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Abstract: In this paper, we propose a novel fuzzy expectation maximization (FEM) based
Takagi-Sugeno (T-S) fuzzy particle filtering (FEMTS-PF) algorithm for a passive sensor system.
In order to incorporate target spatial-temporal information into particle filtering, we introduce a T-S
fuzzy modeling algorithm, in which an improved FEM approach is proposed to adaptively identify
the premise parameters, and the model probability is adjusted by the premise membership functions.
In the proposed FEM, the fuzzy parameter is derived by the fuzzy C-regressive model clustering
method based on entropy and spatial-temporal characteristics, which can avoid the subjective
influence caused by the artificial setting of the initial value when compared to the traditional FEM.
Furthermore, using the proposed T-S fuzzy model, the algorithm samples particles, which can
effectively reduce the particle degradation phenomenon and the parallel filtering, can realize the
real-time performance of the algorithm. Finally, the results of the proposed algorithm are evaluated
and compared to several existing filtering algorithms through a series of Monte Carlo simulations.
The simulation results demonstrate that the proposed algorithm is more precise, robust and that
it even has a faster convergence rate than the interacting multiple model unscented Kalman filter
(IMMUKF), interacting multiple model extended Kalman filter (IMMEKF) and interacting multiple
model Rao-Blackwellized particle filter (IMMRBPF).

Keywords: maneuvering target tracking; particle filtering; T-S fuzzy modeling; fuzzy expectation
maximization

1. Introduction

The motion state (position, velocity, acceleration, etc.) estimation of the target in the system
refers to the measurement information obtained by the measuring device, and establishes a reasonable
and accurate dynamic model by using modern signal processing techniques such as a stochastic
process, estimation and detection theory, and a filtering algorithm. When dealing with linear systems,
the Kalman filter [1] theory is the optimal linear Bayesian estimation algorithm. Subsequently, some
extended Kalman filters (EKF) [2,3] were proposed to further apply the Kalman filter (KF) theory to the
nonlinear system. The basic idea of the EKF is to linearize the nonlinear system and then perform KF,
so EKF is a suboptimal filter. Then, a second-order generalized Kalman filter [4] method was proposed
and applied to further improve the estimation performance of KF for nonlinear systems. It took
into account the second-order terms of the Taylor series expansion. Therefore, the estimation error
caused by linearization was reduced, and the filtering precision of nonlinear systems was improved,
but the computational complexity was greatly increased. Therefore, it was not widely used in practice.
Otherwise, with the aggravation of the nonlinearity of the dynamic system, the performance of EKF
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decreases sharply. In order to solve this problem, Julier and Uhlmann proposed the unscented Kalman
filter (UKF) [5] algorithm. Unlike the EKF, the UKF [6–8] approximates the distribution of state random
variables by selecting a small number of sample points, using the nonlinear model directly. However,
since EKF and UKF have no way of getting rid of the system’s Gaussian constraints, the processing
effect on non-Gaussian systems is not good.

In order to deal with the problem of state estimation in the case of nonlinear and non-Gaussian
systems, particle filtering (PF) [9] had been proposed. PF is a non-parametric Monte Carlo simulation
method used to achieve a recursive Bayesian filtering. With the development of computing ability and
statistical theory, the PF algorithm has been developed rapidly. Nowadays, the algorithm has been
successfully applied in many fields. Isard et al. [10] introduced PF into the target tracking of image
sequences, which made PF become a hot topic in the fields of target tracking, machine learning and
robot localization. Then, scholars put forward many improved algorithms based on the PF algorithm,
such as Unscented PF (UPF) [11], Rao-Blackwellized PF (RBPF) [12], Auxiliary PF (APF) [13], Regular
PF (RPF) [14], MCMC PF [15] and Gaussian PF (GPF) [16,17].

Another significant feature in the nonlinear non-Gaussian system is the uncertainty of its motion
pattern, so the traditional single-model method has difficulty achieving a good tracking performance.
In view of this, some scholars have applied multiple PFs or a PF and multiple model method [18,19] to
the system, and have obtained a good performance. Bando et al. [20] proposed a switching particle
filter, which allowed robust and accurate visual tracking under typical circumstances of real-time
visual tracking. This scheme switched two complementary sampling algorithms, condensation and
auxiliary particle filter, in an on-line fashion based on the confidence of the filtered state of the visual
target. Meshgi et al. [21] proposed an occlusion-aware particle filter framework that employs a
probabilistic model, with a latent variable representing an occlusion flag, which prevented the loss
of the target through the prediction of emerging occlusions, updated the target template by shifting
relevant information, expanded the search area for an occluded target, and granted a quick recovery
of the target after an occlusion. Martino et al. [22] introduced two novel Markov Chain Monte Carlo
(MCMC) techniques based on group importance sampling, where the information contained in different
sets of weighted samples was compressed by using only one (properly selected, however), particle,
and one suitable weight. Otherwise, an interacting multiple model Bernoulli PF (IMMBPF) [23]
algorithm for maneuvering target tracking was simply combined with the particle implementation of
IMM and PF. The introduction of model information into the particle sampling process will lead to
a reduction in the number of particles used to approach the current real state of the model, and the
particles will interact with each other in each recursive model, which had the disadvantage of too
much computation. To improve the effectiveness of single sampling particles in IMMBPF for real target
states and a model approximation, Yang et al. [24] proposed an improved multiple model Bernoulli
particle filter (MMBPF), in which the number of particles in each model was pre-selected. Furthermore,
the particles in the model did not need to interact with each other, which reduced the computational
load. The model probability was calculated from the model likelihood function, and the particle
degradation of the small probability model was avoided without changing the Markov property of
the model. Additionally, to meet the requirements of modern radar maneuvering target tracking
systems and to remedy the defects of an interacting multiple model based on PF, a non-interacting
multiple model (NIMM) and an enhanced particle swarm optimized particle filter (EPSO-PF) were
proposed in [25]. NIMM was used to figure out the index of particles to avoid the high computing
complexity resulting from particle interaction, and EPSO-PF not only improves the equation of a
particle update through the rules through which individuals develop a group understanding but it
also enhances particle diversity and accuracy through the small variation probability of the superior
velocity. Additionally, the random assignment of an inferior velocity was capable of upgrading the
filter efficiency. Instead of resorting to model selection, Urteaga et al. [26] fused the information from
the considered models within the proposed SMC method, and achieved the goal by dynamically
adjusting the resampling step according to the posterior predictive power of each model, which was
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updated sequentially as we observed more data. Martino et al. [27] designed an interacting parallel
sequential Monte Carlo scheme for inference in state space models and in an online model selection.
The parallel particle filters collaborated to provide a global efficient estimate of the hidden states
and an approximation of the probability of the models, given the received measurements. For a
static parameter estimation of the model, Carvalho et al. [28] extended existing particle methods by
incorporating the estimation of static parameters via a fully-adapted filter that utilizes conditional
sufficient statistics for parameters and states as particles. For the sake of a better tracking performance,
it may be necessary to use a large set of models, but this will inevitably increase the computational
complexity, which is one of the drawbacks of the multi-model filtering method. At the same time,
unnecessary competition from too many models may result in a decline in performance. Therefore,
it is of great value and practical significance to seek a more effective modeling approach.

As a mathematical tool to deal with the fuzzy phenomenon, fuzzy mathematics [29] can not
only solve the uncertainty caused by the randomness of the system, but can also deal with the
fuzzy uncertainty caused by the uncertainty of the extension of the concept of the system. It can
be used to model qualitative, fuzzy or uncertain ones in the form of natural language. Fuzzy
mathematics can describe different uncertain information in simple fuzzy language. Recently, the study
of fuzzy particle filtering has become one of the research hotspots of complex nonlinear non-Gaussian
systems. Widynski et al. [30] proposed a particle filtering algorithm with integrated fuzzy spatial
information, which introduced the target spatial information through the fuzzy probability and
improved the accuracy of the sampling particle. Li et al. [31,32] proposed a fuzzy orthogonal particle
filter, which approximated the predicted probability density function and the posterior probability
density function by introducing a set of positive intersection probabilities based on the Gauss-Hermite
rule. The advantage of a fuzzy logic particle filter is that it does not need to know the statistical model
of the process in advance. In addition, it does not need any maneuvering detector, even when tracking
high-performance targets, so the computational complexity is low, and appropriate fuzzy overlapping
sets will be closer to the real motion model. The theory of fuzzy models is a general concept proposed
in the last decade. Among the various types of fuzzy models, there is a very important T-S [33,34] fuzzy
model. Due to its special rules of consequence-structure and its success in function approximation,
it has been widely used recently. Therefore, this paper constructs a general T-S fuzzy model framework
based on spatial-temporal semantic information, and uses multiple linear models to get a more accurate
target motion model, which makes the state estimation of the particle filtering algorithm more accurate.

In this paper, for the nonlinear non-Gaussian problem in the passive sensor system, a T-S fuzzy
modeling particle filtering algorithm, based on improved fuzzy expectation maximization, is proposed.
The main contributions are as follows: (1) A T-S fuzzy model, based on spatial-temporal information,
is proposed for the uncertain modeling of a target dynamic model, in which spatial-temporal feature
information is represented by multiple semantic fuzzy sets. Then, the general T-S fuzzy model
framework is constructed, approximating the dynamic model with a high precision. (2) An improved
fuzzy expectation maximization method with fuzzy C-regressive model clustering based on entropy
and integrated spatial-temporal information is proposed for the premise parameter identification in
the T-S fuzzy model. In addition, the model probability is adjusted adaptively through the premise
membership functions. (3) The importance density function is constructed by using the proposed T-S
fuzzy model, which contains abundant prior knowledge and the latest measurement information; thus,
it can effectively approximate the true posterior probability density function and improve the diversity
of particles.

The rest of this paper is organized as follows. Section 2 presents the proposed T-S fuzzy modeling
particle filtering algorithm. Section 3 describes the simulation results that compare the performances
of all of the algorithms. Finally, some conclusions of the proposed algorithm are given in Section 4.
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2. The Proposed Algorithm

According to the constrained Bayesian principle [35], the nonlinear discrete system model
is considered.

xk = fk(xk−1) + ek−1 (1)

θk = hθk(xk) (2)

θk = hθk(xk) (3)

where k ∈ N denotes the discrete time, fk, hk and hθk denote some appropriate nonlinear functions,
and xk is a state vector. zk is a measurement vector. ek is the process noise, with zero mean and
covariance Qek , and vk is the measurement noise, with zero mean and covariance Rvk . θk denotes the
spatial-temporal feature information.

As is well known, the spatial relationship cannot be directly applied to the particle filtering
algorithm. In this paper, the target feature information is used to construct the importance density
function through the proposed T-S fuzzy model, so that the spatial relation is introduced into the particle
filtering algorithm. In the particle filtering framework, the probability density function estimation is
divided into two phases: time update and state update. The prediction state density is calculated from
the prior probability density function (PDF) by using the Chapman-Kolmogorov equation:

p(xk|z1:k−1,θ1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1,θ1:k−1)dxk−1 (4)

where p(xk|xk−1) is the priori transfer density function, and the measurement update is computed by a
Bayesian formula:

p(xk|z1:k,θ1:k) =
p(zk|xk)p(θk|xk)p(xk|z1:k−1,θ1:k−1)

p(zk|z1:k−1,θk)p(θk|θ1:k−1)
(5)

where p(zk
∣∣∣xk) is the likelihood function, and p(θk

∣∣∣xk) is the characteristic likelihood function.

Suppose that
{
xk, j

}M

j=1
represents the particles at time k, where M is the number of particles. Under

the constraint of spatial-temporal feature θm
1:k, m = 1, . . . , G, and

∑M
j $k, j = 1, $k, j denotes the weight

of the particle; consequently,

$k, j ∝ $k−1, j

p(zk

∣∣∣∣xk, j)p(θk

∣∣∣∣xk)p(xk, j

∣∣∣∣xk−1, j)

q(xk, j

∣∣∣∣xk−1, j, zk)
(6)

The p(θk
∣∣∣xk) not only contains abundant prior knowledge, but also incorporates a higher-level

spatial-temporal feature as well as measurement information. If we combine it with a prior probability
density function p(xk, j

∣∣∣xk−1, j) to form an importance density function q(xk, j
∣∣∣xk−1, j, zk) , it will reduce

the degradation of the particles.

q(xk, j

∣∣∣∣xk−1, j, zk) = p(θk

∣∣∣∣xk)p(xk, j

∣∣∣∣xk−1, j) (7)

2.1. Construction of Importance Density Function

The selection of an importance density function is a very important step. Traditional particle
filtering algorithms usually use priori probability as the importance density function, but generally the
prior probability does not fully consider the real-time effects of the current measurement. It is easy to
cause particle degradation. In order to solve this problem, according to the principle of constrained
particle filtering, the importance density function is constructed, as in Equation (7), not only reducing
the particle degradation phenomenon, but also improving the stability of the system. The block
diagram of the T-S fuzzy modeling method is shown in Figure 1.
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Figure 1. Block diagram of the T-S fuzzy modeling method. 
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2.1.1. T-S Fuzzy Semantic Modeling

A detailed T-S fuzzy model can be found in references [36,37], and it is briefly described in this
section. In general, the T-S fuzzy model can be described by N f fuzzy linear models:

Model i: IF θ1
k is Ai,1

k , θ2
k is Ai,2

k , . . . , θG
k is Ai,G

k , then:

xi
k = Φi

k−1xi
k−1 + ei

k−1 (8)

zi
k = Hi

kxi
k + vi

k, i = 1, 2, . . . , N f (9)

where θk =
[
θ1

k ,θ2
k , . . . ,θG

k

]
denotes the premise parameters of the model, Ai,G

k denotes the fuzzy set of
the Gth premise parameter in the model i, and Φi

k−1 and Hi
k denote the state transition matrix and the

measurement matrix, respectively. The consequent part is iteratively updated by the strong tracking
algorithm [38], so the global fuzzy model can be represented as follows:

xk =

N f∑
i=1

µi
k(θk)(Φ

i
k−1xi

k−1 + ei
k−1) (10)

zk =

N f∑
i=1

µi
k(θk)Hi

kxi
k + vk (11)

where µi
k(θk) denotes the model probability, which is calculated as follows:

µi
k(θk) =

µi
k(θk)

N f∑
j=1

µ
j
k(θk)

,µi
k(θk) =

G∏
m=1

pAi,m
k
(θm

k ) (12)

were pAi,m
k

(
θm

k

)
∈ [0, 1] denotes the membership function of the premise parameter θm

k belonging to

model set Ai,m
k in the fuzzy linear model i.

In general, the fuzzy membership function of the model sets Ai,m
k is designed as the following

Gaussian type function:

pAi,m
k
(θm

k ) = exp

−1
2

θm
k − τ

i,m
k

σi,m
k


2 (13)

where τi,m
k and σi,m

k denote the mean and standard deviation of the membership function of the premise
parameter m in the model i, respectively.
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2.1.2. Premise Parameter Identification Based on Improved Fuzzy Expectation Maximization

Inspired by the Gaussian mixed model (GMM) [39], in which the expectation maximization (EM)
algorithm was used to fit its parameters, in the process of constructing the T-S model we use the EM
algorithm, a general method for a maximum likelihood estimation of the model parameters, to identify
the premise parameters. According to the idea of the EM in the GMM, the likelihood function of the
parameter model is constructed as follows:

L(θk) =
C∑

l=1

log
N f∑
i=1

πi
kpAi,m

k
(θm

k ) (14)

where πi
k is a hidden feature, and pAi,m

k

(
θm

k

)
is defined in (13).

Given the appropriate initial assumptions, the noise samples and normal samples participate in
the iterative process equally, which will undoubtedly have a negative impact on the accuracy and
convergence rate of the parameter estimation. To solve this problem, the knowledge of the fuzzy theory
was introduced in the iterative process of the EM algorithm, and a fuzzy expectation maximization
(FEM) algorithm [40] was proposed. The fuzzy theory was introduced into the EM algorithm to
reduce the influence of noise by making different samples play different roles in the iterative process.
Simulations showed that this limitation can better realize the parameter estimation function of the EM
algorithm and accelerate the convergence speed of the algorithm.

Theorem 1 (Jensen inequality [41]): let f (x) be a convex function, for the random variable X, then

f (EX) ≥ E[ f (X)]

If and only if X = EX (That is, X is constant), equal sign holds by probability 1, where E[·] is the expectation
operation. For example, the logarithmic function is an upper convex function, then

log(EX) ≥ E[log(X)]

In accordance with the traditional FEM, the non-negative fuzzy parameter ui
k,l is introduced into

Equation (14), where ui
k,l is the fuzzy membership degree between the lth measurement and the ith

rule at time k, which satisfies
∑N f

i=1 ui
k,l = 1, k = 1, 2, · · · , N, and the Jensen inequality (Theorem 1) is

used to obtain the likelihood function of the proposed FEM approach:

L(τi,m
k , σi,m

k ) =
C∑

l=1
log

N f∑
i=1

ui
k,l

πi
kp

Ai,m
k

(θm
k )

ui
k,l

=
C∑

l=1
logE

ui
k,l

πi
kp

Ai,m
k

(θm
k )

ui
k,l

≥

C∑
l=1

E
ui

k,l

log
πi

kp
Ai,m

k
(θm

k )

ui
k,l

 (15)

In the EM algorithm, the right side of the inequality in Equation (15) is the lower bound that needs
to be optimized:

B(τi,m
k , σi,m

k ) =
C∑

l=1

E
ui

k,l

log
πi

kpAi,m
k
(θm

k )

ui
k,l

 =
C∑

l=1

N f∑
i=1

ui
k,l log

πi
kpAi,m

k
(θm

k )

ui
k,l

(16)
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Consider the constraint
∑N f

i=1 ui
k,l = 1,

∑N f

i=1 π
i
k = 1, and introduce the Lagrangian term to obtain

the constrained optimization likelihood objective function:

B(τi,m
k , σi,m

k ) =
C∑

l=1

N f∑
i=1

ui
k,l logπi

k+
C∑

l=1

N f∑
i=1

ui
k,l log pAi,m

k
(θm

k )−
C∑

l=1

N f∑
i=1

ui
k,l log ui

k,l

−λ1

N f∑
i=1

πi
k − 1

− λ2

N f∑
i=1

ui
k,l − 1

 (17)

It is known from Equation (13) that the membership function of the premise parameter obeys the
Gaussian distribution.

B(τi,m
k , σi,m

k ) = − 1
2

C∑
l=1

N f∑
i=1

ui
k,l log

(
(2π)d∣∣∣σi,m

k

∣∣∣)− 1
2

C∑
l=1

N f∑
i=1

ui
k,l

(
θm

k − τ
i,m
k

)T(
σi,m

k

)−1(
θm

k − τ
i,m
k

)
+

C∑
l=1

N f∑
i=1

ui
k,l logπi

k −
C∑

l=1

N f∑
i=1

ui
k,l log ui

k,l − λ1

N f∑
i=1

πi
k − 1

− λ2

N f∑
i=1

ui
k,l − 1

 (18)

According to the gradient descent method, the mean and standard deviation of the premise
membership functions are obtained (The specific derivation process is shown in Appendix A).

τi,m
k =

C∑
l=1

ui
k,lθ

m
k

C∑
l=1

ui
k,l

(19)

σi,m
k =

C∑
l=1

ui
k,l

(
θm

k − τ
i,m
k

)(
θm

k − τ
i,m
k

)T

C∑
l=1

ui
k,l

(20)

It can be seen from Equations (19) and (20) that the identification of the premise parameters is
closely related to the non-negative fuzzy parameters ui

k,l. Therefore, the design of the ui
k,l is the key

problem to be solved in the next step. In the traditional method, the fuzzy parameter was set by manual
initialization, which will have certain errors and subjective factors. To avoid the influence, we use the
fuzzy C-recessive model (FCRM) clustering algorithm, based on spatial-temporal information and
entropy adjustment to obtain the fuzzy parameter. Therefore, the premise parameter membership
functions can fully reflect the motion information of the target, and avoid the unnecessary influence

caused by the artificial setting of the initial value. Suppose that zk =
{
zk,l

}C

l=1
is a measurement set

and ẑk =
{
ẑi

k

}N f

i=1
is a predictive measurement set, zk,l denotes the lth measurement, and ẑi

k denotes the
predictive measurement based on the ith fuzzy rule at time k. On the basis of the traditional FCRM [33],
the weighted entropy is introduced to balance the membership degree, which is called the entropy
adjustment method. Meanwhile, the target feature information reflects the target motion trend in real
time. Therefore, combining the spatial constraint information θk, the objective function of the entropy
adjustment method is defined as follows:

Y
(
ui

k,l

)
= −

C∑
l=1

N f∑
i=1

ui
k,l ln

(
ui

k,l

)
− β ·

C∑
l=1

N f∑
i=1

ui
k,l

(Di
k,l)

2
+

G∑
m=1

ωi,m
k θm

k

+ C∑
l=1

λk


N f∑
i=1

ui
k,l − 1

 (21)
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where λk is the Lagrange multiplier vector, β is a constant, ωi,m
k is the weight of the feature m in the

model i.
(
Di

k,l

)2
denotes the dissimilarity measure function between the lth measurement and the

output predictive measurement of the ith fuzzy rule, which is defined as:(
Di

k,l

)2
=

1

pi(zk,l
∣∣∣x̂i

k)
(22)

where p
(
zk,l

∣∣∣x̂i
k

)
is called the likelihood function of the measurement zk,l given the target state x̂i

k.
According to the Lagrangian multiplier, the update of the fuzzy membership degree ui

k,l between
the lth measurement and the ith fuzzy model is obtained (The specific derivation process is shown in
Appendix B).

ui
k,l =

exp
(
−β

[
(Di

k,l)
2
+

G∑
m=1

ωi,m
k θm

k

])
N f∑

q=1

(
exp

(
−β

[
(Dq

k,l)
2
+

G∑
m=1

ω
q,m
k θm

k

])) (23)

The improved fuzzy expectation maximization algorithm used in the identification of the premise
parameters is shown in Algorithm 1.

Algorithm 1 Premise Parameter Identification-Improved Fuzzy Expectation Maximization

1. Initializations: Define the initial premise parameter (τ, σ)(0), the stop criterion ζ, the parametric model
likelihood function L(θ), and the set i = 0.
2. Do i = i + 1

• Calculate the non-negative fuzzy membership degree by Equation (23) and introduce it into the
likelihood function L(θ) of Equation (14), and rewrite the likelihood function into Equation (15).

• The lower bound function B(θ) is obtained from Jensen’s inequality.

• E-step: Calculate B
(
(τ, σ), (τ, σ)(i−1)

)
by Equations (16)–(18).

• M-step: (τ, σ)(i) = argmaxB
(
(τ, σ), (τ, σ)(i−1)

)
, and the (τ, σ)(i) is obtained by

Equations (19) and (20).

3. Until B
(
(τ, σ)(i+1), (τ, σ)(i)

)
− B

(
(τ, σ)(i), (τ, σ)(i−1)

)
≤ ζ

4. Return (τ, σ) = (τ, σ)(i+1)

5. Finish

On the basis of the model fusion method in the traditional multiple model algorithm, the premise
membership function is identified by Equations (19) and (20), the model probability is obtained by
Equation (12), and the x̂i

k and Pi
k are obtained by strong tracking [38]. Therefore, the state and covariance

updates of the proposed T-S fuzzy model are as follows:

x̃k =
∑ N f

i=1µ
i
kx̂i

k (24)

P̃k =
∑ N f

i=1µ
i
k[P

i
k + (x̃k − x̂i

k)(x̃k − x̂i
k)

T
] (25)

For each particle, the state and covariance are x̃k, j and P̃k, j on the basis of Equations (24) and (25),
so the importance density function of the proposed algorithm is defined as:

q(xk, j

∣∣∣∣xk−1, j, zk) = N(x̃k, j, P̃k, j) (26)
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2.2. Summary of the Algorithm

Based on the above analysis, the T-S fuzzy modeling particle filtering algorithm can be summarized
as Algorithm 2:

Algorithm 2 Fuzzy Expectation Maximization-Based T-S Fuzzy Particle Filtering Algorithm

1. Initializations: Set that the number of fuzzy rules is N f . The particles
(
x j

0:k−1

)M

j=1
are drawn from the priori

probability density function p(x0), and the number of particles is set to M.
2. For k = 1, 2, . . .

(a) T-S fuzzy model parameter identification

� Consequence parameter identification: The strong tracking algorithm [38] is used to identify
the consequence parameters.

� Premise parameter identification: As shown in Algorithm 1.

(b) Model probability update and fusion: The model probability is updated by Equation (12), and the
model fusion is carried out by Equation (10).

(c) Construct the importance density function and sample: Draw particles
{
xk, j

}M

j=1
from Equation (26).

(d) Calculate and normalize the particle weight: The particle weight is calculated by Equation (6) and
normalized as follows:

ψk, j = $k, j/
M∑

j=1

$k, j

(e) State and covariance estimation:

� Output state: x̂k =
∑M

j=1 ψk, jxk, j

� Output covariance: Pk =
∑M

j=1 ψk, j[P̃k, j +
(
x̂k − xk, j

)(
x̂k − xk, j)

T
]

2.3. Discussion

Summary: In the design of the proposed algorithm, to improve the convergence performance of
the T-S fuzzy model in a passive sensor system, and to reduce the approximation error, the FEM was
introduced to identify the premise parameters that can capture the higher-order statistical parameters
from a small number of samples. To identify the consequent parameters of the T-S fuzzy model, the
strong tracking estimator was used. In particular, for the maneuvering target tracking, the model
probability, which was closely connected to the true motion model, was adaptively updated by the
premise membership functions. Moreover, the samples were drawn from the proposed T-S fuzzy
model, which had abundant priori information and the latest measurement, and which can reduce the
degradation of the particles.

Comparison: All of the samples were used to train the fuzzy model parameters in the conventional
T-S fuzzy model described in [33,34], after which the trained fuzzy model was used to classify or
estimate the model state. In our proposed algorithm, the parameters of the T-S fuzzy model were
updated by using the recursive mechanism of the algorithm, which required the fast convergence.
The simulations showed that the proposed algorithm can not only achieve fast convergence, but that it
can also accurately estimate the state.

Additionally, in the traditional FEM, the fuzzy parameter was set by manual initialization, but in
our proposed algorithm the fuzzy parameter was obtained through the FCRM, based on entropy and
the spatial-temporal characteristic information. The simulations showed that not only can the proposed
FEM realize the parameter estimation function of the EM algorithm and accelerate the convergence
speed, but it can also avoid the subjective influence caused by the artificial setting of the initial value.
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3. Simulation Results and Analysis

In order to compare the performance of the FEMTS-PF with those of IMMUKF, IMMEKF,
IMMRBPF [42], fuzzy PF (FPF) and traditional FEMTS-PF, two examples are employed in this section.
In Section 3.1., a bearings-only tracking example is adopted. In Section 3.2., the tracking results of a
maneuvering target in a sparse environment are analyzed. 100 Monte Carlo simulations are carried out
in all of the experiments, and the number of particles is 200. The proposed algorithm is implemented
on Matlab R2017a on the CPU3.6 and 8 GB memory computers of Inter (R) Core (TM) i5-6500.

The root-mean square error (RMSE) is used as the performance index (PI), which is defined as:

RMSE =

√√√√√ D∑
k=1

(xk − x̂k)
2

D
(27)

where D is the number of Monte Carlo (MC) simulations.

3.1. An Example of Bearings-Only Tracking (BOT)

The state and measurement equations of the target in the proposed algorithm are as follows.

xi
k = Φi

k−1(T,ωi)xi
k−1 + ek−1 (28)

zi
k = Hi

kxi
k + vk, i = 1, 2, . . . , N f (29)

where N f denotes the number of fuzzy rules, xk =
[
xk, x′k, yk, y′k

]T
denotes the state vector, xk denotes

the x-coordinate and yk denotes the y-coordinate of the target. x′k and y′k denote the corresponding
velocities. The process noise ek is assumed to be Gaussian noise with zero mean and standard deviation
σi,e (The values are shown in Table 1). The measurement noise vk is assumed to be non-Gaussian noise(
R =

[
N(0,σ)+N(0,σ)

2 , N(0,σ)+N(0,σ)
2

]T
, σ = 0.001

)
. The initial state describes the target’s initial position

and velocity. The a priori probability density of the state x0 is assumed to be x0 ∼ N
(
x̂0|0, P̂0|0

)
, where

x0|0 =
[
1 km, 0.15 km/s, 6 km, 0.26 km/s]T, P0|0 =[σ2 0 0 0; 0 σ2 0 0; 0 0 σ2 0; 0 0 0 σ2]. In this paper,

the innovation and the heading angle difference are selected as the semantic information, which can
effectively reflect the moving state of the target. For example, the innovation can indicate the suitability
of the target motion model; when it is large, the target motion model is explained to be less consistent
with the current motion state, and thus we can adjust the model probability to get a more accurate
model of motion. The state transition matrix Φi

k−1 is defined as follows:

Φi
k−1 =


1 sinωiT

ωi
0 −

1−cosωiT
ωi

0 cosωiT 0 − sinωiT
0 1−cosωiT

ωi
1 sinωiT

ωi

0 sinωiT 0 cosωiT


Table 1. The ωi and the σi,e for different ∆θ̂k and ∆νk.

∆θ̂k(rad)
∆νk (km)

Negative Large (NL) Small (S) Positive Large (PL)

Small (S) −0.0324, 0.15 0, 0.015 0.0324, 0.015
Large (L) −0.0124, 0.005 0, 0.015 0.0124, 0.015
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Table 1 shows the turning rate ωi and standard deviation σi,e of the process noise in the T-S fuzzy
models; ωi = 0 denotes the constant turn (CT) model. The process noise covariance is as follows:

Qei
k−1

=



2(ωiT−sinωiT)
ω3

i

1−cosωiT
ω2

i
0 ωiT−cosωiT

ω2
i

1−cosωiT
ω2

i
T ωiT−cosωiT

ω2
i

0

0 −
ωiT−cosωiT

ω2
i

2(ωiT−sinωiT)
ω3

i

1−cosωiT
ω2

i
ωiT−cosωiT

ω2
i

0 1−cosωiT
ω2

i
T


· σ2

i,e

Two passive sensors are placed in the (0, 5 km) and (0, −5 km). The measurement function:

h(xk) =

[
β1

β2

]
=

 arctan
(

y−s1,y
x−s1,x

)
arctan

(
y−s2,y
x−s2,x

) 
where si,x, si,y denote the coordinate value of the sensor i. βi, i = 1, 2 denotes the azimuth. Then,
the Jacobi matrix for each model is:

Hi
k =


−

y−s1,y

(x−s1,x)
2
+(y−s1,y)

2 0 x−s1,x

(x−s1,x)
2
+(y−s1,y)

2 0

−
y−s2,y

(x−s2,x)
2
+(y−s2,y)

2 0 x−s2,x

(x−s2,x)
2
+(y−s2,y)

2 0


In order to verify the effectiveness of the proposed algorithm, the FEMTS-PF is implemented

and compared with the IMMUKF, IMMEKF, IMMRBPF, fuzzy particle filtering (FPF) and traditional
FEMTS-PF algorithms. Figure 2a denotes the estimated trajectory of the target motion. It can be seen
from the diagram that the tracking effect of the FEMTS-PF algorithm is approximately the same as
the simulation trajectory; there is no obvious loss of phenomenon. It is shown that the algorithm
can deal with uncertain information efficiently in nonlinear systems, while the IMMUKF, IMMEKF
and IMMRBPF algorithms have a large error when the target maneuvers; the loss phenomenon of
the IMMUKF algorithm is more obvious. The main reason for this is that when the target motion
model is uncertain, algorithms such as IMM cannot judge the appropriate model, but the FEMTS-PF
algorithm can adaptively adjust the model probability according to the premise membership functions,
which results in the posterior probability density constructed by the proposed T-S model being
closer to the real posterior probability density function and in the tracking accuracy of the algorithm
being improved.

Figure 2b–d describe the RMSE of the position, the x-axis and the y-axis. The initial mean
of innovation (S, L) and heading angle difference (NL, S, PL) in the traditional FEMTS-PF are
mi

k,ν = 0, 2∗σ km and mi
k,φ = −2, 0, 2 rad, respectively. In the FPF, there is no precise adjustment to the

premise parameter, which is insufficient to meet the moving state of the target. Furthermore, for the
traditional FEMTS-PF, the fuzzy parameter of the traditional FEM is set by the empirical value and has
a certain subjectivity; thus, it results in a lower precision. It can be seen that the tracking effect of the
FEMTS-PF algorithm is better than that of the other algorithms, showing a relatively stable tracking
performance. The main reason for this is that the premise parameter of the T-S model is identified by
the improved FEM, in which the fuzzy parameter is adaptively updated by the FCRM based entropy
and spatial-temporal characteristic information, and it can help to obtain a more accurate T-S model
structure. When the motion model is uncertain, by partitioning the state space into several subspaces,
and because the weight of the subspaces is updated by the premise parameter membership function,
which is described by the characteristic of the target, the global estimation model will be closer to the
true motion model. Moreover, since the proposal distribution is chosen using the information from the
previous stages, sampling is more efficient; thereby, the particle weights will have a lower variance.
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Figure 2. Performance comparison of the IMMUKF (triangle sign (∆)), IMMEKF (plus sign (+)),
IMMRBPF (dotted line (−−)), FPF (solid line (−)), traditional FEMTS-PF (circle (o)) and proposed
FEMTS-PF (star sign (∗)). (a) The target trajectory of the proposed algorithm and the actual position;
(b) position root-mean-square error (RMSE); (c) X-axis RMSE; and (d) Y-axis RMSE.

Table 2 shows the statistical results of the RMSE of the proposed FEMTS-PF algorithm for different
particle numbers. As can be seen from the table, the position RMSE is decreased with the increase
of the number of particles before 200 particles, but the error increases as the number of particles
increases after that. The main reason for this is that the sampling variance of the particles is fixed,
that is, the distribution range of the particle sets is the same. When the number of particles is too
large, the particles are too dense and the phenomenon of particle overlap will appear, which makes
its effectiveness decline. If we increase the number of particles as the sampling variance, so that the
particle set distribution is loose, the filtering result will be further improved, but this is based on
sacrificial computation. Weighing the pros and cons, the number of particles is set to 200.

Table 2. Average RMSE for different samples of FEMTS-PF.

Particles
Position x-Coordinate y-Coordinate

Mean (km) Var (km2) Mean (km) Var (km2) Mean (km) Var (km2)

25 0.1166 0.0019 0.0949 0.0026 0.0616 0.0001
50 0.1158 0.0021 0.0947 0.0027 0.0607 0.0001

100 0.1187 0.0021 0.0974 0.0028 0.0617 0.0001
200 0.1153 0.0018 0.0943 0.0025 0.0605 0.0001
500 0.1159 0.0019 0.0943 0.0025 0.0611 0.0001
1000 0.1158 0.0019 0.0946 0.0026 0.0606 0.0001
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Table 3 shows the RMSE of the four algorithms with different numbers of particles. It can be
seen that when the particle size is 200, the RMSE of the FEMTS-PF algorithm is about 0.1153 km, and
the tracking effects are 81.17%, 18.92%, 20.15%, 29.57% and 11.24% higher than the other algorithms,
respectively. The results show that the filtering effect of the FEMTS-PF algorithm is more accurate
under the same conditions for the reason that the importance density function of the FEMTS-PF is
constructed by the proposed T-S fuzzy model, which improves the estimation accuracy.

Table 3. Statistics of the position RMSE under different particle numbers.

Particles
IMMUKF IMMEKF IMMRBPF FPF Traditional

FEMTS-PF FEMTS-PF

Mean
(km)

Var
(km2)

Mean
(km)

Var
(km2)

Mean
(km)

Var
(km2)

Mean
(km)

Var
(km2)

Mean
(km)

Var
(km2)

Mean
(km)

Var
(km2)

25

0.6122 0.6173 0.1422 0.0109

0.1405 0.0022 0.1658 0.0078 0.1296 0.0033 0.1132 0.0019
50 0.1401 0.0238 0.1663 0.0065 0.1288 0.0033 0.1158 0.0021

100 0.1411 0.0024 0.1644 0.0059 0.13 0.0032 0.1187 0.0021
200 0.1444 0.0956 0.1637 0.0066 0.1299 0.0033 0.1153 0.0018
500 0.1495 0.002 0.1638 0.0061 0.1297 0.0031 0.1159 0.0019

1000 0.1497 0.0023 0.1645 0.0063 0.1294 0.0031 0.1158 0.0019

The running time of a Monte Carlo is shown in Table 4. It can be seen that IMMEKF runs for
the least time. As we know, the running time of the particle filtering algorithm is proportional to the
number of particles, and the particle resampling step exists in the IMMRBPF algorithm, resulting in
a large running time, which improves the estimation efficiency at the expense of the computation.
However, in the FEMTS-PF algorithm, the importance density function is constructed by the T-S fuzzy
model, which combines the measurement and spatial-temporal information, to effectively improve the
diversity of the particles and reduce the degradation of the particles; thus, the resampling step can be
omitted. Moreover, the parallel computation is used in the sampling, so the real-time of the FEMTS-PF
is largely realized.

Table 4. Comparison of the computation time for all of the algorithms (s).

Case IMMUKF IMMEKF IMMRBPF FPF Traditional FEMTS-PF FEMTS-PF

BOT 0.0573 0.0353 2.8809 0.9275 1.0316 1.0411

Figures 3 and 4 are the RMSE of IMMUKF, IMMEKF, IMMRBPF, FPF, traditional FEMTS-PF and
FEMTS-PF under different process and observation noises, respectively. The variance of the process
noises and observation noises has a great influence on the filtering results. From the view of the
signal-to-noise ratio (SNR), the smaller the SNR, the more likely it is that the noise will submerge the
real signal, following which the filtering will fail. The larger the SNR, that is, the less noise there is,
the easier it is to filter. As can be seen from Figure 3, the greater the noise, the greater the error, which
is difficult to avoid. The process noise is reflected in the trust value of the model; the larger the value is,
the closer the filtered value is to the measurement value, and a large amount of noise is introduced;
the measurement value is a carried error compared with the real value. However, the purpose of
filtering is to reduce the noise interference and make the filtering result close to the real value, and if
the value of the filtered value and the real value errors are larger, the filtering accuracy is reduced.
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Figure 3. The position RMSE for different process noises. (a) The standard deviation of the process
noise is 0.02; and (b) the standard deviation of the process noise is 0.04.
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Figure 4. The position RMSE for different measurement noises. (a) The standard deviation of the
measurement noise is 0.002; and (b) the standard deviation of the measurement noise is 0.005.

As can be seen from Figure 4, the tracking effect of the algorithm decreases with the increase of
the noise standard deviation. The larger the measurement noise, the slower the convergence rate of the
filter output. On the whole, the FEMTS-PF algorithm is relatively good in dealing with non-Gaussian
noise, which proves that the proposed algorithm can effectively solve the nonlinear non-Gaussian
problem in the sophisticated system.

3.2. Maneuvering Target Tracking in Sparse Environment (SMTT)

In order to further verify the effectiveness of the proposed algorithm, we implement the proposed
FEMTS-PF in a sparse environment. The simulation results are compared with those of the IMMUKF,
IMMEKF, IMMRBPF and traditional FEMTS-PF algorithms. For the SMTT, the data includes 40 non-periodic
sampling points with a target flight time of 107 s, which includes the time interval, x-coordinate, y-coordinate
and batch number of the target. The initial data is x0 = [13 s, 6.331 km, 2.589 km, 80]. The sample interval
T is not a constant and is defined as follows:

T = t(k + 1) − t(k)

where t(k + 1) and t(k) are the time interval of k + 1 and k, respectively.
Figure 5a denotes the estimated trajectory of the target motion. It can be seen from the diagram

that the algorithm is robust while tracking the sparse and more maneuvered radar data. Figure 5b–d
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describe the RMSE of the position, the x-axis and the y-axis, respectively. It is shown that the tracking
accuracy of the proposed FEMTS-PF algorithm is greatly improved. The position RMSE of the IMMUKF,
IMMEKF, IMMRBPF, traditional FEMTS-PF and proposed FEMTS-PF are 0.1010, 0.0998, 0.0979, 0.0991
and 0.0688 km, respectively. The tracking effect of the proposed FEMTS-PF is 31.88%, 31.06%, 29.72%
and 30.58% higher than the other algorithms.
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Figure 5. Performance comparison of the IMMUKF (triangle sign (∆)), IMMEKF (plus sign (+)),
IMMRBPF (dotted line (−−)), traditional FEMTS-PF (circle (o)) and FEMTS-PF (star sign (∗)). (a) The target
trajectory of the proposed algorithm and the actual position; (b) position root-mean-square error (RMSE);
(c) X-axis RMSE; and (d) Y-axis RMSE.

The run-time of a Monte Carlo is shown in Table 5. It can be seen that IMMEKF and IMMUKF
have a great advantage in real-time performance, but compared with IMMRBPF, the operation time of
the FEMTS-PF algorithm is also decreased by 70.80%. Because of the addition of the FCRM algorithm,
the proposed FEMTS-PF has a longer operation time than the traditional FEMTS-PF algorithm.
However, comparing the performance and computation time of all of the algorithms, the proposed
FEMTS-PF algorithm has achieved a good trade-off in the sparse nonlinear non-Gaussian environment.

Table 5. Comparison of the computation time for all of the algorithms (s).

Case IMMUKF IMMEKF IMMRBPF Traditional FEMTS-PF FEMTS-PF

SMTT 0.0342 0.0245 1.1600 0.2542 0.3387



Sensors 2019, 19, 2208 16 of 20

4. Conclusions

In this paper, a novel T-S fuzzy modeling particle filtering algorithm is proposed, in which
multiple semantic fuzzy sets are used to represent the spatial-temporal characteristic information of the
target, and a general framework of the T-S fuzzy model is constructed, in which the model probability
is updated by the premise membership functions. The premise parameters of the T-S fuzzy model are
identified by an improved fuzzy expectation maximization algorithm, in which the fuzzy parameter is
obtained by a FCRM, based on entropy in order to accelerate the convergence speed and avoid the
subjective influence caused by the artificial setting of the fixed value. Meanwhile, a strong tracking
method is used to identify the consequence parameters. In the particle filter algorithm, the importance
density function is constructed by using the proposed fuzzy model, which improves the diversity of the
particles, effectively reduces the degradation of the particles, and omits the particle resampling steps.
Furthermore, it improves the real-time performance of the algorithm due to the parallel computation.
When the target maneuvering or the moving state of the target is uncertain, the T-S fuzzy model
adaptively adjusts the optimal moving state by using the fuzzy semantic information of the innovation
and heading angle difference. The results of the examples show that the proposed algorithm is more
accurate and stable than the IMMUKF, IMMEKF and IMMRBPF algorithms in the passive sensor
system with regards to nonlinear and non-Gaussian problems.
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Appendix A

The lower bound that needs to be optimized is as follows:
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Appendix B

The objective function of the entropy adjustment-based FCRM method is defined as follows:
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