKF is described by two steps: time update and measurement update.

In the time update, the cubature points are firstly evaluated:

XXX j
M,i(k− 1|k− 1) = SSSj(k− 1|k− 1)ξξξ i + X̂̂X̂X j

M(k− 1|k− 1) (A1)

with (i = 1, 2, · · · , m), where m = 2nx is the number of cubature points, and nx represents the
dimension of XXX j

M. X̂̂X̂X j
M(k− 1|k− 1) and SSSj(k− 1|k− 1) are the attacking missile state estimate and

the square-root factor of error covariance at the k− 1 time instant; ξξξ i =
√

m
2 [111]i, where [1]i is the ith

point/column of the complete fully symmetric set of points defined as [1]= [InM ,−InM ]. The process
equation in this section is a continuous differential equation rather than a difference equation as shown
in [17]. Thus, according to Equation (12), the evaluation of the propagated cubature points in this
section can be calculated as

XXX j∗
M,i(k|k− 1) = XXX j

M,i(k− 1|k− 1) +
∫ kT

(k−1)T
f (XXX j

M,i(t), uj
MN((k− 1)T))dt (A2)

with (i = 1, 2, · · · , m), where XXX j
M,i(t) is the ith cubature point at time t, and T is the sampling

period. The integration in Equation (A2) can be computed by using the fourth-order Runge–Kutta
method. Then, the predicted state and square-root factor of the predicted error covariance are

X̂̂X̂X j
M(k|k− 1) =

1
m

m

∑
i=1

XXX j∗
M,i(k|k− 1) (A3)
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SSSj(k|k− 1) = Tria
(
[χχχj∗(k|k− 1) , SSSQ(k− 1)]

)
(A4)

where

χχχj∗(k|k− 1) =
1√
m
[XXX j∗

M,1(k|k− 1)− X̂̂X̂X j
M(k|k− 1), XXX j∗

M,2(k|k− 1)− X̂̂X̂X j
M(k|k− 1), · · · ,

XXX j∗
M,m(k|k− 1)− X̂̂X̂X j

M(k|k− 1)]
(A5)

and SSSQ(k− 1) is a square-root of the covariance of process noise satisfying SSSQ(k− 1)SSST
Q(k− 1) = QQQ(k− 1)

with QQQ(k − 1) representing the covariance of process noise. According to Equation (11), we have
QQQ(k− 1) = 0, which means that there is no process noise. Tria(•) represents a general triangularization
algorithm, and we have Tria(AAA) = RRRT , where RRR is an upper triangular matrix obtained from the QR
decomposition on AAAT .

In the measurement update, the predicted measurement and the square root of the innovation
covariance are firstly estimated:

ẑ̂ẑzj(k|k− 1) =
1
m

m

∑
i=1

ZZZj
i(k|k− 1) (A6)

SSSj
zz(k|k− 1) = Tria

(
[ZZZj(k|k− 1), SSSR(k)]

)
(A7)

where

ZZZj(k|k− 1) = 1√
m [ZZZj

1(k|k− 1)− ẑ̂ẑzj(k|k− 1), ZZZj
2(k|k− 1)− ẑ̂ẑzj(k|k− 1), · · · , ZZZj

m(k|k− 1)− ẑ̂ẑzj(k|k− 1)] (A8)

and
ZZZj

i(k|k− 1) = h(XXX j
M,i(k|k− 1)) = h

(
SSSj(k|k− 1)ξξξ i + X̂̂X̂X j

M(k|k− 1)
)

(A9)

and SSSR(k) is the square-root factor of RRRk (i.e., measurement noise covariance) satisfying
SSSR(k)SSST

R(k) = RRR(k). The innovation z̃̃z̃zj(k|k) and the innovation covariance are computed as

z̃̃z̃zj(k|k) = zzz(k)− ẑ̂ẑzj(k|k− 1)

PPPj
zz(k|k− 1) = SSSj

zz(k|k− 1)
(

SSSj
zz(k|k− 1)

)T (A10)

Then, the updated state estimate X̂̂X̂X j
M(k|k) and the square-root factor of the error covariance

SSSj(k|k) are
X̂̂X̂X j

M(k|k) = X̂̂X̂X j
M(k|k− 1) +WWW j(k)(zzz(k)− ẑ̂ẑzj(k|k− 1)) (A11)

SSSj(k|k) = Tria
([

χχχj(k|k− 1)−WWW j(k)ZZZj(k|k− 1),WWW j(k)SSSj
R(k)

])
(A12)

where

χχχj(k|k− 1) =
1√
m
[XXX j

M,1(k|k− 1)− X̂̂X̂X j
M(k|k− 1), XXX j

M,2(k|k− 1)− X̂̂X̂X j
M(k|k− 1), · · · ,

XXX j
M,m(k|k− 1)− X̂̂X̂X j

M(k|k− 1)]
(A13)

and

WWW j(k) =
(

PPPj
xz(k|k− 1)

/(
SSSj

zz(k|k− 1)
)T
)/

SSSj
zz(k|k− 1)

PPPj
xz(k|k− 1) = χχχj(k|k− 1)

(
ZZZj(k|k− 1)

)T
(A14)
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The error covariance of the estimation can be obtained as

PPPj(k|k) = SSSj(k|k)
(

SSSj(k|k)
)T

(A15)

This completes the algorithm for using the SRCKF to estimate the model-conditioned state of the
attacking missile.

Appendix B.

The derivation of Equations (30) and (31) is shown in this appendix. Since ΦΦΦ is the transition
matrix associated with Equation (7), it has the following property:

Φ̇̇Φ̇Φ(t f , t) = −ΦΦΦ(t f , t)AAA(t); ΦΦΦ(t f , t f ) = I (A16)

Taking the derivative of Equation (28) and using Equations (7) and (A16), then we have
ŻMT(t) = DDDMTΦΦΦ(t fMT , t)(BBBTuTN + BBBDuDN) , t ∈ [0, t fMT ]

ŻMD(t) =

{
DDDMDΦΦΦ(t fMD , t)(BBBTuTN + BBBDuDN) , t ∈ [0, t fMD ]

0, t ∈ (t fMD , t fMT ]

(A17)

In Equation (A17), we have
DDDMTΦΦΦ(t fMT , t)BBBD = 0 (A18)

This can be proved by the following steps. Defining the first row of Φ(t fMT , t) as
[φ11, φ12, φφφ1M, φφφ1T , φ13, φ14, φφφ1D], where dim(φφφ1i) = 1× ni for i = T, D, M, we therefore have

DDDMTΦΦΦ(t fMT , t)BBBD = −φ14dD +φφφ1DbbbD (A19)

According to Equation (A16), we have
φ̇13(t fMT , t) = 0 , φ13(t fMT , t fMT ) = 0
φ̇14(t fMT , t) = −φ13(t fMT , t) , φ14(t fMT , t fMT ) = 0
φ̇φφ1D(t fMT , t) = φ14(t fMT , t)CD −φφφ1D(t fMT , t)AD , φφφ1D(t fMT , t fMT ) = 0

(A20)

Then, on the basis of Equation (A20), the following equation is obtained:

φ13(t fMT , t) ≡ 0 , φ14(t fMT , t) ≡ 0 , φφφ1D(t fMT , t) ≡ 0 (A21)

Thus, by using Equations (A19) and (A21), Equation (A18) is obtained. Combining Equations
(A17) and (A18), Equations (30) and (31) are obtained.

Appendix C.

This appendix gives the proof of L1 < 0. According to Equation (38), we have F1 < 0 and

F2
2 − F1F3 =

(∫ t fMT

t

fTMT (τ) fTMD (τ)

β
dτ

)2

−
∫ t fMT

t

f 2
TMT

(τ)

β
dτ ·

∫ t fMT

t

f 2
TMD

(τ)

β
+ f 2

DMD
(τ)dτ (A22)

First, the auxiliary inequality, i.e., F2
2 − F1F3 ≤ 0, is proved via the following steps. Assuming

~a = (
fTMT√

β
, 0) and ~b = (

fTMD√
β

, fDMD ), then we have ~a •~b =
fTMT fTMD

β . Since
∣∣∣~a •~b∣∣∣ ≤ |~a| ∣∣∣~b∣∣∣,

the following equation is obtained.

∣∣∣∣ fTMT fTMD

β

∣∣∣∣ ≤
√

f 2
TMT

β

√
f 2
TMD

β
+ f 2

DMD
(A23)
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Integrating Equation (A23) from t to t fMT , we have

∫ t fMT

t

∣∣∣∣ fTMT (τ) fTMD (τ)

β

∣∣∣∣ dτ ≤
∫ t fMT

t

√
f 2
TMT

(τ)

β

√
f 2
TMD

(τ)

β
+ f 2

DMD
(τ)dτ (A24)

By using the Cauchy–Buniakowsky–Schwarz Inequality, the right side of Equation (A24) satisfies

∫ t fMT
t

√
f 2
TMT

(τ)

β

√
f 2
TMD

(τ)

β + f 2
DMD

(τ)dτ ≤
√(∫ t fMT

t
f 2
TMT

(τ)

β dτ ·
∫ t fMT

t
f 2
TMD

(τ)

β + f 2
DMD

(τ)dτ

)
(A25)

On the basis of Equations (A24) and (A25) and using (
∫ t fMT

t
fTMT (τ) fTMD (τ)

β dτ)2 ≤

(
∫ t fMT

t

∣∣∣∣ fTMT (τ) fTMD (τ)

β

∣∣∣∣ dτ)2, we have

(
∫ t fMT

t

fTMT (τ) fTMD (τ)

β
dτ)2 ≤

∫ t fMT

t

f 2
TMT

(τ)

β
dτ ·

∫ t fMT

t

f 2
TMD

(τ)

β
+ f 2

DMD
(τ)dτ (A26)

Thus, F2
2 − F1F3 ≤ 0 is proved. By using L1=F1−αF1F3+αF2

2 , F1 < 0 , α > 0, and F2
2 − F1F3 ≤ 0,

then L1<0 is proved.
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