
sensors

Article

Design of Plant Protection UAV Variable Spray
System Based on Neural Networks

Sheng Wen 1,2, Quanyong Zhang 2,3, Xuanchun Yin 2,3,* , Yubin Lan 2,3, Jiantao Zhang 2,4 and
Yufeng Ge 5

1 South China Agricultural University Engineering Foundation Teaching and Training Center,
Guangzhou 510642, China; vincen@scau.edu.cn

2 National Center for International Collaboration Research on Precision Agriculture Aviation Pesticides
Spraying Technology, Guangzhou 510642, China; qy_zhang@stu.scau.edu.cn (Q.Z.); ylan@scau.edu.cn (Y.L.);
zhangjiantao@yeah.net (J.Z.)

3 Engineering College of South China Agricultural University, Guangzhou 510642, China
4 Mathematics and Informatics College of South China Agricultural University, Guangzhou 510642, China
5 Biological Systems Engineering college of University of Nebraska-Lincolin, Lincoln, NE 68583, USA;

yge2@unl.edu
* Correspondence: xc_yin@scau.edu.cn

Received: 26 January 2019; Accepted: 2 March 2019; Published: 5 March 2019
����������
�������

Abstract: Recently, unmanned aerial vehicles (UAVs) have rapidly emerged as a new technology in
the fields of plant protection and pest control in China. Based on existing variable spray research,
a plant protection UAV variable spray system integrating neural network based decision making
is designed. Using the existing data on plant protection UAV operations, combined with artificial
neural network (ANN) technology, an error back propagation (BP) neural network model between
the factors affecting droplet deposition is trained. The factors affecting droplet deposition include
ambient temperature, ambient humidity, wind speed, flight speed, flight altitude, propeller pitch,
nozzles pitch and prescription value. Subsequently, the BP neural network model is combined
with variable rate spray control for plant protection UAVs, and real-time information is collected by
multi-sensor. The deposition rate is determined by the neural network model, and the flow rate of
the spray system is regulated according to the predicted deposition amount. The amount of droplet
deposition can meet the prescription requirement. The results show that the training variance of
the ANN is 0.003, and thus, the model is stable and reliable. The outdoor tests show that the error
between the predicted droplet deposition and actual droplet deposition is less than 20%. The ratio of
droplet deposition to prescription value in each unit is approximately equal, and a variable spray
operation under different conditions is realized.

Keywords: UAV; BP neural network; droplet deposition; variable spray

1. Introduction

Crop diseases and weeds are important factors that affect crop yield and quality, and are mainly
controlled through chemical pesticides. The plant-protection flight operation has also been changed
from traditional artificial spraying to mechanical spraying [1]. Since the 1920s, the manned aircrafts
have been used for agricultural production in the United States, which created a history of agricultural
aviation [2]. The agricultural application of UAVs as a new application in the field of agricultural plant
protection has been widely researched and applied [3,4]. In 2014, China’s “Central Document No. 1”
proposed to promote the development of eco-friendly agriculture, and especially pointed out that the
construction of agricultural aviation should be strengthened. In order to implement document No. 1

Sensors 2019, 19, 1112; doi:10.3390/s19051112 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0488-0642
http://dx.doi.org/10.3390/s19051112
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/5/1112?type=check_update&version=2


Sensors 2019, 19, 1112 2 of 23

of the Central Committee, the Ministry of Agriculture formulated the Action Plan for Zero Increase
in Pesticide Use by 2020 [5]. It proposed that we should vigorously promote pesticide reduction and
control of pesticides, actively explore the way to develop modern agriculture with high efficiency,
product safety, resource saving and environmental friendliness, and strive to achieve zero increase in
total pesticide use by 2020. Pesticides application by UAV can reduce the wastage of pesticides to a
certain extent. However, owing the influence of environmental factors and rotor wind field, UAVs
suffer from droplet drift and droplet sticking [6]. The main pesticide application methods currently
used in China is unified spraying [7], and the utilization rate of pesticides is low. It is estimated that
approximately 2.5 million thousand tons of insecticides are used globally every year [8]. According to
statistics, the utilization rate of pesticides in China by 2017 was only 20% [9]. Variable spray technology
can be applied to spray objects on demand, and the potential of variable spray in improving pesticide
utilization, reducing pesticide residues and reducing environmental risk has been formed under the
international consensus [10].

Recently, variable spray technology has been extensively studied. Cruvinel et al. [11] built relations
among running speed, nozzles height, and spray flow. This method only regulates the flow rate
according to speed and height, to achieve the purpose of uniform spraying. However, environmental
factors and spray system parameters influence the spray effect [12]. Ambient temperature, humidity
and wind speed cause droplet drift and evaporation, which affect droplet deposition. The pitch
between nozzles in the structural parameters of the fuselage has a certain effect on the uniformity of
spray [13]. Moreover, the pitch of the rotor changes its wind field and affects the droplet deposition [14].
Deng et al [15] built a constant-pressure sprayer that was controlled by a closed-loop proportional
integral derivative algorithm. In this sprayer, the pressure was changed by adjusting the opening of
the solenoid valve, thus changing the spray volume. In the same field, crops suffer from different
severities of pests and diseases, and environmental factors and flight parameters influence the spray
effect. Wang et al. [16] set different wind speeds and flight angles to simulate the spray operation of
UAV in a wind tunnel. Finally, a relation model between the influence factors and spray volume was
built. However, the traditional linear relation model of traffic flow and various factors is not flexible
enough, it is impossible to distinguish the influence degree of each factor. Because environmental
parameters and flight parameters change in real time during plant protection operations, the linear
relation model between spraying amount and flight speed at the flight altitude cannot accurately
adjust the flow rate [17]. It is necessary to establish a dynamic model between influencing factors and
spraying amount.

An artificial neural network (ANN) is a large-scale parallel nonlinear dynamic system. And neural
network is a mathematical model used to find the relation between input and output datasets
with complex relations [18,19]. With its successful application in various fields, ANN technology
has entered the agricultural field and been successfully applied to various agricultural production
problems. Through continuous monitoring, measurement and analysis of various physical phenomena,
the development of complex agricultural ecosystems can be better understood and predicted [20].
Recently, the application of ANN technology in plant protection spraying has been extensively studied.
Patel et al. [21] studied the relations among temperature, flow rate, solvent atomization parameters
and droplet size. An ANN model of input and output was established and its validity was verified
experimentally. Chen et al. [22] established the error back propagation (BP) neural network model of
water quality and its influencing factors to predict water quality. Amir Azizpanah et al. [23] combined
the ANN with image processing technology to establish a spray drift prediction model under different
conditions. The inputs of the neural network model include height, flow rate, pressure and wind speed.
The outputs include droplet volume and diameter. This study demonstrates the important advantage
of a neural network in predicting drift, but it is not combined with the actual plant protection operation.

In this study, the factors influencing the spray effect during the operation of plant protection
UAVs are comprehensively considered, which include flight parameters (altitude and velocity),
environmental parameters (temperature, humidity and wind speed), and aircraft structural parameters
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(propeller pitch and nozzle pitch). The neural network model between the influence factors and
droplet deposition is trained using considerable existing experimental data, originating from the
published literature and our own experiments. The technology of plant integration is used to build
a new intelligent variable spraying system for plant protection UAVs to improve the efficiency of
agricultural aviation spraying, reduce the use of chemical pesticides, and increase crop yields.

The study is organized as follows: Section 2 introduces the design of neural network model.
Section 3 introduces design of the plant protection UAV variable spray system based on neural network
decision. Section 4 presents the performance evaluation of neural network model and the analysis of
experimental results. Finally, Section 5 provides the concluding remarks.

2. Design of the Neural Network Model

2.1. Introduction of BP Neural Network

An ANN is an algorithmic mathematical model for distributed parallel information processing
based on the behavioral characteristics [24]. Depending on the complexity of the system, this network
can process information by adjusting the interconnection between several internal node. An ANN
has the ability of self-adaptation and self-learning, and is more accurate than the conventional linear
relation model [25].

The core of an ANN for realizing its function is the algorithm [26]. The structure of neural network
used in this study was the error BP neural network. The trained BP neural network could process
the input information of similar samples by itself, and transformed it nonlinearly with the minimum
output error. The topological structure of the BP neural network is shown in Figure 1.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 23 

to build a new intelligent variable spraying system for plant protection UAVs to improve the 
efficiency of agricultural aviation spraying, reduce the use of chemical pesticides, and increase  
crop yields. 

The study is organized as follows: Section 2 introduces the design of neural network model. 
Section 3 introduces design of the plant protection UAV variable spray system based on neural 
network decision. Section 4 presents the performance evaluation of neural network model and the 
analysis of experimental results. Finally, Section 5 provides the concluding remarks. 

2. Design of the Neural Network Model 

2.1. Introduction of BP Neural Network 

An ANN is an algorithmic mathematical model for distributed parallel information processing 
based on the behavioral characteristics [24]. Depending on the complexity of the system, this 
network can process information by adjusting the interconnection between several internal node. An 
ANN has the ability of self-adaptation and self-learning, and is more accurate than the conventional 
linear relation model [25]. 

The core of an ANN for realizing its function is the algorithm [26]. The structure of neural 
network used in this study was the error BP neural network. The trained BP neural network could 
process the input information of similar samples by itself, and transformed it nonlinearly with the 
minimum output error. The topological structure of the BP neural network is shown in Figure 1. 

 
Figure 1. The topological structure of BP neural network. Note: I1 ~ I8 are input layer neurons; H1 ~ Hn 
and H’’1 ~ H’’n are hidden layer neurons; n is the number of the hidden layer neurons. y is output 
layer neuron. Wkn represents the weight between the k-th node of the input layer and the n-th node of 
the hidden layer. bin represents the bias between the i-th node of the input layer and the n-th node of 
the hidden layer. bkn represents the bias between the k-th node of the hidden layer and the n-th node 
of the hidden layer. Wn represents the weight between the n-th node of the hidden layer and the 
output layer. bn represents the bias between the n-th node of the hidden layer and the output layer. 

The BP neural network model used in this study was a typical three-layer ANN model, which is 
widely used in non-linear modeling and solving interpolation problems such as adaptive, non-linear 
mapping and generalization abilities [27]. The basic concept was derived from that of the gradient 
descent method. The gradient search technique was used to minimize the error mean variance of the 
actual and expected output values of the network [28]. The neural network was divided into input 
layer, hidden layer and output layer. The neural network includes one or more hidden layers 

Figure 1. The topological structure of BP neural network. Note: I1 ~ I8 are input layer neurons; H1 ~ Hn

and H”1 ~ H”n are hidden layer neurons; n is the number of the hidden layer neurons. y is output layer
neuron. Wkn represents the weight between the k-th node of the input layer and the n-th node of the
hidden layer. bin represents the bias between the i-th node of the input layer and the n-th node of the
hidden layer. bkn represents the bias between the k-th node of the hidden layer and the n-th node of the
hidden layer. Wn represents the weight between the n-th node of the hidden layer and the output layer.
bn represents the bias between the n-th node of the hidden layer and the output layer.

The BP neural network model used in this study was a typical three-layer ANN model, which is
widely used in non-linear modeling and solving interpolation problems such as adaptive, non-linear
mapping and generalization abilities [27]. The basic concept was derived from that of the gradient
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descent method. The gradient search technique was used to minimize the error mean variance of
the actual and expected output values of the network [28]. The neural network was divided into
input layer, hidden layer and output layer. The neural network includes one or more hidden layers
between the input layer and output layer, and it included one or more hidden layers between the
input and output layers. In this study, the number of hidden layers was set to three and the input
layer contained eight neurons. The flight speed (fs), flight altitude (fa), propeller pitch (p), nozzle pitch
(np), temperature (t), humidity (h), wind speed (ws) and prescription value (v) were taken as input,
while the droplet deposition was taken as the output. Complete interconnection was adopted between
two layers.

A BP neural network is neural network with a learning function, which aims to obtain the relation
between the input and output of the neural network from the training samples [29]. There is no
mutual connection between the same layers. The neural network training comprises two steps: signal
positive spread and error BP [30]. The sample data are transferred from the input layer to the hidden
layer and processed to the output layer. The error is obtained by comparing with the actual value.
If the actual output satisfies the error range, the output result will be obtained. If the actual output
is not satisfied, the error will be transferred to the input layer through the hidden layer. In the next
transmission process, the weight and bias of all input neurons will be adjusted until the error is reduced
to a reasonable threshold [31], and finally, the training process is over. The flow diagram of the BP
algorithm used in this study is shown in Table 1.

Table 1. The code of the BP neural network algorithm.

Algorithm 1: The back propagation neural network

Definition:
Input layer neurons xi; The number of input layer neurons n; The hidden layer neurons Hj,
H′ j and H”j; The number of input layer neurons k; The output layer neurons y
Deposition
Initialization:
Initialize all weights and biases in network;
for i=1 to n do

Create hierarchy model and assign to neurons x8=(fs, fh, p, ns, t, h, ws, v); y=(d)
xi = X(xi)

end
for j=1 to k do

for t=1 to 3 do
Hj←ΣWijxi+bj
H′ j←ΣW’

ijHj+b’
j

H”j←ΣW”ijH′ j+b”j
yo←g(H”j)
end

end
for all j in k do

E←1/2Σej
2

if (E /∈ Error) do
Wij←Wij+αHjej
bj←bj+βej

return i=1
else y=yo

End

2.2. Database

2.2.1. Sample Data Collection Experiment Scheme

BP Neural network training requires considerable sample data. The flight speed, flight altitude,
propeller pitch, nozzle pitch, temperature, humidity, wind speed and prescription value are taken
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as input, while the droplet deposition is taken as the output. To improve the accuracy of neural
network training, there are two main methods for obtaining the training sample data. One is to collect
the relevant experimental data of multi-rotor UAVs by consulting the literature, and the other is to
conduct the experiment through the wind tunnel laboratory of the National Center for International
Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology. The wind
tunnel laboratory is shown in Figure 2.
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Sample data collection in the wind tunnel environment was an important source of data in this
study. The experiment was conducted in the wind tunnel laboratory of South China Agricultural
University. The wind tunnel is a high/low-speed composite wind tunnel specially used for researching
the agricultural aviation application technology. Because of the high probability of occurrence of
diseases and insect pests at the tillering stage, the rice at tillering stage was simulated by 40–50 cm
height brackets in the wind tunnel tests [32,33]. The experimental data collection covered the whole
tillering stage to control various diseases and insect pests. According to the principles of accuracy,
representativeness and statistics, the training samples used in this study were expected to cover most
of the possibilities. That is, they should occur during the whole period of rice tillering stage for disease
and pest control [34]. Therefore, the data collection experiment continued from June 2018 to December
2018. The simulated field experiments were conducted to collect relevant data. A schematic of the
experiment scheme is shown in Figure 3a. The UAV was built of aluminum profiles (ES 3030, Yinjun
Aluminum Co., Ltd., Guangdong, China). Along with the medicine box, a miniature diaphragm pump
(PLD-2201, Shijiazhuang Prandi Co, Ltd., Shijiazhuang, China) and four pressure nozzles (110-015
types, LECHLER Company, Albstadt, Germany) were utilized.
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Figure 3. Schematic diagram of sample data collection experiment: (a) Sketch map of sample data
collection; (b) Sample Data Acquisition Site; Note: L is the length of the sampling area.

The pressure of nozzles was 0.3 MPa and the spray angle was 110◦. Depending on the number of
multi-rotor UAV rotors in China’s agricultural UAV market, 4, 6, 8 carbon fiber rotors were set up in
the sample collection tests. UAV-relative blades were adjustable. According to the common multi-rotor
UAV on the market, the adjustment range was 1.2–1.4 m. The distance between nozzles ranges from
0.45 to 0.55 m. The ranges of propeller pitch and nozzle spacing of UAVs included the parameters of all
types of plant protection UAVs on the market. The sample data acquisition site is shown in Figure 3b.
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2.2.2. Sample Data Processing

A Rhodamine B (soluble fluorescent tracer) solution with 5 g/L concentration was used instead
of the liquid to spray. Simultaneously, keromekote papers (30 mm × 70 mm) and Mylar cards (50 mm
× 80 mm) were placed at each sampling point, which was located 50 cm away from the ground, to
receive the deposited droplets. Three sampling bands with 1 m spacing were set up and nine sampling
points with 1 m spacing were distributed in each sampling band. Control of rice diseases and insect
pests at the tillering stage was simulated. After each test, the keromekote paper and Mylar card at each
sampling point were collected, and then, brought back to the laboratory for analysis and treatment.
The collection of the keromekote papers and Mylar cards during the experiment is shown in Figure 4a.
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(b) The fluorescence spectrophotometer.

The DepositScan software (USDA-ARS Application Technology Research Unit, Wooster, OH,
USA) [35] was used to analyze the collected keromekote papers to obtain the droplet deposition
per unit area of each sampling point [36]. The collected Mylar cards were eluted with 20 mL
distilled water, then the eluted solution was placed in a fluorescence spectrophotometer (F380, Tianjing
Gangdong Technology Development Co., Ltd., Tianjing, China) for analysis, as shown in Figure 4a.
The fluorescence value of the standard solution was measured by configuring the standard solution
with five gradients of 0.02, 0.05, 0.1, 0.2, 0.5 and 1 µg/mL. The labeling curve between the fluorescence
and concentration was obtained by fitting, as shown in Figure 5.
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Figure 5 shows the fitting relation between the fluorescence value and concentration. The linear
fitting variance was 0.9996, and the fluorescence value of the eluted solution was obtained by elution.



Sensors 2019, 19, 1112 7 of 23

The concentration of Rhodamine B in the eluted solution was obtained according to the standard curve.
Finally, the droplet deposition per unit area was obtained using the concentration. The formula is as
follows [37]:

βdep =

(
ρsampl − ρblk

)
FcalVdil

ρspray Acol
(1)

where βdep is the amount of droplet deposition in g·cm−2; ρsampl is the reading of the sample solution
fluorescence meter; ρblk is the reading of the fluorescence meter of the eluent; Fcal is the calibration
coefficient in g·L−1; Vdil is the volume of the solution used to elute the collected sample in L; ρspray is
the concentration of the fluorescent tracer in the spray solution in %; Acol is the area of the collected
card in cm2.

2.2.3. Sample Data Results

By analyzing the data obtained, the maximum, minimum, mean, standard deviation, skewness
and kurtosis values of all sample data were counted. The statistical properties of the sample data
are shown in Table 2. According to the data in the table, the flight speed and altitude in the sample
data were within the range of flight parameters of plant protection UAVs. The ranges of temperature
and humidity satisfied the conventional variation in rice temperature at the tillering stage in the
Guangdong Province. The range of wind speed was 0.01 to 3.21 m/s. The wind speed was within a
reasonable range of operational requirements of plant protection UAVs. The sample data were real
and effective.

Table 2. Statistical properties of sample data.

Parameters Max Min Mean Std.Dev Skewness Kurtosis

Flight speed (m/s) 5.22 1.00 3.010 0.9847 0.37 −0.33
Flight altitude (m) 4.08 1.45 1.920 0.691 0.83 0.91
Temperature (◦C) 32.00 25.00 28.770 1.750 −0.92 −0.26
Humidity 0.741 0.45 0.643 0.083 −0.82 −0.72
Propeller pitch (m) 1.40 1.20 1.310 0.099 −0.20 −1.98
Nozzle pitch (m) 0.55 0.45 0.513 0.038 −0.47 −1.14
Wind speed (m/s) 3.20 0.01 1.144 0.585 0.76 0.88
Prescription (L/hm2) 48.00 5.00 20.50 9.548 0.12 −0.96
Deposition (µL/cm2) 8.86 0.01 5.69 15.72 4.36 20.27

2.3. The Training Process of BP Neural Network

The BP neural network can learn and solve complex non-linear relations through experience.
A different learning rate significantly influences the performance of a BP neural network model [38].
The smaller the learning rate, the slower is the convergence rate. If the learning rate is too high, to the
model can easily oscillate. To reduce the training time and times of searching for the optimal learning
rate, an adaptive learning rate is adopted. Thus the selection range is generally within [0.01, 0.8] [39].
The number of input layer nodes is i, and that of the output layer nodes is k. The number of hidden
layers is h, which can be calculated by adopting the following empirical formula [40]:

h =
√

i + k + t (2)

In our neural network model constructed in this paper, the number of input layer nodes was eight,
the number of output layer nodes was one. Thus, the number of hidden layers was three. The three
layers of neurons were recorded as Hj, H′j and H”j in turn. To improve the generalization ability of the
network in the training process, the input data were normalized before the sample data were input to
the neural network for training. The normalization formula is as follow [41]:
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X = (0.98− 0.02)(
X0 − Xmin

Xmax − Xmin
) + 0.02 (3)

where X is the normalized parameter; Xmax is the maximum value of input data; Xmin is the minimum
value of the input data; X0 is the original experimental data of the input layer.

The input of the hidden layer neurons is the sum of weighted and biased vectors of the input
neurons. Figure 6 shows the flow of a basic neuron in the hidden layer during the feedback phase.
Then, the output signal of the neurons was generated by adding the non-linear transfer functions.
The mathematical function of the process is described as [42]:

y = f (
k

∑
i=1

Wij Ii + bij) (4)

where Wij is the weight that connects the input neuron of the previous layer to the neuron of the
current layer; Ii is the input component; bij is the bias associated with the neuron of the current layer;
f(t) is the logarithmic Sigmoid type function between the input layer and the first hidden layer.
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Then, the output values of the data were obtained after the hidden layer operation. The formula
for calculating the output value is as follow [43]:

y = g(
n

∑
j=1

Wj H′′ j + bj) (5)

where Wj is the weight that connects the neuron of the last hidden layer to the neuron of the output
layer; H”j is the component of the last hidden layer; bj is the bias associated with the neuron of the
output layer; g(t) is the linear function between the last hidden layer and the output layer.

The predicted value was obtained by neural network operation. The error was calculated through
a comparison of the predicted value with the actual value. The formula is as follow [44]:

E =
1
2

n

∑
j=1

(y− y0)
2

=
1
2

n

∑
j=1

e2
j (6)

where y is the value of the hidden layer output; y0 is the actual value or expected output value.
A reasonable error range was set. If E is within the error range, the network training will end,

otherwise, the error BP process will take place and the weight and bias of each layer are update. The
weight and bias updating formula from the hidden layer to the output layer are as follows [45]:

Wij = Wij + αHjej (7)

bj = bj + βej (8)
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The weight and bias updating formula from the input layer to the hidden layer are as follows [46]:

Wij = Wij + ηHj(1− Hj)xi

k

∑
i=1

Wijej (9)

bj = bj + λHj(1− Hj)xi

k

∑
j=1

Wijej (10)

where α, β, λ and η are the coefficients. After the E calculated by Equation (6) is within the error range,
the predicted value output from the output layer.

2.4. Performances of BP Neural Network Models

To evaluate the stability and sensitivity of the ANN model, four statistical parameters were
adopted, namely the coefficient of correlation (r), the root mean square error (RMSE), the overall index
of model performance (OI), and the mean absolute error (MAE) [47]. The formulas for calculating the
indices are defined as follows:

r =

m
∑

i=1
(Xi − X)(Yi −Y)√

m
∑

i=1
(Xi − X)

2 m
∑

i=1
(Yi −Y)

2
(11)

RMSE =

√√√√√ m
∑

i=1
(Xi −Yi)

2

m
(12)

OI =
1
2

2− RMSE
Xmax − Xmin

+

m
∑

i=1
(Xi −Yi)

2

m
∑

i=1
(Xi − X)

2

 (13)

MAE =

m
∑

i=1
|Xi −Yi|

m
(14)

where Xi is the training value; Yi is the predicted value; m is the training steps; X is the average training
value; Y is the average predicted value; Xmax is the maximum training value; Xmin is the minimum
training value;

The r is used to measure the correlation between the predicted and actual values. The closer
the r value is to 1, the higher is the accuracy of the representation model. RMSE is used to describe
the variance between the predicted value and actual values in the sample training process. RMSE
characterizes the accuracy of the model. OI Represents the Fitting Accuracy of an ANN Model. The
closer the OI value is to 1, the higher is the fitting accuracy of the model. The lower the MAE, the better
the training effect.

The Kolmogorov theorem shows that the BP neural network can achieve an arbitrary non-linear
function approximation, when the structure of the BP neural network satisfies the three-layer structure
with the input layer, hidden side and output layer, and the number of neurons in the hidden layer is
sufficient [48]. The performance of the BP neural network is related to the number of hidden neurons.
In general, the more the hidden neurons, the better the network performance [49]. To determine the
number of neurons in the hidden layer in this study, the relevant parameters of different numbers of
neurons in the hidden layer were measured as shown in Table 3.
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Table 3. Statistical performance of BP neural network model with different numbers of hidden
layer neurons.

Number of Hidden Layer Neurons
Statistical Parameters

r RMSE (%) OI MAE (%)

12 0.864 4.673 0.933 3.008
14 0.907 4.651 0.936 3.270
16 0.953 4.643 0.942 3.445
18 0.980 4.321 0.946 3.507
20 0.991 4.215 0.951 3.549
22 0.976 4.185 0.949 3.498
24 0.952 4.137 0.945 3.452

As shown in the table, when the number of neurons in the hidden layer is 20, the values of r, OI
and MAE of the model reach the peak. When the numbers of hidden layer neurons were increased from
12 to 20, the values of r, OI and MAE increased by 14.69%, 1.93% and 17.99%, respectively. The RMSE
value continued to decrease with an increase in the number of neurons in the hidden layer. When the
number of neurons in the hidden layer exceeded 20, the values of r, OI and MAE decreased. Therefore,
in this study, the optimal number of hidden layer neurons in the design of the neural network structure
was 20.

Owing to the errors of the sample data, it is easy to over-fit in the training process of the neural
network model. On the surface of this phenomenon, the sample training appears to fit well and cannot
reflect the real mapping relation. After importing the sample data, 30% of the total sample data were
selected as the test set automatically, and the remaining 70% of the total sample data were used as the
training set. During training, two types of data were stored in different arrays. In each step of the
training process, the test samples were used to evaluate the error of the current network. When the
error of the test sample was increased gradually, the training was stopped. Figure 7 shows the RMSE
of the network training.
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As shown in Figure 7, in the training process of the sample data model, the error decreased 
rapidly with the number of iterations and converged quickly to below the set expected error. In the 
initial stage of training, the descending range of the training samples was similar to the test samples, 
indicating that the BP neural network fast-approached the real input-output mapping relation as a 
whole. The root mean squares of the training and test samples were stable in the set threshold range, 
indicating that the neural network model was stable and reliable. 

Figure 8 shows a comparison between the predicted and experimental values during training. 
Under the condition where the prediction error was neglected, the ratio between the predicted and 
the experimental values was stable at approximately 1:1. The slope of the fitting line was 0.9837, 
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As shown in Figure 7, in the training process of the sample data model, the error decreased
rapidly with the number of iterations and converged quickly to below the set expected error. In the
initial stage of training, the descending range of the training samples was similar to the test samples,
indicating that the BP neural network fast-approached the real input-output mapping relation as a
whole. The root mean squares of the training and test samples were stable in the set threshold range,
indicating that the neural network model was stable and reliable.

Figure 8 shows a comparison between the predicted and experimental values during training.
Under the condition where the prediction error was neglected, the ratio between the predicted and the
experimental values was stable at approximately 1:1. The slope of the fitting line was 0.9837, which is



Sensors 2019, 19, 1112 11 of 23

approximately 1. The R2 of the fitting straight line was 0.99704. The results showed that the prediction
by the BP neural network model can achieve high accuracy matching between the predicted and
experimental data.
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3. Design of Variable Spray System

3.1. Working Principle of Variable Spray System

In this study, a variable spray system including the variable rate spray system based on the BP
neural network decision model and environmental meteorological collection module was established.
A schematic of the plant protection UAV variable spray system designed by our research team is
shown in Figure 9.
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Figure 9. The structure of variable spray system based on BP neural network. Note: 1. Temperature
sensor; 2. Humidity sensor; 3. STM32 control chip; 4. Wind speed sensor; 5. Wireless transmission
station; 6. Compression pipe; 7. Pressure nozzle; 8. Flow sensor; 9. Micro-diaphragm pump;
10. Medicine box; 11. GPS.

First, a BP neural network model was constructed in the spraying decision control system and
trained using the data. The majority of the data were obtained from our own experiments, while some
was taken from the published literature. These data included all test data of multi-rotor UAVs on the
market. The training results were stored in the decision module. Then, the environmental information
collection module collected real-time environmental temperature, humidity and wind speed data,
which were transmitted to the neural network decision module through a wireless transmission station.



Sensors 2019, 19, 1112 12 of 23

Simultaneously, the position and flight parameter information were acquired by the UAV airborne
Global Position System (GPS). The operating prescription values were obtained according to the
location information. Finally, the amount of deposition was obtained through the neural network
operation and the flow rate of the variable spray system was adjusted according to the amount
of deposition.

The physical drawings of the neural network decision module and variable spray actuator module
are shown in Figure 10. The STMicroelectronics-32 (STM32) chip (Yusong Electronic Technology Co.,
Ltd. Shenzhen, China) was chosen as the control core. The variable rate spray system based on
the BP neural network decision model was installed in the UAV (MG-1, DJ-Innovation Technology
Co., Ltd., Shenzhen, China), as shown in Figure 10a, along with the medicine box, a miniature
diaphragm pump (PLD-2201, Shijiazhuang Prandi Co, Ltd., Shijiazhuang, China). The wireless
transmission stations (Heideweiye Technology Co., Ltd., Shenzhen, China) were used to transmit
the data. The environmental meteorological collection module was mainly used to measure the
environment information, as shown in Figure 10b. The temperature and humidity sensors (Miaoguan
Technology Co., Ltd., Zhejiang, China) were used to measure real-time temperature and humidity.
A high-precision wind speed sensor (Huakong Technology Co., Ltd., Beijing, China) was used to
measure the wind speed data. The measurement accuracy was 0.01 m/s.
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Figure 10. The physical drawings of the system. (a) Variable rate spray system based on BP neural
network decision. (b) Environmental meteorological collection module. Note: (1) Pressure nozzle.
(2) Micro-diaphragm pump. (3) Medicine box. (4) Compression pipe. (5) Wireless transmission station.
(6) STM32 controller.

The deposit volume was predicted by the local neural network decision module, and the
flow rate of the system was obtained according to the jet amplitude and flight speed of the UAV.
The square wave of pulse width modulation (PWM) was generated by the STM32 controller to adjust
the micro-diaphragm pump in order to regulate the system flow rate. Among them, the relation
between the flow rate of the micro-diaphragm pump and the duty ratio of the PWM square wave was
fitted using a cubic polynomial. The relational can be expressed as [50]:

D = (20.776v3 − 21.452v2 + 8.242v− 0.431)× 100% (15)

where v is the flow rate of single nozzle in L/min, and D is the duty ratio of PWM square wave in %.

3.2. Design of the System Program

The system program was written in Keil Software (ARM Germany GmbH, Texas, USA) with
C language. The system program included a BP neural network model, sensor data collection,
prescription value acquisition and PWM square wave generation. The program flowchart is shown
in Figure 11.
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When the system operated, the flight parameters (speed and altitude) and position information of
the UAV were obtained using the communication protocol (NMEA0183) of GPS. The spraying operation
prescription value of the UAV’s current flying position was determined by location information
matching. The prescription value of the current position was obtained by matching the position of the
UAV with that of the prescription map [51]. The sensors acquired temperature, humidity and wind
speed data, which were transmitted to airborne controllers in real time through wireless transmission
stations. After information fusion, the information was used as input to the BP neural network to
predict the deposition. The flow rate of the spraying system was obtained by combining the flight
speed of the UAV with the predicted deposition amount. Finally, a PWM square wave was generated
to complete the flow rate regulation process.

4. Experiments

4.1. Experiment Scheme

To verify that the system can change the spraying flow rate with environmental factors, flight
parameters, severity of pests and diseases and UAV structural parameters. The outdoor spraying
experiments were conducted using the designed system. A 60 m × 80 m field was selected as the
experimental site located in a paddy field of Zengcheng Scientific Research and Teaching Base of South
China Agricultural University, Guangzhou, China. The location of the experimental site is shown
in Figure 12.
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The experimental site was divided into 10 m × 10 m units. To collect data conveniently, the
route of the UAV spraying operation was planned. The unit division of the operation plot and route
planning of the UAV spraying operation are shown in Figure 13a. Combined with the guidance of the
pest control expert system, the spraying prescription values of each unit in the working plot were set
by the linear interpolation method. The following five gradient levels of dosage were set up: 15, 30, 45,
60, and 75 L/hm2. The spraying prescription values of each unit were wet as shown in Figure 13b.
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Figure 13. (a) Operating unit; (b) Prescription value of each unit.

As seen from Figure 13, the test had the following six routes, F1−F6, and each unit had eight
operation units. Droplet deposition and deposition density per unit area are important parameters for
reflecting the spray effect [52]. To verify that under different prescription values, the designed system
can comprehensively consider environment, flight and structural parameters to make the deposition
satisfy requirements of the prescription value, sampling bands were set in each operation unit as
shown in Figure 14.
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The figure shows only the layout of sampling points in unit1-unit3 on route F1. The sampling
band arrangement of the operation units on the other three routes was the same as route F1. Sampling
bands such as 2, 5, and 8 were set at the center line of each operation unit. Because new prescription
values were obtained when UAV passes through the demarcation line of the operation unit, a sampling
band was set at the position of 1 m from the demarcation line on both sides of the operation unit
demarcation line. There were nine sampling points in each sampling band, namely −4#, −3#, −2#,
−1#, 0#, 1#, 2#, 3#, and 4#. The sampling devices were installed at each sampling point to collect
droplet deposition.

4.2. Experiment Data Acquisition

The outdoor experiment was conducted from 10:00 to 13:00 on January 8, 2019. The average
temperature and ambient humidity were 21.6 ◦C and 70%, respectively. The wind speed was stable
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below 3.0 m/s. The ambient wind direction is always northeasterly (approximately perpendicular to
the flight route). Four repeated experiments were conducted. The variable spray control system based
on the BP neural network decision was performed using eight rotor plant protection UAV (MG-1,
DJ-Innovation Technology Co., Ltd., Shenzhen, China). During the experiment, the environmental
parameter measurement sensors were fixed 2 m away from the ground by the field. The test site is
shown in Figure 15.
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The DepositScan software and fluorescence spectrophotometer were used to analyze the
keromekote papers and Mylar cards. The data processing method is the same as that shown in
Section 2.2.2. The droplet depositions were counted.

4.3. Experiment Results

4.3.1. Predicted and Experimental Depositions

Based on the training of the BP neural network model, the software named Droplet Deposition
Prediction System for agricultural UAV (UAVDDPS) was designed and developed to predict droplet
deposition for agricultural UAVs. The software interface is shown in Figure 16.
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The working principle of the software is divided into two parts: model training and data
prediction. The software workflow diagram is shown in Figure 17. The model was trained by the
collected sample data and the BP neural network program. After the training, the results were saved.
Then, the UAV system, pesticide and environmental parameters were input manually. The UAV system
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parameters included the pitch, rotor, nozzle, pattern, speed and height. The pesticide parameters
included the consumption, auxiliary use, auxiliary name and the auxiliary dosage. The environmental
parameters included the temperature, humidity, wind speed and wind direction. The saved training
model was used for the calculation. When the error did not satisfy the set threshold requirement,
the error propagated backward and the weight was updated until the error satisfied the requirement.
Finally, the deposition was calculated using the BP neural network model.
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The plant protection UAV selected in the test was a eight-rotor UAV with a relative spacing of
1.52 m between the two rotors. Four pressure nozzles were mounted below four opposite rotors.
The environmental information and flight parameter information received by each sensor during the
experiment were stored in an SD card. After the experiment was completed, the relevant information
of each sampling band was obtained by analyzing the stored data. The droplet depositions were
predicted by the UAVDDPS software. The droplet depositions at the center line of each unit on route
F1 in the first test and route F2 in the fourth test were selected for analysis. The comparison results of
the predicted deposition and elution deposition are shown in Table 4.

Table 4. The comparison between predicted and experimental depositions.

Band Temperature
(◦C) Humidity Speed

(m·s−1)
Height

(m)

Wind
Speed

(m·s−1)

Predicted
Deposition
(µL·cm−2)

Experimental
Deposition
(µL·cm−2)

Deviation
(%)

F1-2 20.65 72.9% 2.07 1.94 0.25 0.3058 0.317 3.66
F1-5 20.65 72.9% 2.26 2.13 0.23 1.1284 0.974 13.68
F1-8 20.65 72.8% 2.45 2.15 0.17 0.6291 0.613 2.56

F1-11 20.65 72.8% 2.89 2.21 0.21 1.5137 1.396 7.78
F1-14 20.65 72.8% 2.25 2.17 0.23 1.2231 1.258 2.85
F1-17 20.65 72.8% 2.31 2.05 0.19 0.6145 0.636 3.50
F1-20 20.65 72.8% 2.46 2.12 0.21 0.9473 0.886 6.47
F1-23 20.65 72.8% 2.43 2.14 0.20 1.5348 1.756 14.41
F2-2 21.91 68.6% 3.16 2.06 1.08 1.3961 1.265 9.39
F2-5 21.91 68.6% 3.25 2.27 0.98 1.6087 1.476 8.25
F2-8 21.91 68.6% 3.30 2.24 0.67 0.2973 0.324 8.98

F2-11 21.91 68.6% 3.35 2.35 0.84 0.6239 0.662 6.11
F2-14 21.91 68.6% 3.41 1.94 1.05 0.8953 0.876 2.16
F2-17 21.91 68.6% 3.75 1.68 1.14 0.3769 0.313 16.95
F2-20 21.91 68.6% 3.70 1.75 1.32 1.6481 1.849 12.19
F2-23 21.91 68.6% 3.59 1.45 1.09 1.5649 1.307 16.48

From the table, the errors between the droplet deposits collected by the experiment and those
predicted by the BP neural network are within 20%. The droplet deposition amount of the actual
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operation can satisfy the prescription value requirements. The prescription values of the operation
units corresponding to acquisition bands F1-1–F1-23 are as follows: 15, 45, 30, 75, 60, 30, 45, and
75 L/hm2. The normalized ratio of droplet deposition predicted by the BP neural network is
1:3.69:2.06:4.95:3.99:2.01:3.098:5.02. The normalized ratio of droplet deposition found experimentally is
1:3.07:1.95:4.41:3.97:2.01:2.64:5.85. The prescription values of the operation units corresponding to the
acquisition bands F2-1–F2-23 are as follows: 60, 75, 15, 30, 45, 15, 75, and 60 L/hm2. The normalized
ratio of droplet deposition predicted by the BP neural network is 3.71:4.27:0.79:1.66:2.38:1:4.37:4.15.
The normalized ratio of droplet deposition found experimentally is 4.04:4.72:1.04:2.12:2.80:1:5.91:4.18.
The ratio of droplet deposition at the center line of each unit to the prescription value is approximately
equal. The small difference is mainly due to the drift of droplets caused by the rotor wind field during
operation. The experimental results show that using experimental data to train the neural network
model between droplet deposition and its influencing factors is stable and reliable. The designed
variable spray decision system can predict the droplet deposition quickly according to the parameters
of the sensor feedback and the prescription value of the operation plots. The system can accurately
regulate the flow according to the predicted deposition amount, so that the droplet deposition amount
after operation is satisfied with the prescription value requirement.

4.3.2. Droplet Deposition Analysis

To verify the function of the variable spray system, four repetitive tests were conducted in outdoor
experiments, whose route and prescription values are the same as those shown in Figure 13.

Droplets were collected by the keromekote papers set at each sampling point. The droplet
deposition in each operation unit of the third test was selected for the analysis. The number of droplets
collected is shown in Figure 18.

As shown in the figure, the deposition trend of the droplets is the same in different operation units,
i.e., normal distribution. The deposition amount of each unit is related to the spraying prescription
value. The peak value of deposition on the sampling band is near the sampling center line, mainly
because the droplets at both ends of the operation are drifted and rolled up by the rotor wind field.
The droplets below the fuselage settle under the action of the downward-pressure wind field of the
rotor. The wind speed was less than 3 m/s, and the peak value of droplet deposition on each sampling
line was 0#. The peak value of sampling band F3-2 in Figure 18c is found to be at sampling point 1#,
through the analysis of environmental factors and flight trajectories. The UAV body deviates from the
sampling center line while entering route F3 from route F2. The wind speed in the natural environment
has some effect on spray deposition during the experiment. For example, the droplet deposition on
the right side of the fuselage is more than that on the left side, as shown in Figure 18b. During the
experiment, the amount of droplet deposition is mainly distributed in the effective sampling points of
−3#, −2#, −1#, 0#, 1#, and 2#. The effective spraying swath meets the basic requirements of aviation
low-capacity plant protection spray [53].
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Figure 18. Droplet deposition at different sampling points at the center line of operation unit. (a) 
Route F1. (b) Route F2. (c) Route F3. (d) Route F4. (e) Route F5. (f) Route F6. 
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Figure 18. Droplet deposition at different sampling points at the center line of operation unit. (a) Route
F1. (b) Route F2. (c) Route F3. (d) Route F4. (e) Route F5. (f) Route F6.

4.3.3. Deposition of the Boundary of Operation Unit

The UAV passes through the boundary line of the operation unit, new prescription values are
obtained. To study the droplet deposition at the operation unit boundary, the experimental data of the
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fourth repeated experiment were analyzed. Table 5 shows the amount of droplet deposition in three
units of operation route F1. Droplet deposition on the other routes is shown in Figure 19.

From Table 5, the droplet deposition at the center line of each unit is approximately equal to
that at both sides of the center line. The deviation is stable below 10%. Different prescription values
correspond to different droplet deposits in the unit. The ratio of deposits to prescription values is
approximately equal, as shown in Figure 19. The sampling bands F1-4, F1-7, F1-10, F-13, F1-16, F1-19
and F1-22 are the sampling bands 1 m behind the boundary. The deviations between the droplet
deposition on these sampling belts and that at the centerline of the current unit are 8.04%, 9.03%, 3.11%,
2.43%, 4.08%, 2.97%, and 2.1%, respectively.

Table 5. The amount of droplet deposition in three units of operation route F1.

Unit Prescription Value
(L·hm−2) Band Deposition

(µL·cm−2)
Coefficient of

Variation

1 15
F1-2(Centerline) 0.347

9.46%F1-3 0.317

2 45

F1-4 0.821
8.04%

F1-5(Centerline) 0.887
1.24%F1-6 0.876

3 30

F1-7 0.742
9.03%

F1-8(Centerline) 0.675
2.37%F1-9 0.691

4 75

F1-10 1.705
3.11%

F1-11(Centerline) 1.758
1.54%F1-12 1.731

5 60

F1-13 1.235
2.43%

F1-14(Centerline) 1.265
3.32%F1-15 1.307

6 30

F1-16 0.759
4.08%

F1-17(Centerline) 0.728
1.92%F1-18 0.714

7 45

F1-19 0.975
2.97%

F1-20(Centerline) 1.004
1.69%F1-21 0.987

8 75
F1-22 1.762

2.10%F1-23(Centerline) 1.725

The flow change of the plant protection UAV has been completed in the process of flying 1 m
from the demarcation line. According to the operation speed of the plant protection UAV 2–4 m/s, the
system takes less than 0.25 s from receiving a new flow to changing the flow to the target value, which
reflects the sensitivity of the system. In Figure 19, the droplet deposition of each operation unit changes
clearly. The droplet deposition distribution in the sampling band shows a normal distribution trend,
which indicates that the system can accomplish variable spray operation according to the prescription
value and influencing factors.



Sensors 2019, 19, 1112 20 of 23Sensors 2019, 19, x FOR PEER REVIEW 20 of 23 

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 19. Fourth test of the droplet deposition amount of operating units on different routes. (a) 
Route F1. (b) Route F2. (c) Route F3. (d) Route F4. (e) Route F5. (f) Route F6. 

5. Conclusions 

Variable spray technology can achieve the goal of applying pesticide on demand. While 
improving the chemical effects of pesticides, and effectively reducing the use of chemical pesticides. 
In this study, artificial neural network is used to study the variable spraying system of plant 
protection UAV: 

(1)  Based on the existing data of plant protection UAV operation, combined with the error back 
propagation neural network technology, a neural network model which affects the spray 
droplet deposition factor and deposition volume was trained. These factors include 
environment temperature, humidity, wind speed, flight speed, flight altitude, prescription 
value, nozzle pitch and propeller pitch. The training error of the BP neural network is 0.003. 

(2)  The variable spray technology is combined with BP neural network technology to predict 
spray deposition in real time. The droplet depositions meet the prescription value 
requirements. The error between the predicted droplet deposition and actual droplet 
deposition is less than 20%. 
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Figure 19. Fourth test of the droplet deposition amount of operating units on different routes. (a) Route
F1. (b) Route F2. (c) Route F3. (d) Route F4. (e) Route F5. (f) Route F6.

5. Conclusions

Variable spray technology can achieve the goal of applying pesticide on demand. While improving
the chemical effects of pesticides, and effectively reducing the use of chemical pesticides. In this study,
artificial neural network is used to study the variable spraying system of plant protection UAV:

(1) Based on the existing data of plant protection UAV operation, combined with the error back
propagation neural network technology, a neural network model which affects the spray droplet
deposition factor and deposition volume was trained. These factors include environment
temperature, humidity, wind speed, flight speed, flight altitude, prescription value, nozzle
pitch and propeller pitch. The training error of the BP neural network is 0.003.

(2) The variable spray technology is combined with BP neural network technology to predict spray
deposition in real time. The droplet depositions meet the prescription value requirements.
The error between the predicted droplet deposition and actual droplet deposition is less than 20%.

(3) The UAV variable spray system based on neural network is evenly sprayed. From the change of
prescription value to the response time of regulated flow is within 0.25 s, the spray range meets
the operational requirements of plant protection UAVs.
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