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Abstract: GaoFen-3 (GF-3) is the first Chinese civilian multi-polarization synthetic aperture radar
(SAR) satellite, launched on 10 August of 2016, and put into operation at the end of January 2017.
The polarimetric SAR (PolSAR) system of GF-3 is able to provide quad-polarization (quad-pol)
images in a variety of geophysical research and applications. However, this ability increases the
complexity of maintaining image quality and calibration. As a result, to evaluate the quality of
polarimetric data, polarimetric signatures are necessary to guarantee accuracy. Compared with
some other operational space-borne PolSAR systems, such as ALOS-2/PALSAR-2 (ALOS-2) and
RADARSAT-2, GF-3 has less reported calibration and image quality files, forcing users to validate the
quality of polarimetric imagery of GF-3 before quantitative applications. In this study, without the
validation data obtained from a calibration infrastructure, an innovative, three-hierarchy strategy
was proposed to assess PolSAR data quality, in which the performance of GF-3 data was evaluated
with ALOS-2 and RADARSAT-2 data as references. Experimental results suggested that: (1) PolSAR
data of GF-3 satisfied backscatter reciprocity, similar with that of RADARSAT-2; (2) most of the GF-3
PolSAR images had no signs of polarimetric distortion affecting decomposition, and the system of
GF-3 may have been improved around May 2017; and (3) the classification accuracy of GF-3 varied
from 75.0% to 91.4% because of changing image-acquiring situations. In conclusion, the proposed
three-hierarchy approach has the ability to evaluate polarimetric performance. It proved that the
residual polarimetric distortion of calibrated GF-3 PolSAR data remained at an insignificant level,
with reference to that of ALOS-2 and RADARSAT-2, and imposed no significant impact on the
polarimetric decomposition components and classification accuracy.

Keywords: GaoFen-3 (GF-3); polarimetric SAR (PolSAR); image quality; evaluation; calibration

1. Introduction

GaoFen-3 (GF-3) was launched on 10 August of 2016 and was put into operation at the end
of January, 2017 [1]. It is the first Chinese space-borne multi-polarization co-/cross-imaging radar
mission in C-band, with a fully polarimetric quad-polarization (quad-pol) mode [2]. The quad-pol
mode provides data with at least 40 beams and ground range resolutions of about 8 m and 25 m [3].
These polarimetric data are expected to be substantially applied in sea and ocean monitoring, disaster
reduction, water conservancy, and meteorology [4]. The performance of these applications depends
extremely on the polarimetric fidelity. This arouses special concern in users of GF-3 polarimetric data
about the operations of polarimetric calibration and quality of polarimetric signatures. Despite the
introduction of the synthetic aperture radar (SAR) payload design and the report of in-orbit tests and
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evaluations [2,4], these users still have to validate the quality of data before quantitative applications
because of the lack of periodic updated calibration files. Meanwhile, in contrast to the PolSAR system
of GF-3, another two space-borne polarimetric SAR (PolSAR) systems, ALOS-2/PALSAR-2 (ALOS-2)
and RADARSAT-2, both have the sophisticated images quality subsystem (IQS) [5,6]. In addition,
infrastructure and procedures designed to support the image quality and calibration operations,
substantial and sustainable updates of calibration files, and annual status of the mission have been
reported in both systems [5–17]. Hence, it is essential to evaluate the quality of GF-3 polarimetric data
and to achieve the similar quality compared with ALOS-2 and RADARSAT-2.

Quality assessment of polarimetric data refers to the estimation of the transmission distortion and
reception distortion, each as a 2 × 2 matrix containing channel imbalances (CIs) and crosstalk terms
(CTs), where polarimetric calibration is used to compensate the distortions [7,14]. In the campaign of
the PolSAR mission, quality assessment and polarimetric calibration are always performed together.
In terms of the GF-3 mission, through trihedral corner reflectors (TCRs) and grassland images in
the Etuoke Banner of Inner Mongolia, China, quality assessment and polarimetric calibration was
conducted by Chang et al. [18]. However, without the validation data derived from calibration
infrastructure, users of GF-3 PolSAR data have to develop more strategies for the evaluation of
polarimetric performance. Taking calibrated PolSAR images of RADARSAT-2 as reference, Jiang
et al. found special natural objects and then selected the measured polarimetric signals of those
objects to estimate CIs and CTs [3]. Nevertheless, in contrast to evaluation of polarimetric fidelity by
direct means, this study proposed an indirect, three-hierarchy strategy to assess the data quality of
GF-3 based on images themselves and its application with ALOS-2 and RADARSAT-2 as references.
The three-hierarchy evaluation starts from an image histogram, to a polarimetric decomposition
result, and ends at an image classification result. The histogram of polarimetric signals presents a
statistical characteristic of each polarimetric channel. Further, results of polarimetric decomposition
and classification provide an indirect indication of polarimetric fidelity. This originates from the
impacts CTs and CIs have effect on polarimetric decomposition and classification [19]. These impacts
highlight that CTs lead to a decrease of polarimetric entropy and an increase of volume scattering
components; CIs bring about deflection of the alpha parameter of eigenvalue-based decomposition
and enlarging of the model-based decomposition error; and both CIs and CTs play a negative role in
classification accuracy.

2. Methodology

The proposed three-hierarchy evaluation framework (Figure 1) consisted of a histogram-based
analysis, pixel-based analysis, and classification assessment. The histogram-based analysis involved
two hypotheses: (1) PolSAR images satisfy backscatter reciprocities (Shv = Svh) [7], and the intensity
differences between HV and VH should reach zero for most of the pixels if the data has insignificant
polarimetric distortion; (2) PolSAR images with similar Equivalent Number of Looks (ENL) should
have similar statistical distributions in the same area [20], and the polarimetric distortions of the data
of GF-3 and other sensors are in a similar level if those data have similar histograms. The pixel-based
analysis was under the hypothesis that polarimetric distortion enlarged the polarimetric decomposition
error [19,21], and the polarimetric distortion was considered insignificant when the polarimetric
decomposition results of different types of samples presented specific backscattering features and
significant separation. The hypothesis of the classification assessment assumed that polarimetric
distortion decreases the classification accuracy [22], and considering the impact of images acquiring
situation, such as operational band, incidence angle and resolution, a higher classification accuracy
indicated better polarimetric fidelity and image quality. Overall, the three-hierarchy framework starts
at the bottom of the data, continues through the middle of the polarimetric decomposition feature, and
ends at the top of the application.
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Figure 1. A three-hierarchy framework to evaluate the quality of polarimetric SAR data. 
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study, Bhattacharyya distance (Bd) was used for quantitative measurement of the similarities of the 
histogram [23]. In this paper, Bhattacharyya distance was selected for its simplicity and effectiveness 
in quantitative comparisons of images. 
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2.1. Histogram-Based Analysis

A histogram helps to clearly present the overall distribution of the digital image. In the present
study, Bhattacharyya distance (Bd) was used for quantitative measurement of the similarities of the
histogram [23]. In this paper, Bhattacharyya distance was selected for its simplicity and effectiveness
in quantitative comparisons of images.

Bhattacharyya distance is defined as:

Bd(H1, H2) = − ln

(
n

∑
i=0

√
H1(i)H2(i)

)
, (1)

where H1 and H2 are the frequency of normalized histograms, and n is the number of bins in the
histogram. The range of Bd was [0−+∞) and the same images presented the minimum value of 0.

2.2. Pixel-Based Analysis

The scattering matrix of each pixel in a PolSAR image contained full polarimetric information
of the corresponding target, which can be used to detect and distinguish land-cover types.
Target decomposition theory, making use of a scattering matrix or its second-order statistics, has been
widely applied in expressing the scattering mechanisms that lead to the polarimetric signatures seen
in a PolSAR image, such as surface scattering, double-bounce scattering, and volume scattering [24,25].
Based on target decomposition theory, this study obtained the scattering mechanism of sampling
pixels performed in a PolSAR image and analyzed whether that appropriately reflected the backscatter
property of the corresponding land-cover types. Two theories of target decomposition were categorized:
coherent target decomposition (CTD) and incoherent target decomposition (ITD). CTD dealt with
decomposition of the scattering matrix, whereas ITD made use of the second-order statistics such
as coherency or the covariance matrix [26]. In ITD, two representative groups were distinguished:
eigenvalue-based approaches (E-ITD) and mode-based approaches (M-ITD). One representative theory
in CTD, E-ITD, and M-ITD, respectively, was selected here.
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2.2.1. Coherent Decomposition

Pauli decomposition, as one of the most known and applied CTD theories, decomposes a
scattering matrix using a Pauli matrix where every base matrix is associated to a basic scattering
mechanism [24]. This model is expressed as:

S =

[
Shh Shv
Svh Svv

]
= A

1√
2

[
1 0
0 1

]
+ B

1√
2

[
1 0
0 −1

]
+ C

1√
2

[
0 1
1 0

]
+ D

1√
2

[
0 −j
j 0

]
, (2)

where S is the 2 × 2 Sinclair matrix, and Shv is the scattering coefficient of horizontal transmitting
(h) and vertical receiving polarization (v), and the other three coefficients are defined similarly.
Pauli decomposition can be interpreted as the coherent decomposition of the Sinclair matrix into
four physical mechanisms: (A) surface scattering, (B) double-bounce scattering of orthogonal dihedral
corners, (C) cross-polarization components, and (D) all asymmetric components. Among four
components for the Pauli decomposition result, only the first three components were chosen
for further analysis because the fourth component was not associated with any specific physical
scattering mechanism.

2.2.2. Eigenvalue-Based Decomposition

For development of target decomposition approaches based on the Huynen theory, there were
three different forms of decomposition result, as there were three completely different matrixes with
the first rank corresponding to the coherency matrix [27]. To obtain a unique form of the decomposition
result, Cloude first proposed the eigenvalue-based decomposition method because of the invariability
of eigenvalues, regardless of the change of base [28]. Further, three parameters (H, α and A) related to
the eigenvalues and eigenvectors of the coherence matrix were developed to enterprise the scattering
mechanisms of the target [29]. Then, H/α/A decomposition theory with wide applications was used
in this study. In this theory, scattering entropy (H) describes the randomness of eigenvalues of the
coherency matrix, mean alpha angle (α) is one of the mean parameters of the dominant scattering
mechanism from the coherency matrix, and anisotropy (A) presents the relationship between the
second and the third eigenvalues, as the entropy (H) does not completely describe the ratio of the
eigenvalues [29]. H, α and A were calculated as:

H =
3

∑
i=1

(
−Pi log3 Pi

)
, Pi =

λi
λ1 + λ2 + λ3

, (3)

α =
3

∑
i=1

Piλi, (4)

A =
λ2 − λ3

λ2 + λ3
, (5)

where λi is the eigenvalue of the coherency matrix, and Pi is the discrete probability distribution of the
eigenvalues. The coherency matrix was the second-order statistical matrix acquired from the Sinclair
matrix. For reciprocal backscatter SAR, this could be obtained by:

k =
1√
2

[
Shh + Svv Shh − Svv 2Shv

]T
, (6)

T3 = k · k∗T =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

, (7)

where T3 is the coherency matrix used for ITD decomposition.
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2.2.3. Model-Based Decomposition

Before the model-based decomposition theory was proposed, the existing decompositions were
focused so much on mathematics that they could not be easily interpreted as physical scattering
mechanisms [25]. Then, based on the physical model of some simple scattering mechanisms,
many decomposition methods were developed to depict the backscattering properties of the target.
The well-known four-component decomposition method was put forward by Yamaguchi et al., based
on four physical models [30]. It was selected here because of its good performance in depicting the
basic physical scattering mechanism of targets in urban areas. The four-component decomposition
model is expressed as:

T3 = PsTsurface + PdTdouble + PvTvolume + PcThelix (8)

where T3 is the coherency matrix given in (7). The four scattering components represent the surface
scatter (Ps), double-bounce scatter (Pd), volume scatter (Pv), and helix scatter (Pc), respectively.

2.3. Land-Cover Classification

In this study, pixels in PolSAR images were categorized into three land-cover types, including
built-up areas, vegetation, and water. In this paper, a support vector machine (SVM) was used as
the classifier for its supervised process and better performance in classification accuracy compared
with other popular classifiers, such as maximum likelihood and k-nearest neighbor [31–33]. The SVM
algorithm is a binary, linear classifier that uses a set of training samples, each of which is marked
as belonging to one or the other of two categories, to build a model that assigns each pixel to one
category or the other [32]. To keep consistent with process in pixel-based analyses, ten decomposition
components obtained by Pauli decomposition, eigenvalue-based decomposition, and model-based
decomposition were used as the training features in the SVM classifier.

3. Experiments

3.1. Study Area and Data

3.1.1. Study Areas

Current, area-wide information management in highly dynamic urban settings is critically
required for future development. In this regard, PolSAR data offered the possibility of a fast and
area-wide assessment of urban changes and developments. Hence, two study areas in Beijing and
Wuhan, with rapid economic growth and urbanization in recent years, were selected to evaluate the
performance of GF-3 PolSAR data. Beijing, the capital of China, is located in the North China Plain
between latitudes 39◦59′ and 40◦04′ N and longitudes 116◦21′ E and 116◦25′ E; Wuhan, the capital of
Hunan Province, is located in the Jianghan Plain, central China, between latitudes 30◦31′ and 30◦36′ N
and longitudes 114◦22′ E and 114◦26′ E (Figure 2).
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Figure 2. Google Earth images of the study areas in Beijing (left) and in Wuhan (right).

Although both Beijing and Wuhan are metropolises of China with large populations, there are
some differences between them. Combining both traditional and modern architecture, Beijing is one
of the oldest cities in the world, with many historical sites. However, Wuhan is a typical modern
city with huge development in the past ten years. In addition, water area in Beijing is distinctly less
than that in Wuhan, since Wuhan is developed along the Changjiang (Yangtze) River. As shown in
Figure 2, the study areas of Beijing consisted of a large proportion of built-up areas and vegetation, but
only a small proportion of water. By contrast, almost half of the study area in Wuhan was water; the
rest was built-up areas and vegetation. For the histogram-based experiments, all the PolSAR images
over Beijing were clipped into the subset as the left map in Figure 2, and all the PolSAR images over
Wuhan were clipped into the subset as the right map in Figure 2. Further, the samples for pixel-based
experiments and for training the classifier were selected over the region, demarcated by boxes with
green, red, and blue lines.

3.1.2. Polarimetric SAR Data and Ground Reference Data

Many factors have impacts on the polarimetric performance of SAR imaging, including sensor
parameters and image acquisition situations. To make a general cross-comparison, we made efforts to
collect more PolSAR data from GF-3, ALOS-2, and RADARSAT-2 in the study areas as much as possible.
A total of 13 PolSAR images in two areas were collected, including three of GF-3, three of ALOS-2,
and one of RADARSAT-2 in Beijing, and three of GF-3, two of ALOS-2, and one of RADARSAT-2
in Wuhan. The 13 images had variable parameters, such as incidence angles and imaging times
(Table 1). The nominal resolutions of GF-3, RADARSAT-2, and ALOS-2 were similar, at about 8 m.
Although the operating band of GF-3 (C-band) was different from ALOS-2 (L-band), we conducted a
comparison between them. The first reason was that the comparison of GF-3 with ALOS-2 was under
the hypothesis that if the distortion effect was insignificant, the GF-3 (C-band) should present more
surface scattering phenomena and less double-bounce phenomena than ALOS-2 (L-band) in forest
areas with a dense canopy. Another reason was that over each study site, we collected much more
GF-3 and ALOS-2 data than RADARSAT-2 data. Thus, the data quantity of GF-3 and ALOS-2 made it
possible to compare the stability of these sensors, to some extent.
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Table 1. Specifications of the PolSAR images used.

Imaging Time Abbreviation Incidence Angle (Deg) Operating Band

Beijing
GF-3 8 March 2017 GF-1703 46~47 C
GF-3 2 October 2017 GF-1710 36~38 C
GF-3 9 December 2017 GF-1712 19~22 C

ALOS-2 8 March 2016 A2-1603 38~39 L
ALOS-2 27 October 2016 A2-1610 26~28 L
ALOS-2 22 December 2016 A2-1612 26~28 L

RADARSAR-2 8 March 2009 R2-0903 39~40 C

Wuhan
GF-3 12 February 2017 GF-1702 35~37 C
GF-3 29 May 2017 GF-1705 35~37 C
GF-3 24 August 2017 GF-1708 35~37 C

ALOS-2 3 April 2015 A2-1504 35~37 L
ALOS-2 8 January 2016 A2-1601 35~37 L

RADARSAR-2 6 July 2016 R2-1607 45~46 C

Ground truth data were collected through fieldwork from 2017 to 2018. Ground reference
data were used to select samples for pixel-based analysis. Also, a total of 80% of the data were
randomly selected to train the classifier, and the remaining 20% were used to validate classification
accuracy. The locations of selected samples in optical images of Google Earth are presented in
Figure 2. The samples of built-up areas included residential areas, commercial buildings, grounds,
and roads. The building structures in the sample areas of Beijing and Wuhan were not completely
the same. Vegetation samples in Beijing were mostly trees in forest parks, and the remaining parts
were grasslands. In Wuhan, by contrast, all the vegetation samples were selected in mountain forests.
In regards to water, the samples were selected in artificial lakes over Beijing but in natural lakes
over Wuhan.

3.1.3. Image Processing

In data pre-processing, radiometric calibrations of GF-3, ALOS-2, and RADARSAT-2 were carried
out using algorithms developed by the China Academy of Space Technology (CAST), the Japan
Aerospace Exploration Agency (JAXA), and the Canadian Space Agency (CSA), respectively [2,16,34].

The GF-3 digital image was calibrated as:

σo
slc = 10 log10

[(
I2 + Q2

)
·
(

Qv

32767

)2
]
− KdB, (9)

where σo
slc is the backscattering coefficient (dB); I and Q are the real and imagery parts of the complex

image, respectively; Qv is the maximum value before image quantization; and KdB is the calibration
constant. Qv and KdB are both supplied in the header file.

The ALOS-2 digital image was calculated as:

σo
slc = 10 log10

[(
I2 + Q2

)]
+ CF1 − A, (10)

where CF1 and A are the calibration coefficients. CF1 for PALSAR-2 JAXA standard product was
obtained as −83 dB. A for PALSAR-2 JAXA standard SLC data was equal to −32 dB [16].

The RADARSAT-2 digital image was calibrated as:

σo
slc = 10 log10

[(
I2 + Q2)+ B

A

]
, (11)
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where B and A are the offset and the gain, respectively, both supplied in the LUT (look-up-table)
file [34]. As to the pixel-based analysis and classification, all using PolSAR images were processed with
a 5 × 3 multilook (azimuth × range), and were georeferenced using the WGS84 reference ellipsoid.

3.2. Results

3.2.1. Backscatter Reciprocity

To evaluate the backscatter reciprocity (Shv = Svh) of PolSAR images, three images with the same
acquiring season were selected. The difference of backscatter coefficients between HV and VH of
GF-1703, A2-1603, and R2-0903 was computed, and their histograms are presented in Figure 3.σo

HV was
sigma0 (backscattering coefficient) of horizontal transmitting (h) and vertical receiving polarization
(v), and the other three coefficients (σo

HH , σo
VV and σo

VH) were defined similarly. Then, σo
HV − σo

VH
represented the difference between HV and VH used to evaluate backscatter reciprocity. The histogram
of GF-1703 showed that most of the pixels were concentrated on zero, similar with A2-1603 (Bd = 0.01)
and R2-0903 (Bd = 0.02). As indicated by the statistical results, GF-3 had similar percentages of pixels,
with σo

HV − σo
VH lower than any specific values as ALOS-2, e.g., 1 dB, 2 dB, 3 dB, 5 dB, and 10 dB, and

the percentages were lower than that of RADARSAT-2 (Table 2).
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Figure 3. Histograms of the difference between σo
HV and σo

VH for GF-1703 (a), A2-1603 (b), and R2-0903
(c) over Beijing.

Table 2. The proportion of pixels with differences between σo
HV and σo

VH lower than specific values.

Percentage (%)

<1 dB <2 dB <3 dB <5 dB <10 dB

GF-3 13.7 27.2 40.5 61.3 87.6
ALOS-2 15.8 32.1 44.6 65.7 87.1
RADARSAT-2 30.6 50.1 63.0 79.2 93.5

3.2.2. Distribution of Backscattering Coefficients

Considering the impact of season and incidence angle, one group of images (GF-1703, A2-1603,
and R2-0903) obtained in the same season were selected over Beijing, and another group of images
(GF-1702, A2-1601, and R2-1607) with a similar incidence angle around 37◦ were selected over Wuhan
to compare the distribution of backscatter coefficients. As shown in Figure 4, GF-1703 presented more
similar characteristics with R2-0903 because it operated at the same frequency as C-band compared to
A2-1603. Histograms of σo

HH showed that GF-1703 and R2-0903 had the same highest frequency (14%),
but A2-1603 had the highest frequency at 17%. As to the histograms of σo

VV , GF-1703 and R2-0903
also displayed the same highest frequencies (18%), but A2-1603 reached the highest frequency of 24%.
In addition, both GF-1703 and R2-0903 had the highest frequency at −20 dB σo

HV , but A2-1603 reached
the highest frequency at −17 dB σo

HV . The similarity analysis verified the observation of histograms,
with the Bhattacharyya distances between GF-3 and RADARSAT-2 presenting significantly lower
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values than those between GF-3 and ALOS-2 for all σo
HH , σo

VV and σo
HV . In particular, GF-1710 and

R2-0903 obtained high similarities of σo
HH and σo

VV (Bd < 0.05). This was the expected performance for
GF-3, compared with RADARSAT-2 operating at C-band and ALOS-2 operating at L-band (Table 3).
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Table 3. Similarity of backscattering coefficients for GF-3, ALOS-2, and RADARSAT-2.

Bhattacharyya Distance (Bd)

σo
HH σo

VV σo
HV

Beijing
GF-1710 & A2-1603 0.16 0.43 0.21
GF-1710 & R2-0903 0.02 0.04 0.10
R2-0903 & A2-1603 0.11 0.41 0.14

Wuhan
GF-1710 & A2-1603 0.10 0.31 0.15
GF-1710 & R2-0903 0.56 0.46 0.49
R2-0903 & A2-1603 0.69 0.10 0.48

In Wuhan, GF-1702, A2-1601, and R2-1607 were selected for their similar incidence angles, but
they were obtained in different seasons. Notably, all histograms showed double peaks (Figure 5)
because there were large parts of water in the study area. The Bhattacharyya distances between
GF-1702, A2-1601, and R2-16037 ranged from 0.10 to 0.69, and were generally larger than that in
Beijing. GF-1702 and A2-1601 reached a high similarity in σo

HH (Bd = 0.1); while GF-1710 and R2-0903
had a medium similarity in σo

VV , with a Bd around 0.5. This meant that the observed backscattering
coefficients did not only depend on frequency, but were impacted by the season. The histogram-based
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analysis indicated that GF-3 had a similar histogram with the data of other sensors when they had the
same operating band and image-obtaining season.
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3.2.3. Polarimetric Performance of Target

In this paper, we assumed the first component (PauliA) of the Pauli decomposition represented
surface scattering power, and that the sum (PauliB + PauliC) of the second and third components
represented compound scattering based on dihedral structures and dipoles [25,30]. The physical
meaning of PauliB + PauliC corresponded to the scatterers. When HH was superior to VV in the radar
of built-up areas, the main contribution of PauliB was made by orthogonal ground–wall structures, and
the main source of the cross-pol component (PauliC) was the radar from rotated dihedral structures.
Thus, PauliB + PauliC could be seen as the double-bounce scattering power of the compound [35,36].
When HH and VV were almost equal in the radar of forest canopy, the contribution of double-bounce
scattering (PauliB) was small, and the main source of PauliB + PauliC could be seen as volume scattering
from dipoles [36]. When the backscattering intensities were low over water, PauliB + PauliC had
little physical meaning under the noise effect. It was also noticed that water and vegetation were
always recognized as distributed targets (or incoherent targets), and over those areas it was difficult
to give a practical, physically-based interpretation of the components of the Pauli decomposition.
Since the targets in urban areas seem to be coherent with slight speckle noise, the results of the Pauli
decomposition in urban areas presented expected double-bounce scattering phenomena for all the
three sensors with higher PauliB + PauliC values than PauliA. It was interesting that many dots in
Figure 6 were aligned with the curve x = y for all the three sensors. This could be explained that
most of the selected samples were incoherent targets so that the components acquired from coherent
decomposition (Pauli decomposition) may be insufficient to enterprise the scattering mechanism, i.e.,



Sensors 2019, 19, 1493 11 of 21

PauliA and PauliB + PauliC had little physical meaning. For example, in water and vegetation areas,
most samples were incoherent targets, and they obtained almost equal values in both PauliB + PauliC
and PauliA. However, built-up areas, vegetation, and water were clearly discriminated by the intensity
of PauliA and PauliB + PauliC. As shown in Figure 6, both PauliA and PauliB + PauliC showed much
higher values for built-up areas, medium values for vegetation, and much lower values for water.
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Figure 6. Scatter diagrams of built-up areas, vegetation, and water in Pauli-decomposed powers. (a)
GF-1703, (b) GF-1710, (c) GF-1712, (d) R2-0903, (e) A2-1603, (f) A2-1610, (g) A2-1612, (h) GF-1702, (i)
GF-1705, (j) GF-1708, (k) R2-1607, (l) A2-1504, and (m) A2-1601.

As shown from Figure 7, variable H/α/A decomposition results of the 13 images were obtained.
For built-up areas, most of the pixels in GF-1703, GF-1712, and GF-1702 were located in the upper
left-hand portion of the H–α map, similar with those of A2-1603, A2-1610, A2-1612, and R2-0903, which
were likely provided by isolated dihedral scatterers. By contrast, in built-up areas, most of the pixels of
GF-1710, GF-1705, and GF-1708 were located in the upper right-hand portion of the map, similar with
those of A2-1504, A2-1601, and R2-1607, showing medium entropy multiple scattering. ALOS-2 data
(Figure 7e–g) presented good consistencies in built-up areas over Beijing, but GF-3 data (Figure 7a–c)
displayed some differences, such as lower entropy values for (a) GF-1703 and lower alpha values for
(c) GF-1712. Providing that GF-1703 contained more CTs, the decreased entropy was explicable [19].
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For vegetation, GF-3 had similar pixels with RADARSAT-2 and ALOS-2 distributed in medium and
high entropy portions adjacent to the curve, representing the bound of the minimum observable α

value as a function of entropy. GF-1702 was an exception, where most pixels were concentrated in the
medium entropy portion. For water, GF-3 also had similar pixels to RADARSAT-2, distributed in the
medium right-hand portion of the H–α map. The high entropy of water can be explained as water
had a low backscattering power for both C-band or L-band sensors and, thus, the observed coherency
matrix of water had approximate low eigenvalues. Also, the waves in water surfaces can increase
the randomness of scattering. In general, high entropy means that there is a high scattering order
or random scattering with approximate eigenvalues [29]. However, the pixels in water of ALOS-2
exhibited some differences between Beijing and Wuhan.

Sensors 2019, 19, 1493 12 of 21 

explicable [19]. For vegetation, GF-3 had similar pixels with RADARSAT-2 and ALOS-2 distributed 
in medium and high entropy portions adjacent to the curve, representing the bound of the minimum 
observable 𝛼 value as a function of entropy. GF-1702 was an exception, where most pixels were 
concentrated in the medium entropy portion. For water, GF-3 also had similar pixels to RADARSAT-
2, distributed in the medium right-hand portion of the H–𝛼 map. The high entropy of water can be 
explained as water had a low backscattering power for both C-band or L-band sensors and, thus, the 
observed coherency matrix of water had approximate low eigenvalues. Also, the waves in water 
surfaces can increase the randomness of scattering. In general, high entropy means that there is a 
high scattering order or random scattering with approximate eigenvalues [29]. However, the pixels 
in water of ALOS-2 exhibited some differences between Beijing and Wuhan. 

    
(a) (b) (c) (d) 

(e) (f) (g) 

    
(h) (i) (j) (k) 

  
(l) (m) 

Figure 7. H-𝛼 distribution of built-up areas, vegetation, and water. (a) GF-1703, (b) GF-1710, (c) GF-
1712, (d) R2-0903, (e) A2-1603, (f) A2-1610, (g) A2-1612, (h) GF-1702, (i) GF-1705, (j) GF-1708, (k) R2-
1607, (l) A2-1504, and (m) A2-1601. 

As shown in Figure 8, both Ps and Pd showed much higher values for built-up areas than 
vegetation and water. Further, most of the pixels in built-up areas had larger double-bounce 
scattering powers than surface scattering, except GF-1712 with a lower incidence angle. However, 
the distributions of pixels in vegetation and water were variable for 13 images. Most pixels in GF-3 
data (Figure 8a–c,h–f) displayed dominant surface scattering over forest areas, especially for (b) 

Figure 7. H-α distribution of built-up areas, vegetation, and water. (a) GF-1703, (b) GF-1710, (c)
GF-1712, (d) R2-0903, (e) A2-1603, (f) A2-1610, (g) A2-1612, (h) GF-1702, (i) GF-1705, (j) GF-1708, (k)
R2-1607, (l) A2-1504, and (m) A2-1601.

As shown in Figure 8, both Ps and Pd showed much higher values for built-up areas than
vegetation and water. Further, most of the pixels in built-up areas had larger double-bounce
scattering powers than surface scattering, except GF-1712 with a lower incidence angle. However, the
distributions of pixels in vegetation and water were variable for 13 images. Most pixels in GF-3 data
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(Figure 8a–c,h–f) displayed dominant surface scattering over forest areas, especially for (b) GF1710 and
(h) GF-1702, where over 90% of pixels presented higher surface scattering power than double-bounce
scattering power. By contrast, a large proportion of pixels with dominant double-bounce scattering
appeared in ALOS-2 images (Figure 8e,l,m) over forest areas, especially for (m) A2-1601. This meant
that the variation between GF-3 and ALOS-2 achieved expected results corresponding to the increased
ability at longer wavelengths to penetrate vegetation canopies. In Beijing (Figure 8a–g), only
GF-1710 and R2-0903 displayed good discrimination between vegetation and water, while the pixels in
vegetation and water were mixed in other maps. By contrast, Figure 8h–m exhibited that vegetation and
water could be separated in the Ps-Pd map because of the larger surface or double-bounce scattering
power of the pixels in vegetation than that in water.
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Figure 8. Scatter diagrams of built-up areas, vegetation, and water in double-bounce and
surface-scattering powers. (a) GF-1703, (b) GF-1710, (c) GF-1712, (d) R2-0903, (e) A2-1603, (f) A2-1610,
(g) A2-1612, (h) GF-1702, (i) GF-1705, (j) GF-1708, (k) R2-1607, (l) A2-1504, and (m) A2-1601.

As presented in Figure 9, GF-3 and RADARSAT-2 shared similar Pc-Pv diagrams, where most of
the pixels in built-up areas and vegetation were mixed, but they had much higher volumes and helix
scattering powers than that in water. Compared with GF-3 and RADARSAT-2, most of the pixels in
ALOS-2 obtained better helix scattering power in vegetation and water. In general, the pixel-based
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analysis indicated that GF-3 had similar polarimetric decomposition results with that of ALOS-2 and
RADARSAT-2, and that different types of samples were significantly separated for all three sensors.Sensors 2019, 19, 1493 14 of 21 
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Figure 9. Scatter diagrams of built-up areas, vegetation, and water in volume and helix powers. (a)
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GF-1705, (j) GF-1708, (k) R2-1607, (l) A2-1504, and (m) A2-1601.

3.2.4. Comparison of Classification Results

A comparison of classification results in Beijing among GF-3, ALOS-2, and RADARSAT-2 are
summarized in Table 4. GF-1703, R2-0903, and A2-1603 had similar performances in land-cover
classification. They obtained lower overall classification accuracies (CAs, <80%) and lower overall
Kappa coefficients (KC, <0.70), as well as lower product accuracies (PA, <80%) in built-up areas and
vegetation areas. GF-1712 and A2-1612 performed better, with about 83% CA and 0.70 KC. GF-1710
achieved the best performance with 91% CA and 0.83 KC. In general, the results of classification were
good for GF-3 data, except the water in GF-1712 (PA, <40%; UA, <30%). For GF-1712 obtained in
winter, the water frozen into ice changed the backscattering power and scattering mechanism that
lead to the mixture of water and other land-cover types. Moreover, the accuracy of water was easily
impacted and changed as there was only a small proportion of water in the study area over Beijing.
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Table 4. Comparison of land-cover classification results in Beijing using images from GF-3, ALOS-2,
and RADARSAT-2 data.

Land-Cover Type GF-3 RADARSAT-2

GF-1703 GF-1710 GF-1712 R2-0903
PA UA PA UA PA UA PA UA

Built-up area 77.8 81.9 89.3 92.4 84.7 96.5 77.0 98.6
Vegetation 70.9 69.4 93.2 90.7 90.9 82.1 75.1 68.3

Water 76.1 62.8 95.3 87.9 38.1 27.5 97.3 51.7
Classification accuracy (CA) 75.0 91.4 83.1 78.3

Kappa coefficient (KC) 0.565 0.837 0.705 0.644
ALOS-2

A2-1603 A2-1610 A2-1612
PA UA PA UA PA UA

Built-up area 79.2 81.0 83.4 90.1 80.6 96.9
Vegetation 62.2 75.0 73.6 86.1 85.7 73.9

Water 95.4 56.9 98.0 53.6 92.8 53.1
Classification accuracy (CA) 75.1 80.4 83.1

Kappa coefficient (KC) 0.574 0.656 0.700

As shown in Figure 10, variable classification results of GF-3 were obtained. In GF-1703, some
pixels in residential buildings were incorrectly assigned to vegetation, which also happened to R2-0903
and A2-1603. In GF-1712, some trees in forest parks, grasslands in golf courses, and commercial
buildings and the ground were incorrectly assigned to water, which was also presented in R2-0903,
A2-1603, and AL1610. GF-1710 performed the best, where the artificial lake and forest park were
almost perfectly detected from built-up areas.

A comparison of classification results in Wuhan among GF-3, ALOS-2, and RADARSAT-2 are
summarized in Table 5. GF-3 and ALOS-2 were stable and similar, around 87% CA and 0.80 KC. By
contrast RADARSAT-2 performed better with 92% OCA and 0.89 OKC. All three GF-3 images acquired
lower product accuracies (PA < 75%) in built-up areas.

Table 5. Comparison of land-cover classification results in Wuhan using images from GF-3, ALOS-2,
and RADARSAT-2 data.

Land-Cover Type GF-3 RADARSAT-2

GF-1702 GF-1705 GF-1708 R2-1607
PA UA PA UA PA UA PA UA

Built-up area 68.2 93.0 73.8 91.1 74.6 88.5 82.6 96.2
Vegetation 96.0 75.6 93.4 79.1 95.6 81.8 97.8 68.3

Water 98.4 96.9 98.7 98.1 95.8 95.5 98.4 98.0
Classification accuracy (CA) 87.1 88.7 88.3 92.7

Kappa coefficient (KC) 0.807 0.831 0.824 0.890
ALOS-2

A2-1504 A2-1601
PA UA PA UA

Built-up area 81.9 84.5 74.1 93.5
Vegetation 85.9 86.3 84.0 84.1

Water 98.2 95.0 98.9 83.7
Classification accuracy (CA) 88.8 86.3

Kappa coefficient (KC) 0.831 0.793
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As shown in Figure 11, the classification results of GF-3 were found to be stable. However,
GF-1702 demonstrated that some pixels in residential buildings under construction were assigned
to vegetation. In contrast, RADARSAT-2 had a better performance in built-up areas, while ALOS-2
incorrectly assigned some pixels in built-up areas and vegetation to water. For all classification results,
with the changes of the image-acquiring situations, the classification accuracy of GF-3 experienced a
variation from 75.0% to 91.4%, similar to that of ALOS-2 and RADARSAT-2.
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4. Discussion

4.1. Difference between C-Band and L-Band

Differences exist in the performance of individual C-band or L-band data in its application [33,
37–39]. Given the increased ability at longer wavelengths to penetrate vegetation canopies, the
pixels in vegetation should be more concentrated at high entropy for the C-band data because of the
predominating canopy volume-scattering mechanisms [25]. Table 3 indicated that C-band PolSAR
images (GF-1703 and R2-0903) outperformed the L-band image (A2-1603) regarding similarity of
backscatter coefficients. Also, as shown in Figure 8, the pixels in vegetation of GF-3 had a similar
performance to RADARSAT-2, but different from ALOS-2. In addition, the classification results
indicated that vegetation in Wuhan obtained a generally higher product accuracy than that in Beijing
(Tables 4 and 5). Since effective surface roughness of a scattering boundary is relative to the wavelength
of the incident microwaves, there may be a difference in backscatter levels of C-band and L-band
data [40]. Nevertheless, the discrimination between the pixels of built-up areas, vegetation, and water
of GF-3 and ALOS-2 was generally similar in PauliB + PauliC − PauliA, H–α, Ps-Pd, and Pv-Pc maps.

4.2. Incidence Angle Effects

The use of images acquired from different incidence angles sometimes leads to undesired
variations in performance [41]. Among the 13 used images, incidence angles changed from 20◦

to 45◦. For GF-3, GF-1712 possessed the lowest incidence angle (< 22◦); GF-1702, GF-1705, GF-1708,
and GF-1710 had medium angles (around 37◦) similar to A2-1504, A2-1601, A2-1604, and R2-0903; and
GF-1703 had the highest incidence angle (> 45◦) similar to R2-1607. As shown in Figure 7c, the pixels
in built-up areas with lower incidence angles obtained lower α than other images, and presented a
dominant dipole-type scattering mechanism, rather than a double-bounce type. Also, as presented
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in Figure 8c, the pixels in built-up area did not clearly perform expected double-bounce scattering
phenomena. The pixels in GF-3 with higher incidence angles had similar performances as others.

4.3. Seasonal Effects

The images used were acquired in different seasons that may lead to variations in the classification
results [42]. In Beijing, GF-1710, acquired in the mid-autumn before trees began to shed their leaves,
was found to have the best classification results (91.4% OCA, 0.837 OKC). In contrast, GF-1703 and
GF-1712 acquired in winter before trees became green achieved lower product accuracies and user
accuracies of vegetation, similar with A2-1603 and A2-1612 (Table 4). In Wuhan, little impact from the
season on the product accuracy and user accuracy of vegetation was observed (Table 5), resulting from
the fact that most of the mountain trees in Wuhan were evergreen.

4.4. Difference between Beijing and Wuhan

The difference in land-cover structure between Beijing and Wuhan give rise to the varied
histograms of the backscattering coefficients in each polarimetric channel. As almost half of the
study area in Wuhan was water, all of the histograms in Wuhan presented double peaks because
water has a distinctly lower backscattering power than other land-cover types (Figures 5 and 6).
Because the histograms in Beijing just have a single peak, they had higher similarities between GF-3
and RADARSAT-2 with a shorter Bhattacharyya distance than that in Wuhan (Table 3). In addition,
the building samples in urban areas of Beijing and Wuhan exhibited different characteristics, such
as size, shape, orientation, and space interval. Nevertheless, most of the pixels in built-up areas of
Beijing and Wuhan both presented a larger double-bounce scattering power than surface scattering
for all three sensors. The classification results also displayed similar and lower product accuracy in
built-up areas of both Beijing and Wuhan (Tables 4 and 5). Due to the mixture and coexistence of
built-up structures, vegetation water areas and the heterogeneity of the objects (e.g., residential with
gardens) resulted in different backscattering variations within these areas of homogenous land-cover
classes [24]. Despite the difference in the vegetation species in Beijing and Wuhan, the two sample
areas had similar distribution characteristics in the pixel-based analysis. However, the product
accuracy of vegetation in Wuhan was found generally higher than that in Beijing for all three sensors
(Tables 4 and 5). The pixel-based analysis of water in GF-3 and RADARSAT-2 obtained similar results
between Wuhan and Beijing. However, water in ALOS-2 presented equal surface and double–bounce
scattering power in Beijing, while it performed larger surface scattering power than double-bounce in
Wuhan (Figures 6 and 8). For all three sensors, the product and user accuracy of water in Beijing was
lower than that in Wuhan.

4.5. Polarimetric Distortion

Considering the impact of operational bands, incidence angles, and image acquiring situations,
the results of the histogram-based, pixel-based, and classification analyses indirectly reflected the
polarimetric fidelity of PolSAR data. In general, the histogram-based and classification analyses did
not show any signal of distortion impacting GF-3 data. However, the pixel-based analysis indicated
that GF-1702 and GF-1703 might suffer polarimetric distortion. Hence, it impacted the decomposition
result of lower performance of polarimetric entropy as well as strange model-based decomposition
results compared with other images (Figures 7–9). However, the remaining four GF-3 PolSAR images
obtained later had no signs showing that any polarimetric distortion imposed significant impacts on
the decomposition results. It may be inferred that the sensor of GF-3 operated unsteadily before May
2017 and has been improved. Overall, the experimental results based on a three-hierarchy framework
indicated that polarimetric distortions of most GF-3 PolSAR images were similar to ALOS-2 and
RADARSAT-2. ALOS-2 and RADARSAT-2 have been widely applied in Earth observations for
many years, and their quality is confirmed to meet the users’ requirements [11,12,15,33,37,43–45].
The crosstalk accuracy of RADARSAT-2 of −30 dB, the channel imbalance of 0.5 dB in amplitude,
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and 5 degrees in phase are reported [46]. The accuracy requirement of ALOS-2 is −30 dB in crosstalk,
0.4 dB in channel imbalance amplitude, and 5 degrees in the channel imbalance phase [6]. Generally,
previous studies have documented that GF-3 has a similar polarimetric performance to RADARSAT-2
and ALOS-2 using scattering properties and corner reflectors [3,18]. In this study, the polarimetric
fidelity of GF-3 PolSAR data was proved at a similar level with that of RADARSAT-2 and ALOS-2, e.g.,
CTs <−30 dB and CIs <0.5 dB.

5. Conclusions

In this paper, an innovative, three-hierarchy strategy was proposed to evaluate PolSAR
data quality based on the images themselves and their applications, with the support of
validation information acquired from ground infrastructure. Its evaluation ability of polarimetric
performance was demonstrated by GF-3 experiments using RADARSAT-2 and ALOS-2 as references.
The experiments indicated that most of the calibrated GF-3 PolSAR data remained as insignificant
polarimetric distortions. However, the performance of GF-3 data obtained before May 2017 showed
some differences compared to data obtained after May 2017. This suggests that the system of GF-3 may
have been improved around May 2017. Moreover, the results of the present study also proved that
the backscattering properties of the target could be reasonably interpreted by decomposition theory
using PolSAR images of GF-3; similar performances with that of RADARSAT-2 and ALOS-2 were
found. Further, the polarization information of targets included in the pixels of GF-3 is applicable
to detecting and distinguishing different land-cover types. Similar abilities of GF-3, ALOS-2, and
RADARSAT-2 in land-cover classifications were also found. However, considering the image acquiring
situations, incidence angles, operating bands, and many other factors, GF-3 had variable results in
the pixel-based analysis and classification, as well as RADARSAT-2 and ALOS-2. Hence, when using
PolSAR images in a specific study, the specifications of the data should be cautiously considered to
ensure appropriateness.
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