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Abstract: The aim of this review was to understand the use of wearable technology in sport in order to
enhance performance and prevent injury. Understanding sports biomechanics is important for injury
prevention and performance enhancement and is traditionally assessed using optical motion capture.
However, such approaches are limited by capture volume restricting assessment to a laboratory
environment, a factor that can be overcome by wearable technology. A systematic search was carried
out across seven databases where wearable technology was employed to assess kinetic and kinematic
variables in sport. Articles were excluded if they focused on sensor design and did not measure
kinetic or kinematic variables or apply the technology on targeted participants. A total of 33 articles
were included for full-text analysis where participants took part in a sport and performed dynamic
movements relating to performance monitored by wearable technologies. Inertial measurement
units, flex sensors and magnetic field and angular rate sensors were among the devices used in over
15 sports to quantify motion. Wearable technology usage is still in an exploratory phase, but there is
potential for this technology to positively influence coaching practice and athletes’ technique.
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1. Introduction

1.1. Background

The role of feedback in sport is of great importance, and both coaches and athletes can benefit
from it as a means of improving athletic performance or minimizing injury risk. The coaching process
can be highly subjective, as Jones and Wallace (2005) state: ‘Every coach or athlete brings personal
interests to the coaching setting’ [1]. Ambiguity can arise in how best to develop and optimize an
athlete’s performance, with the technique and approach used by the coach being reliant on their own
expertise, experience and background. Rising interest and research into technology is helping to
overcome this subjectivity; for example, video analysis where videos can be annotated to measure
angles, allowing performance to be quantified objectively rather than be dependent on the coach’s
critical eye. However, whilst such approaches provide objectivity there is a desire to provide athletes
with real-time feedback.

1.2. Types of Systems

Motion capture systems have the ability to analyse the biomechanics of many functional and
sporting tasks. Optical systems consist of cameras used to track passive or active markers placed
on anatomical landmarks in order to obtain full-body capture. A systematic review by Pueo et al.
(2017) stated Vicon (Oxford Metrics, Oxford, UK) and Qualisys (Qualisys AB, Göteborg, Sweden) as
being the most commonly used systems in a number of different sports, from tennis to swimming to
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taekwondo [2]. However, due to camera set-up, these systems are limited by their capture volume,
generally being confined to laboratory settings. Furthermore, the large number of markers frequently
required has implications on time and can impede the performance of the tasks under investigation
and, conversely, the complexity of sporting tasks frequently leads to marker occlusion.

Wearable technology, however, is an alternative approach that has the potential to overcome
these limitations. There is a range of different types of sensors, including inertial measurement units
(IMUs) and microelectromechanical sensors (MEMS), containing a combination of magnetometers,
accelerometers and gyroscopes. In addition, there are also flex sensors, such as those produced by
Spectra Symbol (Salt Lake City, UT, USA), capable of tracking joint motion through means of changes
in resistance when a force is applied to the sensor.

A significant advantage of these wearable systems is the ability to monitor athletes in a real sport
environment to provide real-time feedback, a feature not offered by video analysis. Furthermore,
they are designed to be small, lightweight, wireless and unobtrusive permitting full movements
while participating in a sport. This gives rise to the potential for athletes to be observed outside
a laboratory setting and in their natural training environment. Sensors have been used in sports
such as skiing, snowboarding and swimming that take place in extreme conditions and have the
added features of being waterproof or being able to withstand cold temperatures while recording
data [3–8]. However, they are not without limitations: the presence of ferromagnetic objects can distort
measurements from inertial-based systems [9], and precise positioning may affect data accuracy as
well as data integration introducing errors when trying to extrapolate positional data from acceleration
measures [10,11]. Furthermore, using a wireless method to transfer data has the potential for loss of
signal during recording time or interference from mobile phones or other devices that may be on the
same transmission frequency [12].

1.3. The Adoption of Wearable Technology in Sport

A number of sports are now being seen to use wearable sensors. Monitoring player workloads in
Australian football using Global Positioning System (GPS) devices has allowed energy expenditure to
be analysed, a process previously done using heart rate monitors [13]. Using heart rate alone is not an
accurate method of determining workload as it does not factor in speed and distance travelled during
a game [13]. GPS tracking devices placed on the upper back are used to quantify the difference in the
amount of work done in different player positions as well as the game intensities [13,14]. An inverse
relationship was proposed by Wisbey et al. (2007) between the success of a team and the workload of
the players from the use of these devices [14].

Wearable sensors have been used in American football to monitor concussions by measuring
linear and angular head accelerations upon impact [15]. Sensors have been integrated into helmet
linings and mouth guards, highlighting their unobtrusiveness, a key factor in their use in training and
competition. Siegmund et al. (2015) tested two such systems, which were found to detect over 95% of
impacts, providing data that would have been otherwise unobtainable [15]. Injury prevention has also
been considered in baseball and volleyball where there is a problem with shoulder over-use injuries.
A study performed by Rawashdeh et al. (2016) was able to classify movements of the shoulder joint,
giving athletes and coaches quantifiable information [16].

By moving away from visual approaches, coaches are able to monitor several athletes in volleyball
at once and in real-time, using the VERT inertial measurement unit (IMU) system (Version 2.0, Mayfonk
Inc., Fort Lauderdale, FL, USA) to quantify jump height accurately [17] without the concern of markers
being obstructed from the view of a camera. The VERT IMU is commercially available, as are other
systems such as the KINEXON sensor (Kinexon Sports and Media Gmbh, Munich, Germany) used
in sports such as basketball to measure player acceleration and the Nadi × yoga pants (Wearable X,
New York City, NY, USA) which uses a combination of motion sensors and haptic feedback to guide
yoga technique.
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1.4. Requirements for Wearable Technology in Sport

Optical systems are widely considered to be a gold-standard method for motion capture [18], so
wearable technology should be validated against such systems and tested for reliability in order to
replace them. Recommendations have been suggested by Düking et al. (2018) including confirming
both inter-device and intra-device reliability, simulating the movements in the sport intended for the
sensor to be used in and selecting a study population that is reflective of the ultimate intended user [19].
Concurrent criterion validity is an easy way of determining similarities or differences between the data
obtained through wearable technology and a gold-standard reference. Test-retest and intra-subject
reliability are important when assessing the sensor performance with relation to the participants, while
sensor sensitivity is essential when considering the change of parameters with respect to time, as any
sensors used need to be able to track these changes [19].

The sampling frequency of a wearable device is also important for tracking changes and is
dependent on the assessed movement and variables of interest, with recommendations based on the
Nyquist-Shannon sampling theorem [20]. This states that the critical sampling frequency must be a
minimum of two times the highest frequency in the signal of interest to obtain all the information
found in the original signal [21,22]. A consequence of having too low a sampling frequency is that
relevant information can be lost.

With sensors being wireless and having their own power source that is not connected to a mains
supply adds a recording lifetime to the system used. Any wearable technology needs to last at least
the duration of a training or testing session or the length of a race or match.

The increasing use of wearable sensors in sport cannot be ignored. The unobtrusive measurement
systems are able to provide athletes and coaches with information regarding the range of motion,
accelerations and impacts, among other indicators of performance or injury risk in real-time.
The provision of objective data takes coaching to a new level, allowing more informed decision-making,
yet the information collected from these sensors needs to be delivered in a format that is easy to interpret
for it to be of use.

Previous reviews have focused on inertial sensors only, such as those by Chambers et al. (2015)
and Camomilla et al. (2018) despite other technologies such as pressure insoles or flex sensors which
could find application in sport scenarios [23,24]. Their use is not as widespread as inertial sensors and
some may require further development, but have the ability to measure biomechanical variables of use
to athletes and support staff. Several reviews also exist targeting the validity, reliability and use of
activity monitors to quantify energy expenditure, measure heart rate and count steps [25–27]. However,
these measures are not able to provide indications as to how the movement was performed, thus
limiting their ability to intervene to improve performance or prevent injury in a sporting population.

The aim of this study was to identify the use of wearable technology in sports as a means of
measuring kinetic or kinematic variables that could be used to enhance performance or prevent injury.
The focus was on sport-specific movements being performed by people who participated in these
sports, while wearing a form of wearable technology. In addition to looking at the measures obtained
by the devices, the collection and processing of data was also considered, as well as the lifetime of the
devices and how some compared to gold standard measurements.

2. Materials and Methods

2.1. Search Strategy

The following databases were used to carry out a systematic search from inception up until
31st October 2018: Scopus, Medline, Embase, Cochrane Library, IEEE Xplore, Web of Science (Core
Collection) and Engineering Village. The search terms were grouped under the following headings:
‘wearable’, ‘sensor’ and ‘sport’, with the Boolean search strategy used being ‘wearable AND sensor
AND sport’. The search strategy is detailed in Tables 1 and 2. Hand searches and screening the
references of relevant articles were also performed to identify studies that may have been overlooked
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by the electronic searches. Retrieved articles were imported into Endnote X8 software (Clarivate
Analytics, Philadelphia, PA, USA).

Table 1. Boolean search strategy.

General Specific

Wearable Portable OR worn OR cloth*3 1 OR “body-mounted” OR “non-invasive” OR mobile OR
wearable* OR apparel OR textile OR “electronic skin”

Cochrane Library MeSH terms Wearable electronic devices (exp)

Embase MeSH terms
Non-invasive monitoring

Clothing

Medline MeSH terms
Clothing

Wearable electronic devices

Sensor

Sens*3 OR goniomet* OR acceleromet* OR monitor* OR inertia* OR gyroscope* OR
device* OR magnet* OR imu OR telemet* OR pressure OR strain OR conductive OR
stretch* OR flexible OR smart OR electronic*1 OR electromagnetic OR microsensor*1

OR microelectronic*1
Cochrane Library MeSH terms Monitoring, ambulatory

Embase MeSH terms

Ambulatory monitoring
Sensor

Devices
Monitoring

Medline MeSH terms Monitoring, ambulatory
Sport Athlete*3 OR sport* OR (List of Olympic Sports, see Table 2)

Cochrane Library MeSH terms

Athletes
Sports

Exercise
Athletic performance

Motor activity

Embase MeSH terms

Athletes
Sports

Exercise
Training

Sports medicine
Motor activity

Medline MeSH terms

Athletic performance
Athletes
Sports

Exercise
Motor activity

Sports medicine
1 The asterisk (*) after the initial letters ‘cloth’ expands the search to include all terms beginning with cloth, while
the number ‘3’ limits the number of characters after ‘cloth’ of the included terms.

Table 2. List of Olympic sports.

Olympic Sports

archery OR run*4 1 OR badminton OR basketball OR boxing OR canoe* OR cycl*4 OR bik*3 OR bicycl* OR bmx
OR div*3 OR equestrian OR dressage OR fencing OR football OR soccer OR golf OR gymnastics OR handball
OR hockey OR judo OR pentathlon OR row*3 OR rugby OR sail*3 OR shoot*3 OR swim*4 OR taekwondo OR
tennis OR trampoline OR triathlon OR volleyball OR “water polo” OR weightlifting OR wrestling OR skiing
OR biathlon OR bobsleigh OR curling OR skat*3 OR luge OR “Nordic combined” OR skeleton OR snowboard*

1 The asterisk (*) after the initial letters ‘run’ expands the search to include all terms beginning with run, while the
number ‘4’ limits the number of characters after ‘run’ of the included terms.

2.2. Eligibility Criteria

Articles were included if they were: published in English; included at least one of the following
outcome measures: kinematics, kinetics as obtained from wearable technology; participants took
part in a sport (defined as an organized physical activity done alone or with a group); dynamic
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movement tasks were performed related to performance in the sport studied. Articles were excluded
if they were a review or case study; were a conference abstract (except peer-reviewed abstracts);
used only non-wearable devices; wearable technology was used to only quantify physical activity
or spatio-temporal parameters of the sport performed; or described a potential technology not
validated/used with human subjects.

2.3. Selection Process

Duplicates arising from searches in multiple databases were removed, and the titles and abstracts
were reviewed for inclusion by two independent reviewers (Y.A. and E.P.) against the inclusion and
exclusion criteria. Results from both reviewers were compared through discussion, with any conflicts
being resolved by a third reviewer (A.H.M). Full texts of the remaining articles were retrieved, and
these were evaluated against the inclusion criteria.

2.4. Data Extraction

The details used for data extraction were modified from a review published by Papi et al. (2017)
looking at the use of wearable technology to assess spinal kinematics [28]. The following details were
extracted from each study: aim; sport studied; sample size; participants’ demographics (e.g., population
type, age, gender, mass, height); tasks conducted; measuring system used; data acquisition/sampling;
participant set-up (e.g., position of the sensors, fixation method); data processing (e.g., filter used for
the signal); kinematic and kinetic variables evaluated from the sensor signals (performance indicators);
statistical analysis technique; and reliability/evaluation.

2.5. Quality Appraisal

The review by Papi et al. (2017) was used as a basis for forming a quality assessment checklist [28].
This was based on previous reviews on motion analysis and relating to the use of technology [29,30].
17 items were included in the checklist and each was rated between zero and two (0 = no, 1 = limited
and 2 = good detail), listed in Table 3.

Table 3. Criteria used for the quality assessment of included articles.

Quality Assessment Criteria

1. Were the research objectives or aims clearly stated?
2. Was the study design clearly described?

3. Was the study population adequately described?
4. Were the eligibility criteria specified?

5. Was the sampling methodology appropriately described?
6. Was the sample size used justified?

7. Did the method description enable accurate replication of the measurement procedures?
8. Was the equipment design and set up clearly described?
9. Were sensors locations accurately and clearly described?

10. Was sensor attachment method clearly described?
11. Was the signal/data handling described?

12. Were the main outcomes measured and the related calculations (if applicable) clearly described?
13. Was the system compared to an acknowledged gold standard?

14. Were measures of reliability/accuracy of the equipment used reported?
15. Were the main findings of the study stated?

16. Were the statistical tests appropriate?
17. Were limitations of the study clearly described?

3. Results

A total of 44,220 articles were obtained from the search, five further articles were identified from
another review [23] and one from a search in Sensors. After duplicates were removed, 27,767 articles
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remained for title and abstract screening using the eligibility criteria set out in Section 2.2. From there,
46 full texts were assessed for eligibility.

Thirty-four articles satisfied the inclusion criteria. The selection process and reasons for exclusion
are presented in Figure 1. The details extracted from these articles can be found in the Supplementary
Materials, Table S1: Data extracted from included articles. Studies were conducted across a range
of sports: football and rugby (n = 4) [9,31–33], swimming (n = 3) [4,6,34], skiing (n = 6) [5,7,8,35–37],
equestrian (n = 3) [38–40], cricket (n = 1) [41], table tennis (n = 1) [42], badminton (n = 1) [43], athletics
and running (n = 4) [12,44–46], rowing (n = 1) [47], baseball (n = 3) [48–50], snowboarding (n = 1) [3],
golf (n = 1) [51], netball (n = 1) [52], archery (n = 1) [53], volleyball (n = 1) [54], canoeing (n = 1) [55]
and Nordic walking [56].
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3.1. Article Quality

The quality of the included papers was rated according to the following scale: low (score ≤
33.3%), medium (33.4–66.7%) and high (score ≥ 66.8%) [28]. Four articles were deemed to be of
low quality [51,53,55,56], 19 of medium quality [4–8,12,31,32,37–39,41–44,47,49,50,54] and 11 of high
quality [3,9,33–36,40,45,46,48,52]. The results from this assessment are detailed in Appendix A,
Table A1. None of the articles described a sampling methodology and only one article out
of the 34 that were included attempted to justify the sample size [33]. Sample size was not
reported in two articles [41,51] and ranged from 1 [43] to 37 [48] in the remaining articles, with
the average number of participants at 10. Twelve studies had participants equal to or greater
than this [4,5,7–9,31,33,35,36,42,48,54]. Seventeen articles described the method in enough detail
to enable it to be replicated accurately [4,6,9,31–36,38–40,42,44,45,48,52]. All studies gave a description
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of where the sensors were located, with 19 of them giving a description that was clear and
accurate [4–9,12,31,32,34–36,40,43,44,46–48,52].

Eleven of the papers compared the wearable systems to a gold-standard measurement during
their testing [3,9,33–36,45,47,49,50,52]. A further four papers compared observed parameter results to
values that had been reported in previous literature as means of sensor data validation [5,7,31,39].

3.2. Types of Measuring Systems Used and Evaluated Variables

Inertial sensors were the most common type of system used in these studies in the form
of individual sensor nodes or as part of a body suit. Individual inertial sensors were used in
13 articles [6,12,32,34,38,39,45,47–49,52,54,55], body suits in five articles [3,6,8,9,40] and a combination
in two articles [5,7].

Body suits mentioned in the included articles were produced by different companies: suits by
Xsens Technologies B.V. (Enschede, The Netherlands) contained 16–17 sensor units, allowing full
body coverage [3,9,37,40]; while the Physilog inertial measurement units (IMUs) (GaitUp, Lausanne,
Switzerland) were incorporated into an underwear suit and contained five to seven sensors [5,7,8].
Blair et al. (2018) used the MVN Link IMS from Xsens Technologies B.V. (Enschede, The Netherlands)
to determine lower body kinetics and kinematics including sagittal plane angles for the shank and
pelvis during football and rugby kicks [9]; Gandy et al. (2018) also used an MVN suit to determine hip
and ankle joints, as well as their moments and forces [40]; while in snowboarding the suit was used to
determine knee and ankle joint angles [3]. The Physilog IMU suits (GaitUp, Lausanne, Switzerland)
were all used in skiing studies by Chardonnens et al. (2013a, 2013b, 2014) measuring lower body joint
angles and velocities, ski angles and centre of mass (CoM) position, force and velocity [5,7,8].

In archery, athletics, swimming, table tennis, baseball, football and golf, tri-axial accelerometers
were used on their own to measure different kinematic and kinetic variables. Peak positive acceleration
of the tibia was evaluated in runners [44]; three-dimensional acceleration and angular velocity during
the golf swing using accelerometers weighing as little as 22 g [51,58]; linear and angular velocity and
acceleration of the shank and thigh, as well as angular momentum, power and impulse during the
football instep kick [31]. The sensor module used in football by Meamarbashi et al. had the largest
dimensions of 23 cm × 2.3 cm × 2.5 cm and weighed 80 g, alongside a data logger weighing 70 g and
dimensions of 6 cm × 7 cm × 2.5 cm; the placement of both components was controlled after each
kick [31]. Koda et al. (2010) used the tri-axial accelerometers, weighing 93 g, to evaluate kinematics
of the arm in baseball [50]. Kiernan et al. (2018) used accelerations to determine the peak vertical
ground reaction force in male middle distance runners, with the accelerometer contained within
an activity monitor and fixed to the lateral right iliac crest with a neoprene belt by the participants
themselves [46]. In table tennis, the average peak plus acceleration value was determined with a
BSN node board small enough for use on most parts of the body (23 mm in diameter) [42] and in
swimming, accelerometers were used to determine roll and pitch angles (body rotation) as well as
body acceleration [4]. The devices used in swimming were reported as unobtrusive and compared
to every day accessories such as wristwatches and belts [4]. A tri-axial accelerometer was used
alongside a load cell by Mocera et al. (2018) in Nordic walking to characterize the different phases
of the cyclic arm movement [56]. The authors stated that the system must have the ‘lowest possible
influence on the users’ movements in order to avoid undesirable compensations’, in a sport where the
walking poles weigh as little as 180 g [56]. An accelerometer was also used in archery to measure arm
displacement [53] but the type was not stated.

Magnetic, angular rate and gravity (MARG) sensors were used in football to study angle range of
motion [33] and in cricket to observe the elbow extension angle [41]. The x-IMU (x-io Technologies,
Bristol, UK) MARG sensors used in football weigh 49g with a battery and encased in a plastic housing
(57 mm × 38 mm × 21 mm) [59]. The Pedar Pressure Insole System (novel gmbh, Munich, Germany)
was used in two studies by Nakazato et al (2011, 2013) to measure the vertical ground reaction
force [36] and foot centre of pressure [35] in comparison to Kistler force plates (Kistler Instruments Ltd.,
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Hampshire, UK). The insoles have a thickness of 1.9mm and require an analyzer weighing 400 g [60].
T and T Medilogic (T and T Medilogic Medizintechnik GmbH, Schönefeld, Germany) bilateral insole
measurements were used in snowboarding to determine foot force alongside an inertial suit measuring
lower limb kinematics [3].

A flex sensor produced by Spectra Symbol (Salt Lake City, UT, USA) and incorporated into a
glove-like hand monitoring module was used by a badminton coach in order to determine the different
types of hand grips by measuring the flexion angle of the thumb, index and middle fingers [43]. In this
device, the flex sensors were connected to the battery and microcontroller, which were also situated on
the glove, by cables.

The specification for each technology and how each was fixed onto the study participants can be
found in the Supplementary Materials (Table S1).

3.3. Testing Environment

Only five studies took place in a laboratory setting [9,33,34,44,47], most likely to allow the
use of a gold-standard measurement as a reference, which was the case in four articles [9,33,34,47].
Fantozzi et al. (2016) had participants simulate the upper-body portion of the swimming stroke while
the lower limbs were held against a rigid box by an operator instead of performing experiments in the
water [34]. Reliable measurements were produced (RMSE = 5◦ and 7◦ for breaststroke and front-crawl,
respectively), but this method had its limitations as participants were required to use their lumbar
muscles to support themselves and range of motion of the body was reduced in comparison to normal
kinematics in the water [34]. Additionally, studies conducted by Wood et al. (2014) and King et al.
(2009) used treadmills and rowing machines but both authors mentioned the need to test the wearable
systems in a normal running environment and on the water [44,47].

Three articles did not state the environment that the experiments took place in [32,43,51] and the
remaining studies were conducted in field, with the skiing studies by Chardonnens et al. (2013a, 2013b,
2014) and a distance running study by Kiernan et al. (2018) monitoring participants during general
training [5,7,8,46].

3.4. Data Sampling, Collection and Processing

Four articles did not state the sampling frequency of the devices that were used [38,43,48,54]
but for those that did, this ranged between 10 Hz and 1000 Hz, with the most common frequency
used being 100 Hz by eight systems [32,35–37,39,49,52,55]. Sampling frequency was justified in
four articles: 25 Hz was deemed ‘competent for obtaining enough knowledge of performance’ with
regards to table tennis blocks by Guo et al. (2010) [42], and the accelerometers used by Kiernan et al.
(2018) had a frequency that was double that of observed vertical ground reaction forces (vGRFs) in
running [46]. The SportSemble nodes in baseball contained accelerometers with differing sampling
frequencies (1000 Hz and 100 Hz) in order to record slow and fast motion [49]. This was recognized as a
limitation of optical motion trackers. The higher sampling frequency of the SportSemble nodes enabled
more detail about the pitching movement to be obtained compared to an optical motion analysis
system sampling at 180 Hz, which is important when considering variables such as peak acceleration.
In contrast, an inertial measurement unit (IMU) developed at Loughborough University was used by
Philpott et al. (2014) to assess sprint starts in athletics had a much lower sampling frequency compared
to Vicon (Oxford Metrics, Oxford, UK) (50 Hz and 250 Hz, respectively) [45]. The few data points
collected by the IMU do not make it suitable for the explosive nature of the sprint start sequence.
However, a sampling frequency of 50 Hz was deemed suitable for capturing the dynamics of the pole
movement in Nordic walking [56].

Some of the systems recorded the output of the sensor onto a memory card (including micro
and mini SD cards) (n = 7) [6,8,31,46,52,54,56], used data loggers (n = 3) [5,7,36] and microcontrollers
(n = 3) [4,41,49]. In these cases, data was visualised and processed after testing. Some systems
employed wireless data transfer (n = 11) [3,12,32,38,40,42,43,47,51,53,55], meaning that there was
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potential for data to be received and analysed in real-time, with five specifically stating the use of
Bluetooth [38,40,43,51,53] but still data was processed after data collection.

Real-time feedback was used in only 2 articles [25,46]. Wood et al. (2014) used auditory feedback
in order to reduce tibial peak-positive acceleration (PPA) in runners [44], while the “ISWIM” system
used by Li et al. (2016) provided live feedback in the form of vibrations [6]. In both cases, participants
were instructed to modify running or swimming biomechanics based solely on the feedback produced
from the devices. Runners were able to significantly reduce PPAs throughout a 25 min testing period
from 5.9 ± 0.7 g to 5.4 ± 0.7 g [44]. The case was similar with the “ISWIM” system—the vibratory
feedback improved body rotation angles and as a result increased stroke rate and improved session
times in three out of four participants [6]. Feedback in both systems led to a change in biomechanics
without any technical input from coaches, indicating that these are systems that athletes could use on
their own.

The elbow torque-measurement device (ETD) studied by Makhni et al. (2018) used data
transmission via Bluetooth to display the output of the sensor, including parameters such as arm speed,
shoulder rotation and torque across the medial elbow, on a smartphone application [48]. However, the
authors were not concerned with the feedback produced from the device, so there is not any indication
as to its utility. This type of setup is also mentioned by Mitsui et al. (2015) to improve a golfer’s
swing [51] but it was unclear whether the output was displayed in real-time or not and the impact of
feedback on improving performance.

Fifteen studies mentioned data being filtered before being subject to analysis and a variety of
filters were used: second- [4,34], third- [39] and fifth- [45] order Butterworth filters; a low-pass median
filter [5,7]; a second-order low-pass filter [3]; the Madgwick Altitude and Heading Reference System
(AHRS) orientation filter [41,52]; a band pass filter [42]; a first-order analogue filter [49]; Kalman
filtering and algorithms [9,12,34]; and a three-point moving average filter [54]. Kalman filtering was
used when a wearable system contained multiple sensors in order to fuse the data, however, it is
limited at higher speeds, with Blair et al. (2018) noting higher measurement errors in segments
experiencing higher movement velocities in different kicking codes, but a good concurrent validity
was observed when comparing the IMS to Vicon (Oxford Metrics, Oxford, UK) [9]. In three instances,
commercially available data processing software from Xsens (MVN Biomech Studio, MVN Studio and
MT Manager 4.2.1, Xsesns Technologies B.V.m Enschede, The Netherlands) was used to process data
which uses Kalman filters to fuse sensor data [9,12,40]. In all other cases, custom-made scripts were
used to process data.

3.5. Recording and Usage Lifetime of Wearable Systems

Systems employed different recording methods, leading to a variation in the amount of data
that could be recorded and the usage lifetime. Lithium ion polymer batteries (LiPo) were found in
many accelerometers, IMUs and inertial and magnetic measurement units (IMMUs) [33,49,55,61–63].
The exact Physilog sensors (GaitUp, Lausanne, Switzerland) used by Chardonnens et al. (2013a,
2013b, 2014) were not stated [5,7,8] but data on Physilog 4 measurement units (GaitUp, Lausanne,
Switzerland) state the use of rechargeable LiPo batteries. Nickel-metal hydride (NiMH) batteries were
also used, chosen for their cost-efficiency and availability [35,36,43]. The highest storage capacity listed
was of the Opal IMMUs (APDM Wearable Technologies, Portland, OR, USA) which are able to store
approximately 720 h of data internally used by Fantozzi et al. (2016) [34,64]. The SwimMaster system
is able to record continuously for up to 48 h [4]. A summary of the battery and storage features of the
devices used is listed in Table 4.
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Table 4. Battery and storage features of the wearable device systems.

Device Battery Type Battery Life Storage Capacity Application

MVN Link IMS (Xsens
Technologies B.V., Enschede,

The Netherlands)
One battery Ten hours - Rugby and

football [9]

Moven suit (Xsens
Technologies B.V., Enschede,

The Netherlands)
- Approximately

three hours [65]
Snowboarding

[3]

Opal IMMUs (APDM
Wearable Technologies,

Portland, OR, USA)
-

Up to 16 h
depending on

whether data is
logged or streamed

Internal storage of up
to 8GB (approximately

720 h) [64]
Swimming [34]

Physilog 4 inertial
measurement unit (IMU)

(GaitUp, Lausanne,
Switzerland)

LiPo battery Up to 23 h
Internal storage of 4GB,

providing 9 days of
storage at 200 Hz [63]

Skiing [5,7,8]

SportSemble node 145 mAh LiPo
rechargeable battery Up to three hours

Flash memory of 116
kB (allowing each

node to store around
11 seconds of data)

Baseball [49]

x-IMU magnetic, angular
rate and gravity (MARG)
sensors (x-io Technologies

Limited, Bristol, UK)

LiPo battery (on-board
charging via USB) [59] - - Football [33]

G-Link-LXRS tri-axial
accelerometer (LORD

MicroStrain, Williston, VT,
USA)

22 mAh LiPo battery
(at 3.7 V) - 2 MB [61] Running [44]

Motus sensor (Motus Global,
Rockville Centre, NY, USA)

10 mAH lithium ion
battery (rapid charging

using a microUSB)
Up to eight hours Store 450+ throws Baseball [48]

SABELSense IMU High density LiPo
battery

Approximately
three hours

8 GB on a micro SD
card [62] Netball [52]

IMU nodes in CanoeSense
system

1200 mAHh LiPo
batteries

More than six
hours - Canoeing [55]

Hand Monitoring Module
1500 mAh NiMh

batteries (at 1.5 V per
cell)

- - Badminton [43]

Pedar pressure insole system
(novel gmbh, Munich,

Germany)
NiMh batteries - 2 GB SD card [60] Skiing [35,36]

TSND121 wearable sensors
(ATR-Promotion, Kyoto,

Japan)
- Approximately six

hours
5.8 h of memory

storage at 100 Hz [58] Golf [51]

SwimMaster System 250 mAh battery at
3.7 V) Up to 48 h 1 GB of flash memory Swimming [4]

BSN nodes - - 512 kB of flash memory Rowing [47]
XSens MTw IMMUs (Xsens
Technologies B.V., Enschede,

The Netherlands)
- Approximately

three hours - Running [12]

3.6. Validation and Reliability Using Gold-Standard Measurements

The Vicon motion capture system (Oxford Metrics, Oxford, UK) was used as a gold-standard
reference for wearable systems used in football [9,33], rugby [9], baseball [50], athletics [45] and
netball [52]. Philpott et al. (2014) used Kistler force platforms (Kistler Instruments Ltd., Hampshire,
UK) alongside the Vicon (Oxford Metrics, Oxford, UK) camera set-up [45] when looking at sprinting
in athletics. Optical based systems, such as BTS Bioengineering stereo-photogrammetric system
(BTS Bioengineering Corp., Quincy, MA, USA) and XOS Technologies (Wilmington, MA, USA)
optical motion analysis system), were also used as gold standards when observing movement in
swimming [34], rowing [47] and baseball [49]. Kistler force plates (Kistler Instruments Ltd., Hampshire,
UK) were also used in snowboarding by Krüger et al. and in skiing by Nakazato et al. (2011,
2013) [3,35,36]. The reliability of the wearable systems in comparison to the gold-standard references
are detailed in Table 5. Results obtained from experimentation by Chardonnens et al. (2013a, 2014),
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Gandy et al. (2018), Meamarbashi et al. (2010) and Munz et al. (2013) were compared to values
reported in literature [5,7,31,39], detailed in Table 6.

Table 5. Wearable systems compared to a gold-standard reference.

Article and Sport System Used Gold Standard Reliability

Akins et al.
(2015)—Football

[33]

Two x-IMU magnetic,
angular rate and gravity

(MARG) sensors (x-io
Technologies Limited,

Bristol, UK)

8 camera Vicon motion
capture system (Oxford

Metrics, Oxford, UK)

Concurrent criterion validity was assessed by comparing
ankle plantar flexion, inversion and internal rotation angles

between the MARG sensors and Vicon (Oxford Metrics,
Oxford, UK). High correlation between sagittal plane data (r =
0.900 to 0.975) for all manoeuvres and RMSE was <5◦ for drop

landing, drop jump and stop jump manoeuvres. Poor
correlation between frontal plane data (r = −0.074 to 0.562)

and RMSE > 3◦ for all manoeuvres. Poor correlation between
transverse plane data and RMSE > 3◦ for all manoeuvres.

Blair et al.
(2018)—Australian

football, football
and rugby [9]

MVN Link IMS—17
inertial sensors (Xsens

Technologies B.V.,
Enschede, The
Netherlands)

12 camera Vicon motion
capture system (Oxford

Metrics, Oxford, UK)

Trivial to small errors between the IMS and Vicon (Oxford
Metrics, Oxford, UK) in all kinematic parameters (0.1 to 5.8%).

Trivial to small differences were found (0.2 to 5.8%) were
found between linear velocities (foot and pelvis), angular

velocities (knee, shank and thigh), sagittal joint (knee and hip)
and segment angle (shank and pelvis) means.

Fantozzi et al.
(2016)—Swimming

[34]

Seven Opal IMMU units
(APDM Wearable

Technologies, Portland,
OR, USA)

7 camera SMART-DX
7000

stereo-photogrammetric
system (BTS

Bioengineering Corp.,
Quincy, MA, USA)

Better agreement between the two systems was found during
breaststroke compared to front crawl (CMC = 0.99 compared
to 0.97, R = 0.99 compared to 0.95 and RMSE = 5◦ compared

to 7◦).

King et al.
(2009)—Rowing

[47]

Three BSN nodes with
inertial sensors

SMART-D system (BTS
Bioengineering Corp.,

Quincy, MA, USA)

Mean error between the BSN nodes and BTS system: 3.6◦ in
femur rotation, 4.0◦ for thoraco-lumbar rotation and 4.1◦ in
sacrum rotation. Accuracy of BSN nodes not as fine as BTS

system resolution.

Koda et al.
(2010)—Baseball

[50]

3D sensor containing
two types of

accelerometer and
gyroscope

Vicon motion capture
system (Vicon460,

Oxford Metrics, Oxford,
UK))

Correlation coefficient (R) and RMS of error calculated
between estimated position by 3D sensor and position

measured by the Vicon system (Oxford Metrics, Oxford, UK).
For the shoulder, elbow and wrist, R in the x and y direction
showed excellent agreement (>0.95) but was smaller for the z
direction (0.73 to 0.92). However RMS was less than 10 cm for

the z direction and between 13 cm to 18 cm for the x and y
directions.

Krüger et al.
(2009)—

Snowboarding [3]

Moven IMS—16 sensor
units (Xsens

Technologies B.V.,
Enschede, The

Netherlands); T and T
Medilogic bilateral insole

measurement (T and T
Medilogic

Medizintechnik GmbH,
Schönefeld, Germany)

Three synchronized
cameras; Kistler force

plate (Kistler
Instruments Ltd.,
Hampshire, UK)

The IMS system had a moderate accuracy when compared to
the cameras. Mean deviation in knee angles for left leg and

right leg were 4.8◦ and 3.1◦ respectively. Correlation
coefficients were high (0.96 for the left knee angle and 0.77 for
the right knee angle). The insoles had a milted accuracy with a

mean RMSE of 28%.

Lapinski et al.
(2009)—Baseball

[49]

Five SportSemble
nodes—inertial

measurement units
(IMUs)

10 camera XOS
Technologies

(Wilmington, MA, USA)
optical motion analysis

system

No statistical difference between average shoulder internal
rotation velocity in pitching measured by the IMUs and XOS
Technologies system was found. Average standard deviation
for IMUs was 6% compared to 15% for the optical system. In
batting, the average error of bat speed at time of impact was

4.8%.

Nakazato et al.
(2011)—Skiing [36]

Pedar pressure insole
system (novel gmbh,
Munich, Germany)

Two Kistler portable
force plates (Kistler

Instruments Ltd.,
Hampshire, UK)

The mean absolute difference of the vertical ground reaction
force (vGRF) mean between the two systems ranged from 0.45

to −0.23 N/BW on the outside leg, from −0.19 to −0.10
N/BW on the inside leg and from −0.25 to 0.13 N/BW during
the edge changing phase. Differences were influenced by the

skier’s level, skiing mode and pitch.

Nakazato et al.
(2013)—kiing [35]

Pedar pressure insole
system (novel gmbh,
Munich, Germany)

Two Kistler portable
force plates (Kistler

Instruments Ltd.,
Hampshire, UK)

Similarity coefficients between the two systems were contrary
or low in the x direction during the outside and inside phases
(−0.95 to 0.26 and −0.53 to 0.40 respectively). Highly similar
time characteristics were indicated in the y direction for the

outside phase (0.92 to 0.96) and were lower for the inside
phase (0.15 to 0.78).

Philpott et al.
(2014)—Athletics

[45]
Wireless IMU

14 Vicon T-Series
cameras (Oxford Metrics,
Oxford, UK); two Kistler
force platforms (Kistler

Instruments Ltd.,
Hampshire, UK)

The mean correlation coefficient between the IMU and Vicon
(Oxford Metrics, Oxford, UK) was 0.907. The timing accuracy

of the IMU was 1.26 frames and the acceleration mean
accuracy was 1.81 m/s2.

Shepherd et al.
(2017)—Netball

[52]
SABELSense IMU sensor

10 camera Vicon motion
capture system (Oxford

Metrics, Oxford, UK)

The IMU overestimated the Vicon (Oxford Metrics, Oxford,
UK) angle of the forearm at release by 4.03◦, which was

deemed an appropriate level of accuracy.
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Table 6. Wearable systems compared to values reported in literature.

Article and Sport System Used Reliability

Chardonnens et al.
(2013a)—Skiing [7]

Seven Physilog inertial
measurement units (IMUs)

(GaitUp, Lausanne,
Switzerland)

Validity of the system was assessed by comparing ski horizontal angle
at landing impact to hill slope: −0.2 ± 4.8◦, max value 11.5◦. When

compared to literature data, differences were smaller than 6◦ for 75% of
the angles and smaller than 15◦ for 90% of the angles.

Chardonnens et al.
(2014)—Skiing [5]

Seven Physilog IMUs (GaitUp,
Lausanne, Switzerland)

Maximum centre of mass (CoM) velocity for Group 1 was 2.51 ± 0.83
m/s and for Group 2 was 2.23 ± 0.28 m/s compared to 2.3 m/s

reported in literature.

Meamarbashi et al.
(2010)—Football [31] Sensor module and data logger

Angular velocity of the shank in the x-axis of 1911.2 ± 241.6◦/s is
comparable with the widely accepted value reported by Nunome et al.

(2006) of 2257 ± 224.6◦ [66]

Munz et al.
(2013)—Equestrian [39]

Two MTx inertial sensors
(Xsens Technologies B.V.,

Enschede, The Netherlands)

Inter-individual differences were found for anterior-posterior (AP) and
lateral (LT) angles in sitting trot (13.3 ± 2.3◦ and 6.4 ± 1.1◦

respectively), corresponding well with values in literature (13.9 ± 2.2◦

and 5.1 ± 1.1◦ respectively) reported by Byström et al. (2009) [67]

Accuracy of the systems used were reported using different measures in other articles. The inertial
measurement units (IMU) sensors in the MVN system used by Gandy et al. (2018) were stated to
have a 3-dimensional orientation accuracy within 1◦ [40]. Gawsalyan et al. (2017) reported a typical
RMSE of around 7◦ for the magnetic, angular rate and gravity (MARG) sensors used in upper limb
motion detection in cricket [41]. The “ISWIM” system was compared to a stopwatch, not considered a
gold standard, reporting an average difference of 0.56 seconds between timings [6]. Jacob et al. (2017)
reported accuracy of the flex sensors as a detection percentage, displaying a 70% detection ability
in identifying five badminton grips [43]. The accuracy of the elbow torque-measurement device for
monitoring baseball pitches was much higher, being able to detect 97.4% of pitches thrown by a given
player [48]. A wearable sensor detecting football kicks only failed to detect six kicks out of a total of
450 [32]. The IMU for assessing skill level in volleyball had an average accuracy of 94% [54].

3.7. Application of Technology

Different applications were reported for the wearable systems and included injury prevention;
quantifying skill level and expertise; improving technique; and characterizing movements. Injury
prevention was the motivation behind twelve studies [3,12,33,35–37,40,44,46,48–50]. For instance, in
running, high tibial peak-positive accelerations (PPAs) are linked to the risk of tibial stress fracture
and as mentioned in Section 3.4, the provision of auditory feedback was able to temporarily reduce
PPAs in participants [44]. By correlating the pitch of the signal output to the magnitude of PPAs,
athletes were able to audibly understand the impact they were generating during each step. Fatigue
is considered as another risk factor in relation to injury and the change in running mechanics was
observed during a marathon [12]. Despite being ideal conditions to monitor fatigue and significant
changes in mechanics, data was only collected from three participants, which is not enough to produce
an analysis representative of runners in general. Yet another variable was considered as an indication
of injury risk by Kiernan et al. (2018)—peak vertical ground reaction force (vGRF) was measured in
injured and non-injured runners during every day training [46]. A higher peak vGRF was produced
by injured runners, which is something that could be used by coaches and support staff to generate a
threshold for injury potential.

Injury prevention was also considered in baseball [48–50], with three authors of included articles
assessing different parameters. Lapinski et al. (2009) studied a combination of kinetics and kinematics
of the upper body [49], Makhni et al. (2018) focused on elbow torque [48] and Koda et al. (2010)
observed kinematics of the upper limb [50]. A combination of accelerometers and gyroscopes was
used in all three articles.

In other studies, authors were able to accurately measure parameters that were connected to
injury-risk, such as high forces produced in middle-turns in skiing [37] and hip asymmetry in horse
riders [40], suggesting their possibility of influencing rehabilitation or aiding elite coaches and athletes.
However, there was no indication on the utility of the results in making biomechanical changes to
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reduce injuries risk. Magnetic, angular rate and gravity (MARG) sensors used by Akins et al. (2015) in
football showed promise of clinical utility with regards to sagittal plane movement only [33] but the
impact of these measures was not demonstrated in practice.

Wearable technology was used to quantify skill level and expertise by five authors [5,7,8,38,54].
The inertial measurement units (IMUs) used to assess the skill level of volleyball players had a 94%
accuracy in determining a players’ ability. The data was also compiled into a database, increasing
the impact of the sensor as this information could be used by sports scientists and professional
coaches [54]. Patterson et al. (2010) also used IMUs to quantify the expertise of show jumping horse
riders. The authors came to the conclusion that their hypothesis was confirmed in that novice riders
were more unbalanced during jumps and differences were recorded between experienced and novice
riders in the variables measured [38], but there was not any statistical analysis performed to support
this or explain the significance of these differences.

Movement recognition using sensors was also explored in sports such as dressage, cricket,
football, rugby, badminton, rowing, swimming and table tennis [9,32,34,39,41–43,47]. In dressage
authors reported kinematic differences between two riders with similar levels of experience [39]
and in rowing, King et al. (2009) were able to distinguish between poor and good technique but
this was not quantified [39,47]. Yet in the study by Guo et al. (2010), accelerations were used to
characterize the table tennis block movement as well as distinguish between different athlete levels by
comparing the standard deviation in acceleration [42]. Acceleration and force values were also used to
characterize Nordic walking phases by Mocera et al. (2018) [56]. The hand monitoring module (HMM)
for monitoring the grip in badminton had only a 70% detection ability between the five different
grips [43]. Accuracy of the wearable sensor used by Kim et al. (2016) was also reported: out of
450 kicks, only six were not detected and the sensor was also able to discriminate kicking from other
motion such as walking [32]. In cricket, MARG sensors were used to analyse upper limb motion in
cricketers to detect potentially illegal bowling actions.

4. Discussion

The aim of this review was to determine the use and application of wearable technology in sport.
From the reviewed articles it can be seen that a variety of wearable systems (including inertial sensors,
pressure insoles and flex sensors) were able to measure kinetic and kinematic parameters in over 15
different sports. The common themes were injury prevention, performance assessment, movement
recognition and skill level classification.

Out of these themes, injury prevention is an area with great potential when the cost of injuries
and harm to athletes is considered. However, this potential has not been realised when compared to
the other themes. Difficulties are presented by the many definitions of sports injury in literature and
the barriers to describing their incidence: defining and gaining access to the population of interest
and obtaining a suitable measure of exposure time [68]. Anecdotal experience is often the basis for
preventive measures, such as strength training and stretching [69]; little of it is evidence-based as there
are few randomised controlled trials reported in the literature [68,69] and this is especially the case for
overuse injuries [70]. Moreover, there is a lack in the use of biomechanical measures as a means of
objectively preventing injury as it is not clear which measures should be used.

However, data and technology have the potential to be used to predict injury, forming the basis
for individualised programmes and allowing monitoring over a period of time, as demonstrated by
Kiernan et al. (2018) who studied participants over a 60-day period [46]. To fully exploit this potential
in injury prevention, however, there is still a need of identifying which biomechanical data obtained
from wearable technology is the most useful as a predictor of injury.

4.1. Quality of Articles

The quality of the included papers varied greatly, with regards to descriptions of methods, sensor
location and processing techniques. The population studied also varied, with participants ranging
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from an amateur to professional level. As stated by Düking et al. (2018), the study population should
reflect the intended user of the wearable technology as different populations behave differently [19].
There was no standardization within each sport in terms of population size and experience. Swimming
was studied by Bächlin et al. (2012) and Fantozzi et al. (2016) with 16 participants (from occasional
to elite swimmers) in the former article and 8 (no experience level stated) in the latter [4,34]. Smaller
sample sizes can create population bias in the results, making it difficult to trust the output.

There was also a discrepancy in detail given for the tasks conducted by study participants and
the description of the location of the sensors. The amount of detail given affects the ability of a study
to be accurately replicated by another person. When multiple IMUs are used, the output can be
combined using a model to reconstruct human motion and trajectories, but often this is dependent on
using specific anatomical landmarks, so sensor placement can affect the reliability and accuracy of the
reconstruction [71].

4.2. Wearable Systems Used

Commercially available sensors were used in the majority of studies, the most popular being
those produced by Xsens Technologies B.V. (Enschede, The Netherlands) in the form of individual
sensor nodes and sensor suits in seven articles in skiing, equestrian, football, rugby, running and
snowboarding [3,9,12,37–40]. A possible explanation for this could be the accuracy of these inertial
sensors in comparison to a gold-standard reference. The MVN Link IMS used by Blair et al. (2018) [9]
was compared to the Vicon motion capture system (Oxford Metrics, Oxford, UK) and small errors
were reported (0.1 to 5.8%) between the two systems. Results from MTx inertial sensors analysing
pelvis motion corresponded well with previously reported values in the literature where reflective
markers and infrared cameras were used to study the same movement [39,67].

The cost of these devices is what makes them prohibitive for widespread use. The MTw Awinda
3DOF Wireless Motion Tracker (Xsens Technologies B.V., Enschede, The Netherlands) costs €400 per
unit [72], while the Physilog 5 inertial measurement unit (IMU) (GaitUp, Lausanne, Switzerland) is
slightly more at €499 per unit [73]. When you consider that Chardonnens et al. (2013, 2014) [5,7]
used seven Physilog sensors to monitor skiing kinematics just of the lower limbs, the total cost
associated with the setup rises dramatically. This limits the technology to high performance or private
organizations that have a budget to spend on equipment, but this is only representative of a small
section of the sporting population.

An alternative to commercially available sensors are those that have been developed in-house,
which have also been shown to be comparable to motion capture systems. ADXL193 and ADXL320
accelerometers from Analog Devices were components in the 3D sensor used by Koda et al. (2010) [50]
with estimation errors of about 10% but are a fraction of the cost of the x-io Technologies IMU (Bristol,
UK) used by Akins et al. (2015) [33,59,74]. The ADXL193 is being sold for £18 by one supplier [75],
while the x-IMU has a cost of £309 with housing and battery [59]. Other comparable features between
the two devices included sampling frequency and battery lifetimes.

The ease of use of wearable systems must be considered. Sensors requiring complex set ups or
technicians are not providing additional benefit compared to motion capture systems. For instance,
the elbow torque-measurement device (ETD) studied by Makhni et al. (2018) [48] and the compression
sleeve housing it were positioned by technicians and this positioning was constantly monitored.
However, this process takes approximately a minute and if it is easy for coaches or other baseball
players to learn and carry out it could contribute to device uptake. The fact that the activity monitor
employed by Kiernan et al. (2018) [46] was placed by the participants themselves demonstrates its ease
of use and indicates that small changes in positioning will not have a significant impact on the device
output. The ease of using the Xsens MVN suit (Xsens Technologies B.V., Enschede, The Netherlands)
was mentioned by Gandy et al. (2014) [40]. As the inertial sensors are embedded in the suit, it allowed
for quicker changes between participants during the study.
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Only three studies considered the impact of the technology used on participants [48,52,56] and
two did so in a quantitative manner [48,52]. In a sport such as Nordic walking where the equipment is
so light (180 g per pole), any technological additions must have minimal impact in terms of weight
which was considered by the authors [56]. However, no indication of the weight of the acquisition
system was given nor a comparison between this setup and poles that had not been equipped with any
technology. This would have provided a clear indication of its impact on the participant’s movements.
An important result from the study by Shepherd et al. (2017) [52] in netball was the comparison
of player performance when wearing the IMU and when not wearing it. The Pearson’s correlation
coefficient, used for measuring the linear dependence between the conditions of wearing the IMU or
not, was approximately equal to one [52], meaning that there was no significant impact on performance
when wearing the IMU, an indicator of unobtrusiveness which could help with increasing the uptake
of the device. Makhni et al. (2018) [48] followed up with participants after testing and 95% indicated
that they thought it was important to monitor the stress on the arm when throwing and 73% indicated
that they would alter their technique based on the results of the ETD. However, there was a significant
difference between the percentage of those surveyed as to whether they would use the ETD in a
practice or game setting (91% compared to 41%) [48]. Further information as to why this was the case
would have been useful as for understanding what athletes expect from wearable devices if they are to
use them in a competition setting.

4.3. Data Collection and Processing

Motion capture systems and wearable devices are able to provide athletes and coaches with more
detailed analysis of the biomechanics involved in a certain sport, enhancing the methods already
employed such as video analysis. However, systems such as Vicon (Oxford Metrics, Oxford, UK)
have lengthy data processing times and require familiarity with how the system works. This is being
considered by researchers, who recognize the importance of making data easy to interpret and also
providing simple real-time feedback to athletes. The benefits of this can be seen in the systems studied
by Li et al. (2016) [6] and Wood et al. (2014) [44] where vibratory and audible feedback is provided to
the athletes and has been able to change movement biomechanics by reducing tibial impact and body
rotation but this type of feedback is still novel.

Both Bächlin et al. (2012) [4] and Wang et al. (2016) [55] were aware of the importance of being able
to provide real-time feedback for the SwimMaster and CanoeSense monitoring systems, respectively,
and this was indicated in plans for further work, which would allow continuous monitoring and
swimmers to make changes without a coach [4] or a coach to assess synchronicity between athletes
and its impact on canoe propulsion [55].

As feedback from the “ISWIM” system was provided by the device itself and not an external
source, there was not a concern for signal loss. For other wearable technology considering real-time
feedback as grounds or future work, wireless data transfer was employed and some devices were
affected by interference and signal loss. In the case of Reenalda et al. (2016), data was transferred
wirelessly from inertial and magnetic measurement units (IMMUs) to a base station (Awinda Master,
Xsens Technologies B.V., Enschede, The Netherlands)) while runners completed a marathon [12].
This base station was mounted on the handlebars of a bike that travelled alongside the athlete, with
the antenna raised up to make sure that elements such as road signs and other runners did not
interfere. Despite this, signal loss meant that data could only be collected for three out of the five initial
participants [12]. A similar problem was encountered by Gandy et al. (2014) where wireless signals
were lost at a consistent location during testing, potentially due to the presence of a radio mast [40].
Wireless data transfer has been pursued as a means of providing a less invasive system, however
signal loss in outdoor environments or due to other objects causing interference limits its potential.
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4.4. Testing Environment

Only five studies were conducted in a laboratory setting [9,33,34,44,47]. The remaining studies
were conducted in a sporting environment [3–8,12,31,35–42,45,46,48–50,52–55] with the exception of
three, where the location was not stated [32,43,51]. The conditions of testing are really important as
revealed by the study conducted by Fantozzi et al. (2016) where simulated swimming altered the
swimmers’ biomechanics [34]. Although this is suitable for testing the reliability of the inertial and
magnetic measurement units (IMMUs), it is not necessarily suitable for considering kinematic and
kinetic factors relating to injury or performance. The unpredictability of the conditions in an outdoor
environment in sports such as running can influence the biomechanical motions of an athlete, therefore,
it is important for wearable systems to be tested in these scenarios and allow more accurate kinetic
and kinematic measures to be obtained.

Conducting tests in a sports setting has the advantage of being able to factor in elements that
may affect readings, such as drag in swimming, as well as having a better understanding of how an
athlete moves in their chosen sport. Furthermore, monitoring an athlete in a training or competition
environment is a good test of whether or not a system is unobtrusive as its performance is under
scrutiny. Under laboratory conditions, participants may expect sensors to be uncomfortable but would
generally not put up with them causing discomfort or affecting their range of motion during training
or competition.

4.5. Application of Wearable Technology

The potential of wearable technology is huge. Across the included articles different applications
were reported: the prevention of injury; characterizing movements; analysing technique and
performance; and identifying skill level. Participants from a recreational to elite level were selected in
the various studies, demonstrating that these devices are not just for athletes at the top of their game
but have a wider target audience, increasing the impact of wearables.

There was a crossover between themes, such as the combination of movement classification and
performance in the study by Shepherd et al. (2017) in netball [52], as kinematic observations can be
used to influence coaching practices to achieve a more consistent forearm angle at ball release, which
would increase the likelihood of scoring during a game. Addressing more than one theme elevates the
utility of a technology as it means more people can benefit from it in different ways.

The demand for wearable devices is there, especially where injury is concerned: twelve studies
considered factors related to injury [3,12,33,35–37,40,44,46,48–50]. When you consider injury statistics
reported by Lapinski et al. (2009) in baseball [49], where the percentage of pitchers with injuries
sufficient enough to prevent them from throwing increased from 50% in 1973 [76] to over 75% in
1999 [77], there is hope that technology can reverse this trend.

Both running and baseball injuries were each studied by three different authors, each looking
at different parameters. However, in each sport, only one author was able to convey the effect of
the device on study participants [44,48]. It was clear to see the influence of providing feedback in
the form of audible beeps directly to athletes in the case of Wood et al. (2014) [44]. This simple
method is beneficial as it allows athletes to still have an awareness of their training environment
without looking at visual information in the form of figures or numbers. As discussed in Section 4.2,
Makhni et al. (2018) was the closest to demonstrating buy-in from athletes in terms of using the device
in training [48]. Furthermore, the elbow torque-measurement device (ETD) used was linked to a
smartphone application, where quantified data may be more beneficial for coaches who can use the
readouts to compare athletes. There is an advantage of smartphone applications to all users in that it is
integrated into a device that is used every day, additional equipment is not needed besides the sensor.

What this information demonstrates is that we are still at an exploratory phase of using wearable
technology in sports. Despite all studies being able to measure kinematic and kinetic parameters with
these devices, only a few were able to translate the output into something suitable for actual use by
coaches and athletes [6,44,48,51]. This opens up the possibility to future studies to explore how to take
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a device from the research stage to the sporting environment by considering athlete comfort and ease
of interpreting device output.

It is also evident from reviewing these articles that there is a wearable technology market for both
athletes and coaches. Devices that are able to give audible and vibratory feedback are more useful
for athletes who can then focus on the movements they are performing and their environment, also
enabling them to make biomechanical changes without the presence of a coach. Where the device
output can be displayed as readout on a smartphone or tablet is more suitable for coaches, but when
developing these accompanying applications, care must be taken to only provide data that is useful
and easy to interpret.

4.6. Review Limitations

Limitations must be considered when interpreting the findings of this review. The search
was limited to seven databases, albeit integrated by reference lists and hand searches to identify
other relevant papers. The results of this review are also limited by the choice of search terms and
inclusion criteria—using different terms and criteria may have changed the number of articles included.
However, the search terms and criteria were guided by similar reviews that have been published
previously. Included articles were restricted to those published in English, posing a language bias
to article selection. The quality assessment checklist was formed based on a review of wearable
technology for spine movement assessment [28] as a standardized tool was not found because study
quality was not reported in similar reviews.

5. Conclusions

This review highlighted the increase in research surrounding wearable technology as a means to
measure kinetic and kinematic parameters in sport to understand movement and differentiate between
skill levels. However, it is still not at a stage where there is a good translation to general usage.

The most common type of device used were inertial measurement units, however, authors
explored stand-alone accelerometers and flex sensors also, both those commercially produced and
developed in-house. Devices were developed in-house as a way to reduce their cost, which will
ultimately have an impact on uptake when reaching the general market. Different applications were
reported, from injury prevention to assessing performance, with the long-term vision of influencing
coaching practices and athlete technique. There is potential for wearable technology to be used for
long-term monitoring, especially beneficial in injury prevention as it provides coaches and athletes
with the capacity to observe and analyse biomechanical risk factors over a defined exposure time, with
the ability to influence injury prevention models.

A significant advantage of these devices is the ability to monitor athletes in-field instead of inside
a laboratory. Laboratory testing introduces many limitations, while normal sports environments are
able to provide a more accurate setting for biomechanical measurements. Furthermore, a number of
studies validated the wearable technology against gold-standard reference, showing good concurrent
validity. Despite the measurement errors associated with inertial measurement units, they are able
to provide reliable measurements of joint kinematics and as a result, are a popular choice across
different sports.

Providing real-time feedback has been shown to influence technique in swimmers and runners,
but this is not yet a common feature across all sports. Wireless data transfer is a necessity but signal
loss needs to be minimized in order for data to be beneficial. Any output must also be easy to interpret
if it is going to be adopted by athletes and coaches who may have limited experience when analysing
movement biomechanics data. Wireless data transfer has been addressed in a few studies, where data
was transferred to and displayed in smartphone applications.

There have been discrepancies in the amount of detail given in the studies carried out and the
wearable sensors that were used, but it is clear that they are able to provide accurate information
regarding biomechanics that can be exploited in a number of ways in sport.
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Appendix A

Table A1. Quality assessment of included articles (L: Low, M: Medium, H: High).

Quality Index
Item Number

Akins et al.
(2015)

Bächlin et al.
(2012)

Blair et al.
(2018)

Chardonnens
et al. (2013a)

Chardonnens
et al. (2013b)

Chardonnens
et al. (2014)

Fantozzi et al.
(2016)

Gandy et al.
(2018)

Gawsalyan et
al. (2017)

1 2 1 2 2 2 1 2 2 1
2 2 1 2 1 1 1 2 1 0
3 2 1 2 1 2 2 2 2 1
4 2 0 0 0 0 0 0 1 0
5 2 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 0 0
7 2 2 2 0 0 0 2 2 0
8 1 2 2 2 2 2 2 1 1
9 1 2 2 2 2 2 2 2 1

10 1 2 2 2 2 2 2 1 0
11 0 2 1 2 1 2 2 2 1
12 2 2 2 2 2 2 2 1 1
13 2 0 2 0 0 0 2 0 0
14 2 0 2 2 0 0 2 2 2
15 2 2 2 2 2 2 2 2 1
16 2 0 2 2 2 2 2 2 1
17 2 1 2 1 2 0 2 2 2

Total score/
out of 34 29 18 27 21 20 18 28 23 12

Percentage
score/% 85.3 52.9 79.4 61.8 58.8 52.9 82.4 67.6 35.3

Quality
category H M H M M M H H M
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Table A1. Cont.

Quality Index
Item Number

Guo et al.
(2010)

Jacob et al.
(2017)

Kiernan et al
(2018)

Kim et al.
(2016)

King et al.
(2009)

Koda et al.
(2010)

Krüger et al.
(2009)

Lapinski et al.
(2009)

Lee et al.
(2017)

1 1 2 2 1 1 2 2 2 1
2 1 0 2 0 0 2 2 1 0
3 1 1 2 1 0 2 1 1 2
4 0 0 2 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 2 1 1 2 0 1 1 1 1
8 2 2 2 2 2 2 2 1 2
9 1 2 2 2 2 1 1 1 1

10 1 2 2 1 0 2 2 2 1
11 2 0 1 0 0 0 2 2 0
12 2 2 2 2 2 2 2 2 2
13 0 0 0 0 2 2 2 2 0
14 0 1 0 1 2 2 2 2 0
15 1 1 2 2 1 2 2 1 2
16 1 0 2 0 1 2 1 0 0
17 1 1 2 1 0 0 2 2 0

Total score/
out of 34 16 15 24 15 13 22 24 20 12

Percentage
score/% 47.1 44.1 70.6 44.1 38.2 64.7 70.6 58.8 35.3

Quality
category M M H M M M H M M
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Table A1. Cont.

Quality Index
Item Number Li et al. (2016) Makhni et al.

(2018)
Meamarbashi

et al. (2010)
Mitsui et al.

(2015)
Mocera et al.

(2018)
Munz et al.

(2013)
Nakazato et

al. (2011) Nakazto et al. (2013)

1 1 2 2 1 1 2 2 2
2 0 2 1 0 0 1 2 2
3 1 2 2 0 2 2 2 1
4 0 2 1 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 2 2 2 0 0 2 2 2
8 2 2 2 1 1 2 2 2
9 2 2 2 1 1 1 2 2

10 1 2 2 0 0 2 1 1
11 0 0 0 0 1 2 0 0
12 2 2 2 2 2 2 2 2
13 0 0 0 0 0 0 2 2
14 0 2 0 0 0 0 2 2
15 2 2 2 1 2 2 2 2
16 0 2 2 0 0 2 2 2
17 0 2 0 0 1 2 2 2

Total score/
out of 34 13 26 20 6 11 22 25 24

Percentage
score/% 38.2 76.5 58.8 17.6 32.4 64.7 73.5 70.6

Quality
category M H M L L M H H
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Table A1. Cont.

Quality Index
Item Number

Patterson et
al. (2010)

Philpott et al.
(2014)

Reenalda et
al. (2016)

Shepherd et
al. (2017)

Taha et al.
(2016)

Wang et al.
(2018)

Wang et al.
(2016) Wood et al. (2014)

1 2 2 2 2 2 1 1 2
2 1 1 1 1 0 1 0 2
3 1 2 2 2 1 2 1 2
4 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 2 2 1 2 1 1 1 2
8 2 1 2 2 1 2 2 2
9 1 1 2 2 1 1 1 2

10 2 0 2 2 0 0 0 0
11 2 2 1 1 0 2 1 0
12 2 2 2 2 2 2 2 2
13 0 2 0 2 0 0 0 0
14 0 2 0 2 0 2 0 0
15 2 2 2 2 1 2 1 2
16 0 2 2 2 0 2 0 2
17 1 2 2 0 1 1 0 1

Total score/
out of 34 18 23 21 24 10 19 10 20

Percentage
score/% 52.9 67.6 61.8 70.6 29.4 55.9 29.4 58.8

Quality
category M H M H L M L M



Sensors 2019, 19, 1597 23 of 26

References

1. Jones, R.L.; Wallace, M. Another bad day at the training ground: Coping with ambiguity in the coaching
context. Sport Educ. Soc. 2005, 10, 119–134. [CrossRef]

2. Pueo, B.; Jimenez-Olmedo, J. Application of motion capture technology for sport performance analysis. Retos
2017, 32, 241–247.

3. Krüger, A.; Edelmann-Nusser, J. Biomechanical analysis in freestyle snowboarding: Application of a full-body
inertial measurement system and a bilateral insole measurement system. Sports Technol. 2009, 2, 17–23.
[CrossRef]

4. Bachlin, M.; Troster, G. Swimming performance and technique evaluation with wearable acceleration sensors.
Pervasive Mob. Comput. 2012, 8, 68–81. [CrossRef]

5. Chardonnens, J.; Favre, J.; Cuendet, F.; Gremion, G.; Aminian, K. Measurement of the dynamics in ski
jumping using a wearable inertial sensor-based system. J. Sports Sci. 2014, 32, 591–600. [CrossRef]

6. Li, R.; Zibo, C.; WeeSit, L.; Lai, D.T. A wearable biofeedback control system based body area network
for freestyle swimming. In Proceedings of the 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; Volume 2016,
pp. 1866–1869. [CrossRef]

7. Chardonnens, J.; Favre, J.; Cuendet, F.; Gremion, G.; Aminian, K. A system to measure the kinematics during
the entire ski jump sequence using inertial sensors. J. Biomech. 2013, 46, 56–62. [CrossRef] [PubMed]

8. Chardonnens, J.; Favre, J.; Cuendet, F.; Gremion, G.; Aminian, K. Characterization of lower-limbs
inter-segment coordination during the take-off extension in ski jumping. Hum. Mov. Sci. 2013, 32, 741–752.
[CrossRef]

9. Blair, S.; Duthie, G.; Robertson, S.; Hopkins, W.; Ball, K. Concurrent validation of an inertial measurement
system to quantify kicking biomechanics in four football codes. J. Biomech. 2018, 73, 24–32. [CrossRef]

10. Alonge, F.; Cucco, E.; Ippolito, F.; Pulizzotto, A. The use of accelerometers and gyroscopes to estimate hip
and knee angles on gait analysis. Sensors 2014, 14, 8430. [CrossRef]

11. Papi, E.; Spulber, I.; Kotti, M.; Georgiou, P.; McGregor, A.H. Smart sensing system for combined activity
classification and estimation of knee range of motion. IEEE Sens. J. 2015, 15, 5535–5544. [CrossRef]

12. Reenalda, J.; Maartens, E.; Homan, L.; Buurke, J.H. Continuous three dimensional analysis of running
mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in
running mechanics. J. Biomech. 2016, 49, 3362–3367. [CrossRef] [PubMed]

13. Wisbey, B.; Rattray, B.; Pyne, D. Quantifying Changes in AFL Player Game Demands Using GPS Tracking 2006
AFL Season; FitSense Australia: Florey, Australia, 2007.

14. Wisbey, B.; Montgomery, P.; Pyne, D. Quantifying Changes in AFL Player Game Demands Using GPS Tracking
2007 AFL Season; FitSense Australia: Florey, Australia, 2008.

15. Siegmund, G.P.; Guskiewicz, K.M.; Marshall, S.W.; DeMarco, A.L.; Bonin, S.J. Laboratory validation of two
wearable sensor systems for measuring head impact severity in football players. Ann. Biomed. Eng. 2016, 44,
1257–1274. [CrossRef] [PubMed]

16. Rawashdeh, S.A.; Rafeldt, D.A.; Uhl, T.L. Wearable imu for shoulder injury prevention in overhead sports.
Sensors 2016, 16, 1847. [CrossRef] [PubMed]

17. MacDonald, K.; Bahr, R.; Baltich, J.; Whittaker, J.L.; Meeuwisse, W.H. Validation of an inertial measurement
unit for the measurement of jump count and height. Phys. Ther. Sport 2017, 25, 15–19. [CrossRef] [PubMed]

18. van der Kruk, E.; Reijne, M.M. Accuracy of human motion capture systems for sport applications;
state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 806–819. [CrossRef] [PubMed]

19. Düking, P.; Fuss, F.K.; Holmberg, H.-C.; Sperlich, B. Recommendations for assessment of the reliability,
sensitivity, and validity of data provided by wearable sensors designed for monitoring physical activity.
JMIR mHealth uHealth 2018, 6, e102. [CrossRef] [PubMed]

20. McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. A brief review of strength and ballistic assessment
methodologies in sport. Sports Med. 2014, 44, 603–623. [CrossRef] [PubMed]

21. Hamill, J.; Caldwell, G.E.; Derrick, T.R. Reconstructing digital signals using shannon’s sampling theorem.
J. Appl. Biomech. 1997, 13, 226–238. [CrossRef]

22. Robertson, G.E.; Caldwell, G.E.; Hamill, J.; Kamen, G.; Whittlesey, S. Research Methods in Biomechanics; Human
Kinetics: Champaign, IL, USA, 2004.

http://dx.doi.org/10.1080/1357332052000308792
http://dx.doi.org/10.1080/19346182.2009.9648494
http://dx.doi.org/10.1016/j.pmcj.2011.05.003
http://dx.doi.org/10.1080/02640414.2013.845679
http://dx.doi.org/10.1109/EMBC.2016.7591084
http://dx.doi.org/10.1016/j.jbiomech.2012.10.005
http://www.ncbi.nlm.nih.gov/pubmed/23123073
http://dx.doi.org/10.1016/j.humov.2013.01.010
http://dx.doi.org/10.1016/j.jbiomech.2018.03.031
http://dx.doi.org/10.3390/s140508430
http://dx.doi.org/10.1109/JSEN.2015.2444441
http://dx.doi.org/10.1016/j.jbiomech.2016.08.032
http://www.ncbi.nlm.nih.gov/pubmed/27616268
http://dx.doi.org/10.1007/s10439-015-1420-6
http://www.ncbi.nlm.nih.gov/pubmed/26268586
http://dx.doi.org/10.3390/s16111847
http://www.ncbi.nlm.nih.gov/pubmed/27827880
http://dx.doi.org/10.1016/j.ptsp.2016.12.001
http://www.ncbi.nlm.nih.gov/pubmed/28254580
http://dx.doi.org/10.1080/17461391.2018.1463397
http://www.ncbi.nlm.nih.gov/pubmed/29741985
http://dx.doi.org/10.2196/mhealth.9341
http://www.ncbi.nlm.nih.gov/pubmed/29712629
http://dx.doi.org/10.1007/s40279-014-0145-2
http://www.ncbi.nlm.nih.gov/pubmed/24497158
http://dx.doi.org/10.1123/jab.13.2.226


Sensors 2019, 19, 1597 24 of 26

23. Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends supporting the in-field use of wearable
inertial sensors for sport performance evaluation: A systematic review. Sensors 2018, 18, 873. [CrossRef]
[PubMed]

24. Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific
movements. Sports Med. 2015, 45, 1065–1081. [CrossRef] [PubMed]

25. Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D. Current state of commercial wearable technology in
physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 2018, 11, 503–515. [PubMed]

26. O’Driscoll, R.; Turicchi, J.; Beaulieu, K.; Scott, S.; Matu, J.; Deighton, K.; Finlayson, G.; Stubbs, J. How well do
activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of
current technologies. Br. J. Sports Med. 2018. [CrossRef] [PubMed]

27. Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of
consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [CrossRef]

28. Papi, E.; Koh, W.S.; McGregor, A.H. Wearable technology for spine movement assessment: A systematic
review. J. Biomech. 2017, 64, 186–197. [CrossRef] [PubMed]

29. Dobson, F.; Morris, M.E.; Baker, R.; Graham, H.K. Gait classification in children with cerebral palsy: A
systematic review. Gait Posture 2007, 25, 140–152. [CrossRef] [PubMed]

30. Needham, R.; Stebbins, J.; Chockalingam, N. Three-dimensional kinematics of the lumbar spine during
gait using marker-based systems: A systematic review. J. Med. Eng. Technol. 2016, 40, 172–185. [CrossRef]
[PubMed]

31. Meamarbashi, A.; Reza, S.; Hosseini, S. Application of novel inertial technique to compare the kinematics
and kinetics of the legs in the soccer instep kick. J. Hum. Kinet. 2010, 23, 5–13. [CrossRef]

32. Kim, W.; Kim, M. Soccer kick detection using a wearable sensor. In Proceedings of the 2016 International
Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 19–21
October 2016; pp. 1207–1209.

33. Akins, J.S.; Heebner, N.R.; Lovalekar, M.; Sell, T.C. Reliability and validity of instrumented soccer equipment.
J. Appl. Biomech. 2015, 31, 195–201. [CrossRef] [PubMed]

34. Fantozzi, S.; Giovanardi, A.; Magalhães, F.A.; Di Michele, R.; Cortesi, M.; Gatta, G. Assessment of
three-dimensional joint kinematics of the upper limb during simulated swimming using wearable
inertial-magnetic measurement units. J. Sports Sci. 2016, 34, 1073–1080. [CrossRef]

35. Nakazato, K.; Scheiber, P.; Müller, E. Comparison between the force application point determined by portable
force plate system and the center of pressure determined by pressure insole system during alpine skiing.
Sports Eng. 2013, 16, 297–307. [CrossRef]

36. Nakazato, K.; Scheiber, P.; Müller, E. A comparison of ground reaction forces determined by portable
force-plate and pressure-insole systems in alpine skiing. J. Sports Sci. Med. 2011, 10, 754–762. [PubMed]

37. Lee, S.; Kim, K.; Kim, Y.H.; Lee, S.S. Motion anlaysis in lower extremity joints during ski carving turns
using wearble inertial sensors and plantar pressure sensors. In Proceedings of the 2017 IEEE International
Conference on Systems, Man, and Cybernetics, Banff, AB, Canada, 5–8 October 2017; pp. 695–698.

38. Patterson, M.; Doyle, J.; Cahill, E.; Caulfield, B.; McCarthy Persson, U. Quantifying show jumping horse rider
expertise using imus. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBC’10, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 684–687.

39. Munz, A.; Eckardt, F.; Heipertz-Hengst, C.; Peham, C.; Witte, K. A preliminary study of an inertial
sensor-based method for the assessment of human pelvis kinematics in dressage riding. J. Equine Vet. Sci.
2013, 33, 950–955. [CrossRef]

40. Gandy, E.A.; Bondi, A.; Hogg, R.; Pigott, T.M.C. A preliminary investigation of the use of inertial sensing
technology for the measurement of hip rotation asymmetry in horse riders. Sports Technol. 2014, 7, 79–88.
[CrossRef]

41. Gawsalyan, S.; Janarthanan, T.S.; Thiruthanikan, N.; Shahintha, R.; Silva, P. Upper limb analysis using
wearable sensors for cricket. In Proceedings of the 2017 2nd IEEE International Conference on Electrical,
Computer and Communication Technologies, ICECCT 2017, Coimbatore, India, 22–24 February 2017.

42. Guo, Y.W.; Liu, G.Z.; Huang, B.Y.; Zhao, G.R.; Mei, Z.Y.; Wang, L. A pilot study on quantitative
analysis for table tennis block using a 3d accelerometer. In Proceedings of the IEEE/EMBS Region 8
International Conference on Information Technology Applications in Biomedicine, ITAB, Corfu, Greece, 3–5
November 2010.

http://dx.doi.org/10.3390/s18030873
http://www.ncbi.nlm.nih.gov/pubmed/29543747
http://dx.doi.org/10.1007/s40279-015-0332-9
http://www.ncbi.nlm.nih.gov/pubmed/25834998
http://www.ncbi.nlm.nih.gov/pubmed/29541338
http://dx.doi.org/10.1136/bjsports-2018-099643
http://www.ncbi.nlm.nih.gov/pubmed/30194221
http://dx.doi.org/10.1186/s12966-015-0314-1
http://dx.doi.org/10.1016/j.jbiomech.2017.09.037
http://www.ncbi.nlm.nih.gov/pubmed/29102267
http://dx.doi.org/10.1016/j.gaitpost.2006.01.003
http://www.ncbi.nlm.nih.gov/pubmed/16490354
http://dx.doi.org/10.3109/03091902.2016.1154616
http://www.ncbi.nlm.nih.gov/pubmed/27011295
http://dx.doi.org/10.2478/v10078-010-0001-x
http://dx.doi.org/10.1123/jab.2014-0191
http://www.ncbi.nlm.nih.gov/pubmed/25734398
http://dx.doi.org/10.1080/02640414.2015.1088659
http://dx.doi.org/10.1007/s12283-013-0119-x
http://www.ncbi.nlm.nih.gov/pubmed/24149570
http://dx.doi.org/10.1016/j.jevs.2013.02.002
http://dx.doi.org/10.1080/19346182.2014.905949


Sensors 2019, 19, 1597 25 of 26

43. Jacob, A.; Zakaria, W.N.W.; Tomari, M.R.B.; Sek, T.K.; Suberi, A.A.M. Wearable flex sensor system for
multiple badminton player grip identification. In Advances in Electrical and Electronic Engineering: From Theory
to Applications; AIP Publishing: College Park, MD, USA, 2017; Volume 1883.

44. Wood, C.M.; Kipp, K. Use of audio biofeedback to reduce tibial impact accelerations during running.
J. Biomech. 2014, 47, 1739–1741. [CrossRef]

45. Philpott, L.K.; Weaver, S.; Gordon, D.; Conway, P.P.; West, A.A. Assessing wireless inertia measurement units
for monitoring athletics sprint performance. In Proceedings of the Sensors, Valencia, Spain, 2–5 November
2014; pp. 2199–2202.

46. Kiernan, D.; Hawkins, D.A.; Manoukian, M.A.C.; McKallip, M.; Oelsner, L.; Caskey, C.F.; Coolbaugh, C.L.
Accelerometer-based prediction of running injury in national collegiate athletic association track athletes.
J. Biomech. 2018, 73, 201–209. [CrossRef]

47. King, R.C.; McIlwraith, D.G.; Lo, B.; Pansiot, J.; McGregor, A.H.; Yang, G.-Z. Body sensor networks for
monitoring rowing technique. In Proceedings of the 2009 6th International Workshop on Wearable and
Implantable Body Sensor Networks, BSN 2009, Berkeley, CA, USA, 3–5 June 2009; pp. 251–255.

48. Makhni, E.C.; Lizzio, V.A.; Meta, F.; Stephens, J.P.; Okoroha, K.R.; Moutzouros, V. Assessment of elbow
torque and other parameters during the pitching motion: Comparison of fastball, curveball, and change-up.
Arthroscopy 2018, 34, 816–822. [CrossRef] [PubMed]

49. Lapinski, M.; Berkson, E.; Gill, T.; Reinold, M.; Paradiso, J.A. A distributed wearable, wireless sensor system
for evaluating professional baseball pitchers and batters. In Proceedings of the 2009 International Symposium
on Wearable Computers, ISWC 2009, Linz, Austria, 4–7 September 2009; pp. 131–138.

50. Koda, H.; Sagawa, K.; Kuroshima, K.; Tsukamoto, T.; Urita, K.; Ishibashi, Y. 3d measurement of forearm and
upper arm during throwing motion using body mounted sensor. J. Adv. Mech. Des. Syst. Manuf. 2010, 4,
167–178. [CrossRef]

51. Mitsui, T.; Tang, S.; Obana, S. Support system for improving golf swing by using wearable sensors.
In Proceedings of the 2015 Eighth International Conference on Mobile Computing and Ubiquitous
Networking (ICMU), Hakodate, Japan, 20–22 January 2015; pp. 100–101.

52. Shepherd, J.B.; Giblin, G.; Pepping, G.J.; Thiel, D.; Rowlands, D. Development and validation of a single
wrist mounted inertial sensor for biomechanical performance analysis of an elite netball shot. IEEE Sens. Lett.
2017, 1. [CrossRef]

53. Taha, Z.; Mat-Jizat, J.A.; Omar, S.F.S.; Suwarganda, E. Correlation between archer’s hands movement while
shooting and its score. Eng. Sport 2016, 147, 145–150. [CrossRef]

54. Wang, Y.; Zhao, Y.; Chan, R.H.M.; Li, W.J. Volleyball skill assessment using a single wearable micro inertial
measurement unit at wrist. IEEE Access 2018, 6, 13758–13765. [CrossRef]

55. Wang, Z.; Wang, J.; Zhao, H.; Yang, N.; Fortino, G. Canoesense: Monitoring canoe sprint motion using
wearable sensors. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2016, Budapest, Hungary, 9–12 October 2016; pp. 644–649.

56. Mocera, F.; Aquilino, G.; Somà, A. Nordic walking performance analysis with an integrated monitoring
system. Sensors 2018, 18, 1505. [CrossRef]

57. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred reporting items for systematic reviews
and meta-analyses: The prisma statement. PLoS Med. 2009, 6, e1000097. [CrossRef] [PubMed]

58. Small Wireless Multi-Function Sensor “tsnd121/151”. Available online: https://www.atr-p.com/products/
TSND121.html (accessed on 24 December 2018).

59. X-IMU Our Original Versatile IMU Board. Available online: http://x-io.co.uk/x-imu/ (accessed on 24
December 2018).

60. The Pedar®System—The Quality In-Shoe Dynamic Pressure Measuring System. Available online: http:
//novel.de/novelcontent/pedar (accessed on 24 December 2018).

61. G-link®-lxrs®Low-Cost Integrated Accelerometer Node. Available online: https://www.microstrain.com/
wireless/g-link (accessed on 24 December 2018).

62. Wireless Mems Inertial Sensor. Available online: https://sabelsport.files.wordpress.com/2014/03/sabel_
sense_270214a.pdf (accessed on 24 December 2018).

63. User Manual and Specifications. Available online: https://gaitup.com/wp-content/uploads/Physilog-
User-manual_RA.pdf (accessed on 24 December 2018).

http://dx.doi.org/10.1016/j.jbiomech.2014.03.008
http://dx.doi.org/10.1016/j.jbiomech.2018.04.001
http://dx.doi.org/10.1016/j.arthro.2017.09.045
http://www.ncbi.nlm.nih.gov/pubmed/29289396
http://dx.doi.org/10.1299/jamdsm.4.167
http://dx.doi.org/10.1109/LSENS.2017.2750695
http://dx.doi.org/10.1016/j.proeng.2016.06.204
http://dx.doi.org/10.1109/ACCESS.2018.2792220
http://dx.doi.org/10.3390/s18051505
http://dx.doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/pubmed/19621072
https://www.atr-p.com/products/TSND121.html
https://www.atr-p.com/products/TSND121.html
http://x-io.co.uk/x-imu/
http://novel.de/novelcontent/pedar
http://novel.de/novelcontent/pedar
https://www.microstrain.com/wireless/g-link
https://www.microstrain.com/wireless/g-link
https://sabelsport.files.wordpress.com/2014/03/sabel_sense_270214a.pdf
https://sabelsport.files.wordpress.com/2014/03/sabel_sense_270214a.pdf
https://gaitup.com/wp-content/uploads/Physilog-User-manual_RA.pdf
https://gaitup.com/wp-content/uploads/Physilog-User-manual_RA.pdf


Sensors 2019, 19, 1597 26 of 26

64. Research-Grade Wearable Sensors. Available online: https://www.apdm.com/wearable-sensors/ (accessed
on 24 December 2018).

65. Moven User Manual. Available online: http://cs.unc.edu/Research/stc/FAQs/Xsens/Moven/Moven%
20User%20Manual.pdf (accessed on 24 December 2018).

66. Nunome, H.; Ikegami, Y.; Kozakai, R.; Apriantono, T.; Sano, S. Segmental dynamics of soccer instep kicking
with the preferred and non-preferred leg. J. Sports Sci. 2006, 24, 529–541. [CrossRef] [PubMed]

67. Byström, A.; Rhodin, M.; Von Peinen, K.; Weishaupt, M.A.; Roepstorff, L. Basic kinematics of the saddle
and rider in high-level dressage horses trotting on a treadmill. Equine Vet. J. 2009, 41, 280–284. [CrossRef]
[PubMed]

68. Chalmers, D.J. Injury prevention in sport: Not yet part of the game? Inj. Prev. 2002, 8, iv22–iv25. [CrossRef]
[PubMed]

69. Donaldson, A.; Lloyd, D.G.; Gabbe, B.J.; Cook, J.; Young, W.; White, P.; Finch, C.F. Scientific evidence is just
the starting point: A generalizable process for developing sports injury prevention interventions. J. Sport
Health Sci. 2016, 5, 334–341. [CrossRef] [PubMed]

70. Schiff, M.A.; Caine, D.J.; O’Halloran, R. Injury prevention in sports. Am. J. Lifestyle Med. 2010, 4, 42–64.
[CrossRef]

71. Cuesta-Vargas, A.I.; Galán-Mercant, A.; Williams, J.M. The use of inertial sensors system for human motion
analysis. Phys. Ther. Rev. 2010, 15, 462–473. [CrossRef]

72. Mtw Awinda Wireless 3dof Motion Tracker. Available online: https://shop.xsens.com/shop/xsens-mvn/
mtw-awinda-wireless-3dof-motion-tracker (accessed on 29 January 2019).

73. Physilog®5: Motion Sensor. Available online: https://shop.gaitup.com/index.php?id_product=1&
controller=product (accessed on 29 January 2019).

74. Adxl330 Small, Low Power, 3-axis ±3 g i Mems®Accelerometer Data Sheet (Rev. 0). Available online:
https://www.sparkfun.com/datasheets/Components/ADXL330_0.pdf (accessed on 1 January 2019).

75. Single Axis Accelerometer Breakout—ADXL193 (±250 g). Available online: https://www.proto-pic.co.uk/
single-axis-accelerometer-breakout-adxl193-250g.html (accessed on 29 January 2019).

76. Tullos, H.S.; King, J.W. Throwing mechanism in sports. Orthop. Clin. N. Am. 1973, 4, 709–720.
77. Conte, S.; Requa, R.K.; Garrick, J.G. Disability days in major league baseball. Am. J. Sports Med. 2001, 29,

431–436. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.apdm.com/wearable-sensors/
http://cs.unc.edu/Research/stc/FAQs/Xsens/Moven/Moven%20User%20Manual.pdf
http://cs.unc.edu/Research/stc/FAQs/Xsens/Moven/Moven%20User%20Manual.pdf
http://dx.doi.org/10.1080/02640410500298024
http://www.ncbi.nlm.nih.gov/pubmed/16608767
http://dx.doi.org/10.2746/042516409X394454
http://www.ncbi.nlm.nih.gov/pubmed/19469236
http://dx.doi.org/10.1136/ip.8.suppl_4.iv22
http://www.ncbi.nlm.nih.gov/pubmed/12460952
http://dx.doi.org/10.1016/j.jshs.2016.08.003
http://www.ncbi.nlm.nih.gov/pubmed/30356506
http://dx.doi.org/10.1177/1559827609348446
http://dx.doi.org/10.1179/1743288X11Y.0000000006
https://shop.xsens.com/shop/xsens-mvn/mtw-awinda-wireless-3dof-motion-tracker
https://shop.xsens.com/shop/xsens-mvn/mtw-awinda-wireless-3dof-motion-tracker
https://shop.gaitup.com/index.php?id_product=1&controller=product
https://shop.gaitup.com/index.php?id_product=1&controller=product
https://www.sparkfun.com/datasheets/Components/ADXL330_0.pdf
https://www.proto-pic.co.uk/single-axis-accelerometer-breakout-adxl193-250g.html
https://www.proto-pic.co.uk/single-axis-accelerometer-breakout-adxl193-250g.html
http://dx.doi.org/10.1177/03635465010290040801
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Types of Systems 
	The Adoption of Wearable Technology in Sport 
	Requirements for Wearable Technology in Sport 

	Materials and Methods 
	Search Strategy 
	Eligibility Criteria 
	Selection Process 
	Data Extraction 
	Quality Appraisal 

	Results 
	Article Quality 
	Types of Measuring Systems Used and Evaluated Variables 
	Testing Environment 
	Data Sampling, Collection and Processing 
	Recording and Usage Lifetime of Wearable Systems 
	Validation and Reliability Using Gold-Standard Measurements 
	Application of Technology 

	Discussion 
	Quality of Articles 
	Wearable Systems Used 
	Data Collection and Processing 
	Testing Environment 
	Application of Wearable Technology 
	Review Limitations 

	Conclusions 
	
	References

