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Abstract: Recently, deep learning methods are becomingincreasingly popular in the field of fault
diagnosis and achieve great success. However, since the rotation speeds and load conditions of
rotating machines are subject to change during operations, the distribution of labeled training dataset
for intelligent fault diagnosis model is different from the distribution of unlabeled testing dataset,
where domain shift occurs. The performance of the fault diagnosis may significantly degrade due
to this domain shift problem. Unsupervised domain adaptation has been proposed to alleviate this
problem by aligning the distribution between labeled source domain and unlabeled target domain.
In this paper, we propose triplet loss guided adversarial domain adaptation method (TLADA) for
bearing fault diagnosis by jointly aligning the data-level and class-level distribution. Data-level
alignment is achieved using Wasserstein distance-based adversarial approach, and the discrepancy of
distributions in feature space is further minimized at class level by the triplet loss. Unlike other center
loss-based class-level alignment approaches, which hasto compute the class centers for each class
and minimize the distance of same class center from different domain, the proposed TLADA method
concatenates 2 mini-batches from source and target domain into a single mini-batch and imposes
triplet loss to the whole mini-batch ignoring the domains. Therefore, the overhead of updating the
class center is eliminated. The effectiveness of the proposed method is validated on CWRU dataset
and Paderborn dataset through extensive transfer fault diagnosis experiments.

Keywords: unsupervised domain adaptation; Wasserstein distance; triplet loss; fault diagnosis

1. Introduction

As one of the key components of rotating machines, the working condition of rolling bearing is
critical to the safe running of the machines. Effective fault diagnosis, which aims to identify early faults
and prevents system failure, could increase the safety and reliability of machinery. In the past years,
a large number of intelligent fault diagnosis methods have been proposed, such as support vector
machine (SVM), artificial neural network (ANN) and deep learning approaches [1]. Recently, deep
learning has emerged as the most prevailing methods for fault diagnosis and health management [2].

However, most deep learning methods only work well under the assumption that enough
labeled training data is available, and training and test data are drawn from the same distribution [3].
When these conditions cannot be satisfied, the performance of the deep fault diagnosis methods may
significantly decline [4]. The domain discrepancy poses a major obstacle in adapting predictive models
across domains. When applying the fault diagnosis model in real-world scenarios, the distribution of
training and test data are often different due to the rotation speeds and load conditions of rotating
machines aresubject to change during operations. Once the distribution changes, recollec the labeled
training data under new distribution and retrain the model isnecessary, which is often infeasible.
A commonly used approach to alleviate this domain shift problem is fine-tuning the network learned
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from the source domain to fit the new data distribution in the target domain [5]. Since it will be too
expensive to recollect and annotate data in mechanical systems, it is impractical to fine-tuning the fault
diagnosis model for the target task.

Unsupervised domain adaptation (UDA) aims at transferring of knowledge from a labeled source
domain to an unlabeled target domain, and a lot of research has been carried out on this issue. Early
domain adaptation approaches try to map the data into shared feature space and minimize the distance
between the feature distributions of different domains. Correlation distances [6] and maximum mean
discrepancy [7] are the most commonly used measurement distance. For bearing diagnosis under
different working conditions, Maximum mean discrepancy (MMD) is utilized to reduce the domain
discrepancy between feature representations extracted by deep neural network (DNN) [8] or sparse
auto-encoder (SAE) [9]. In [10], the domain discrepancy is further reduced by multi-kernel MMD in
multi layers of deep convolutional neural network. Although MMD has shown remarkable diagnosis
accuracy, it brings additional computational cost since the quadratic time complexity, as shown in [11].

Recently, adversarial based adaptation approaches [12,13] have shown promising results in domain
adaptation. Similar to generative adversarial networks (GAN) [14], adversarial based adaptation
approaches aim to minimize the domain discrepancy through adversarial learning. They train a feature
extractor and a domain discriminator to compete against each other. A domain discriminator is trained
to tell which domain the sample comes from. The feature extractor is trained to confuse the domain
discriminator while minimizing the classification loss. The Wasserstein distance has recently been
introduced into domain adaptation of fault diagnosis and achieves competitive results [15,16]. In [15]
Cheng et al. utilized Wasserstein distance to minimize distribution discrepancy through adversarial
training in fault diagnosis transfer learning scenarios. Instead of minimizing the Wasserstein distance
between one single layer of the neural network, In [16] Zhang et al. further proposed to minimize
Wasserstein distance between multi layers of the deep neural network and achieve better accuracy on
bearing fault diagnosis tasks.

Existing work mainly concentrates on minimizing the global distribution discrepancy when
learning shared feature representation across different domains. Even if the global distribution has
been successfully aligned, however, the samples with the same label from different domains could still
be mapped far from each other in the feature space. Some approaches have been proposed to alleviate
this class-level misalignment problem [17]. One kind of approaches is to make the feature more
discriminative, so as to reduce the possibility of misclassifying the samples far from the corresponding
class centers [18,19]. Chen et al. [20] proposed a joint domain alignment and discriminative feature
learning (JDDA) approach. The domain alignment is achieved by correlation alignment (CORAL),
and center loss is imposed to samples from labelled source domain. Instead of only considering
discriminative on source domain, Zhang et al. [18] proposed to impose center loss constraint to source
domain and target domain, respectively. Considering no label information is available in the target
dataset, the classifier trained on source domain is utilized to generate pseudo-labels for target samples.
For bearing fault diagnosis, Li et al. [21] proposed a deep metric learning approach to learn a robust
fault diagnosis model for domain adaptation. Better intra-class compactness and inter-class variance
are achieved through representation clustering of source labeled domain.

Another approach of class-level alignment aims to further minimize the distance between the same
classes from different domains which is called semantic domain alignment. Xie et al. [22] proposed to
learn semantic representations by aligning labeled source centroid and pseudo-labeled target centroid.
Instead of separately computing centers for source data and target data, Chen et al. [19] propose to
share the class center for samples from the source domain and target domain. However, computing
and updating the class center is not trivial.

To reduce the burden of computing and updating the class center in semantic domain alignment,
in this paper, we present a two-level alignment approach for unsupervised domain adaptation of bearing
fault diagnosis. Specifically, in domain-level alignment, we utilize Wasserstein distance to minimize
the distribution discrepancy of both domains in the latent space. In class-level alignment, inspired
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by [23], we impose triplet loss to source data and target data simultaneously in each minibatch while
training deep convolutional neural network. In this way, both the discriminative and domain-invariant
representations could be learned, as shown in Figure 1.
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Figure 1. The architecture of the proposed method. Instead of computing and updating class centers
for each class and reducing the distance of the same class center from different domain, the proposed
TLADA method concatenates 2 mini-batches from source and target domain into a single mini-batch
and imposes triplet loss to the whole mini-batch ignoring the domains.

The main contributions of this study are as follows:

1. We propose a novel and effective unsupervised domain adaptation approach for bearing fault
diagnosis. Data-level and class-level alignment between the source domain and target domain
are both considered.

2. We propose to use triplet loss to achieve better intra-class compactness and inter-class separability
for samples from both domains simultaneously.

3. Extensive experiments are performed to validate the efficacy of the proposed method. In addition
to transfer learning between different working conditions on CWRU dataset and Paderborn
dataset, we also validate the transfer learning tasks between different sensor locations on
CWRU dataset.

The remainder of this paper is organized as follows. The background of unsupervised domain
adaptation, Wasserstein distance, and deep metric learning are discussed in Section 2. The proposed
fault diagnosis approach is specified in Section 3. Experiments and analysis on CWRU dataset and
Paderborn dataset are presented in Section 4. We close the paper with conclusions in Section 5.

2. Backgrounds

In this section, unsupervised domain adaptation for fault diagnosis, Wasserstein distance and
deep metric learning are introduced.

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation aims to alleviate the domain shift problem by aligning the
distribution between the labeled source domain and the unlabeled target domain. A common
approach for domain adaptation is to map the data into a shared feature space and then employ
some distance measurement to minimize the distance between the feature distributions of different
domains. Maximum mean discrepancy (MMD) [24,25] measures the squared distance between the
kernel embeddings of marginal distributions in the reproducing kernel Hilbert space (RKHS). Based
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on MMD, Pan et al. [26] proposed transfer component analysis (TCA) to minimize the discrepancy
of two domains and it has been widely used in many traditional transfer learning applications.
Tzeng et al. [25] introduced MMD into deep neural networks named deep domain confusion (DDC).
DDC uses one adaptation layer and domain confusion loss to learn domain invariant representations.
In deep adaptation network (DAN) proposed by Long et al. [27], multiple adaptation layers and
multi-kernel MMD are used to further reduce the distribution discrepancy. Different than MMD,
CORAL only matches the sample mean and covariance of the source and target domains, but still has
high capability in domain adaptation. Then, Sun et al. [6] introduced CORAL to deep neural networks
and proposed DeepCoral.

For fault diagnosis tasks, Lu et al. [8] firstly investigated MMD in deep neural networks for
domain adaptation of bearing and gearbox fault diagnosis. Wen et al. [9] utilized sparse auto-encoder
(SAE) to extract features and then minimize the discrepancy between features of source domain
and target domain using MMD. In [10] Li et al. improved the effect of domain adaptation through
multi-layer and multi-kernel MMD between domains. Except for the widely used CWRU dataset,
a more practical experiment was performed on a high-speed multi-unit train bogie bearing dataset.
Rather than transferring from different working conditions of the same dataset, Yang et al. [28] explored
a more challenging task that transfers between different datasets, namely a laboratory bearings and a
real locomotive bearings.

In contrast, adversarial learning is also widely used in domain adaptation. Many recent UDA
approaches leverage deep neural networks with the adversarial training strategy, which allows the
learning of feature representations to be simultaneously discriminative for the labeled source domain
data and indistinguishable between source and target domains. In [12], Ganin et al. proposed a
technique called domain-adversarial training of neural networks (DANN), which utilizes a gradient
reversal layer and an auxiliary domain classifier to train feature extractor in an adversarial way.
Tzeng et al. [13] proposed a method called adversarial discriminative domain adaption (ADDA).
An encoder was trained on source samples at the first stage, then the encoder and the domain critic are
trained simultaneously through minimax game until the features extracted from the source domain
and target domain are indistinguishable.

In the research of adversarial based domain adaptation for bearing diagnosis, Han et al. [29]
employed the DANN strategy to train fault diagnosis model for wind turbine and gearbox. In [30],
Zhang et al. proposed adversarial adaptive 1-D convolutional neural networks. The architecture
is in according with ADDA where two different feature extractors with partially tied weights are
used. In [31], Guo et al. proposed a deep convolutional transfer learning network (DCTLN) for fault
diagnosis on unlabeled data. In this method, a feature extractor and a health condition classifier are
employed to learn class discriminative features, while a domain classifier and MMD based distribution
discrepancy metrics are used to guide the feature extractor to learn domain invariant features.

2.2. Wasserstein Distance

Recently, inspired by WGAN [32], the Wasserstein distance also has been investigated in domain
adaptation as a distance measurement of distribution discrepancy. The Wasserstein distance of
two distributions is informally defined as the minimum cost of transforming one distribution into
another. Compared with other divergences such as KullbackLeibler (KL) divergence, Wasserstein
distance is continuous and differential almost everywhere, which makes it a more sensible cost function
when learning distributions supported by low dimensional manifolds. Later on, Gulrajani et al. [33]
proposed a new gradient penalty term to make it more robust to gradient vanishing problem.

Shen et al. [34] proposed to utilize a discriminator to estimate empirical Wasserstein distance
between the source and target samples and optimized the feature extractor network to minimize
the distance in an adversarial way. In [15], Cheng et al. utilized Wasserstein distance to
minimize distribution discrepancy through adversarial training in fault diagnosis transfer learning
scenarios. Instead of minimizing Wasserstein distance between one single layer of the neural
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network, Zhang et al. [16] proposed to learn domain invariant representations through minimizing the
Wasserstein distance between multi-layers of the deep neural network and achieves better accuracy on
bearing fault diagnosis tasks.

2.3. Deep Metric Learning

Although the distributions of source and target domains could be aligned using domain adaptation
methods aforementioned, the samples from different domains could still be misaligned at class level,
since they mainly concentrate on minimizing the global distribution discrepancy when learning shared
feature representation [22]. Even if the global distribution has been successfully aligned, the samples
with the same label from different domains could still be mapped far from each other in the feature
space. This class-level misalignment will have a negative effect on the generalization of domain
adaptation methods.

To alleviate the class-level misalignment problem, deep metric learning is commonly used to make
the feature more discriminative, so as to reduce the possibility of misclassifying the samples far from
their corresponding class centers [20]. Deep metric learning aims to learn discriminative embeddings
such that similar samples are nearer and different samples are further apart from each other via the
deep neural network. The Euclidean distance or cosine distance could be used as the distance metric
between samples. Lots of loss functions have been proposed to optimize the metric learning procedure
and the most widely used loss functions are center loss [35], contrastive loss [36], and triplet loss [37].

Zhang et al. [18] introduced center loss to obtain domain-invariant and discriminative
representations. The samples in the source domain and target domain could be better clustered
to their corresponding centers. Considering no label information is available in the target dataset,
pseudo-labels are used to calculate the class centers of the target domain. Chen et al. [19] proposed
a modified center loss by which the class centers are shared between the source domain and target
domain, hence the calculation for class centers could be simplified. In the target domain, the class
centers are calculated using pseudo-labels and updated periodically. However, computing and
updating the class center is not trivial, and the falsely pseudo labels could induce obvious bias. Instead
of using pseudo-labels to match the distributions directly, Xie et al. [22] proposed to learn semantic
representations by aligning labeled source centroid and pseudo-labeled target centroid.

Triplet loss was initially introduced in face recognition tasks in order to learn a metric or an
embedding space that makes the instances from the same category closer to each other than those from
different categories [37]. As shown in [38], learning representations using triplet loss are superior to
using pair-based loss. Inspired by this, we aim to reduce the distribution discrepancy and utilize the
triplet loss to preserve the class-level relations among samples from both domains. As Equation (1),
triplet loss takes triplet samples as input, which are called anchor sample, positive sample and negative
sample, respectively. Triplet Loss tries to make the distance in the embedding space between the
anchor sample xa and positive sample xq which belong to the same category closer than that of the
anchor sample xa and negative sample xn, which belong to different categories, by at least margin m.

Ltrip(θ) =
∑

a, p, n
ya = yp , yn

max
(
0, Da,p −Da,n + m

)
(1)

3. Proposed Method

3.1. Overview

In unsupervised domain adaptation, we have labeled datasetDs =
{(

xs
i , ys

i

)}ns

i=1
sampled from the

source domain Xs and unlabeled datasetDt =
{
xt

j

}nt

j=1
sampled from the target domain Xt. The source

domain and target domain share the same feature space
(
Xs, Xt

∈ X

)
but with different marginal
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distributions
(
Ps(Xs) , Pt

(
Xt

))
. The target task is assumed to be the same as the source task. Our goal

is to develop a deep neural network f : Xs
→ Xt that is able to predict labels for the samples from

the target domain.
We introduce an unsupervised domain adaptation method to jointly align the distributions

between the source domain and target domain in both data-level and class-level. Wasserstein distance
is used to minimize the distribution discrepancy at data-level, and triplet loss is utilized to further
align the distribution at class-level. The framework of the proposed method is illustrated in Figure 2.
To mitigate the domain shift of different working conditions of bearing fault diagnosis by jointly
aligning the two distributions, adversarial learning is performed between domain critic D and feature
extractor E to minimize the Wasserstein distance, so as to align the distribution on data level, In addition,
triplet loss is also imposing to source data and target data simultaneously in each minibatch while
training deep convolutional neural network. Through this two-level alignment approach, both the
discriminative and domain-invariant representations could be learned.
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3.2. Domain-Level Alignment by Wasserstein Distance

To align the distribution globally using Wasserstein distance, three components are involved
in this stage, namely feature extractor E, classifier C and domain critic D. After adversarial training
between feature extractor E and the others, domain alignment could be achieved, and domain invariant
representation could be obtained.

Given an instance x ∈ Rm from either domain, the feature extractor learns a function fg : Rm
→ Rd

that maps the instance to a feature representation h = fg(x) with the corresponding network parameter
θg. A domain critic learns a function fw : Rd

→ R that maps the feature representation to a real number
with the parameter θw. Then, the Wasserstein distance between two representation distributions Phs

and Pht , where hs = fg(xs) and ht = fg
(
xt
)
, can be computed by:

W1(Phs ,Pht) = sup
‖ fw‖L≤1

EPhs [ fw(h)] −EPht [ fw(h)]

= sup
‖ fw‖L≤1

EPxs

[
fw

(
fg(x)

)]
−EPxt

[
fw

(
fg(x)

)] (2)

If the parameterized family of domain critic functions are all 1-Lipschitz, then we can approximate
the empirical Wasserstein distance by maximizing the domain critic loss Lwd with respect to
parameter θw:
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Lwd =
1
ns

∑
xs∈Xs

fw
(

fg(xs)
)
−

1
nt

∑
xt∈Xt

fw
(

fg
(
xt
))

(3)

When optimizing Equation (3) under constrain of 1-Lipschitz, a common approach is to enforce
gradient penalty Lgrad for the domain critic parameter θw, instead of using weight clipping method for
the parameter θw, which may cause gradient vanishing problem:

Lgrad
(
ĥ
)
=

(
‖ ∇ĥ fw

(
ĥ
)
‖

2
− 1

)2
(4)

where the feature representations ĥ at which to penalize the gradients are defined not only at the source
and target representations, but also at the random points along the straight line between source and
target representation pairs. The optimization of domain critic D is as follows:

max
θw

{
Lwd − ρLgrad

}
(5)

where ρ is the balancing coefficient.
After training the domain critic D, we optimize the feature extractor E and classifier C during the

adversarial training. The optimization goal of E is to minimize the Wasserstein distance with respect to
parameter θg while keeping the parameters of D fixed:

min
θg

max
θw

{
Lwd − ρLgrad

}
(6)

The classifier C with the parameter θc will be optimized on labeled samples from the source
domain. The classifier is a multi-layer fully connected network, ends with a Softmax layer with the
size dependent on the classification task. The optimization function for classifier C is defined as:

min
θC
Lc =

∑
(xi,yi)∈(Xs,Ys)

H(C(E(xi)), yi) (7)

where H(·) is the cross-entropy loss in Softmax layer, (Xs, Ys) is the distribution of samples and labels
in the source domain and θc are parameters of the classifier.

To sum up, the objective function in the global alignment is as Equation (8), where λ is the
coefficient that controls the balance between discriminative and transferable feature learning and ρ
should be set to 0 when optimizing the minimum operator.

min
θg,θc

{
Lc + λmax

θw

[
Lwd − ρLgrad

]}
(8)

3.3. Class-level Alignment with Triplet Loss

Given 2 mini-batches of samples from the source domain and target domain, we compose
triplet training samples using online hard negative mining strategy [37]. We first pseudo-label the
mini-batch from the target domain and then concatenate two mini-batches into one. In the online
triplet construction, the positive pairs are constructed using all images from the same class. For each
positive pair, we randomly choose one negative sample if the negative sample is closer to the anchor
point than the positive sample. The loss being minimized is then:

Ltrip =
N∑
i

[
‖ f

(
xa

i

)
− f

(
xp

i

)
‖

2
2 − ‖ f

(
xa

i

)
− f

(
xa

i

)
‖

2
2 + m

]
+

(9)
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The objective function in the class-level alignment is as follow

min
θg,θc

{
Lc + λ1max

θw
{Lwd}+ λ2Ltri

}
(10)

where λ1 and λ2 are balancing coefficients.
The algorithm details of the proposed method are described in Table 1.

Table 1. Algorithm details of the proposed method.

Algorithm: TLADA

Require: source data Xs; target data Xt; minibatch size m; critic training step n; learning rate for domain critic
a1; learning rate for classification and feature learning a2;

1. Initialize feature extractor, domain critic, classifier with random weights θg, θw, θc
2. repeat

3. Sample minibatch
{
xs

i , yt
i

}m

i=1
,
{
xt

i

}m

i=1
from Xs and Xt

4. for t = 1, . . . , n do

5. hs
← fg(xs), ht

← fg
(
xt

)
6. sample h as the random points along straight lines between hs and ht

7. ĥ←
{
hs, ht, h

}
8. θw ← θw + α1∇θw

[
Lwd

(
xs, xt

)
− ρLgrad

(
ĥ
)]

9. end for
10. θc ← θc − α2∇θcLc(xs, ys)

11. θg ← θg − α2∇θg

[
L(xs, ys) + λ1Lwd

(
xs, xt

)
+ λ2Ltri

(
xs, xt

)]
12. until θg,θw,θc converge

4. Experiments

We evaluate our method on CWRU rolling bearings dataset and Paderborn dataset under different
loads. Additional, unsupervised domain adaptation between different sensor locations is performed
on CWRU dataset. The testbeds of CWRU and Paderborn are shown in Figure 3.
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4.1. Implementation Details

The detail of the network architecture is shown in Table 2. It consists of four 1-D convolutional
layers, following the rectified linear units (ReLU) activation function, and a dropout layer.
The representation is then flattened and passed to classifier, domain critic, and triplet to calculate the
classification loss, Wasserstein distance, and triplet loss, respectively.

To validate the performance of the proposed method, we compare our method with the Wasserstein
distance-based adversarial domain adaptation approach (WDGRL) and deep learning-based domain
adaptation methods. To be fair, the neural network used in our method and the compared deep
learning methods are kept the same.
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• Wasserstein distance guided representation learning (WDGRL) proposed by Shen et al. [34].
Wasserstein distance of representations learned from feature extractor is minimized to learn
domain-invariant representations through adversarial learning.

• Deep convolutional transfer learning network (DCTLN) proposed by Lei et al. [31]. Both adversarial
learning and MMD loss are employed to minimize the domain discrepancy.

• Transfer component analysis (TCA) proposed by Pan et al. [26].
• CNN: The neural network trained on labeled data from the source domain is used to classify the

target domain directly without domain adaptation.
• DeepCoral proposed by Sun et al. [6]. Mean and covariance of feature representations are matched

to minimize domain shift.
• Deep domain confusion (DDC) proposed by Tzeng et al. [25]. DDC uses one adaptation layer and

domain confusion loss to learn domain invariant representations.
• Deep adaptation network (DAN) proposed by Long et al. [27]. Feature distributions are aligned

through minimizing multi-kernel MMD distance between domains.

Table 2. Details of the networks used in this experiment.

Component Layer Type Kernel Stride Channel Activation

Feature
Extractor

Convolution 1 32 × 1 2 × 1 8 Relu
Pooling 1 2 × 1 2 × 1 8

Convolution 2 16 × 1 2 × 1 16 Relu
Pooling 2 2 × 1 2 × 1 16

Convolution 3 8 × 1 2 × 1 32 Relu
Pooling 3 2 × 1 2 × 1 32

Convolution 4 3 × 1 2 × 1 32 Relu
Pooling 4 2 × 1 2 × 1 32

Classifier
Fully-connected 1 500 1 Relu
Fully-connected 2 C 1 1 Relu

Critic
Fully-connected 1 500 1 Relu
Fully-connected 2 1 1 Relu

1 Depending on the categories of classification tasks, C is 10 or 4 for CWRU dataset and 3 for Paderborn dataset.

The reported experimental results are averaged by 10 trials to reduce the effect of randomness,
and the mean values are provided. All the experiments are implemented using Pytorch and were
running on NVIDIA GTX 2060 GPU. The source code is available at https://github.com/schwxd/TLADA.

4.2. Case 1: Results and Analysis of CWRU Dataset

In case 1, we use the public fault bearing dataset provided by Case Western Reserve University
(CWRU) Bearing Data Center to evaluate the proposed method. In this study, the vibration signals
recorded at 12,000 samples/second (Hz) for the drive-end bearings and fan-end bearings are used.
For experiments between different working conditions of drive end, healthy condition and three
fault categories (ball fault, inner raceway fault, and outer raceway fault) with three different fault
depth (0.007, 0.014, 0.021 inches) are used, which make the experiments 10-category classification
tasks. For experiments between different sensor locations, the samples are collected from healthy
condition and three fault categories with two different fault depth (0.007, 0.021 inches), but we ignore
the variance of working conditions and fault depth in this task, which make the experiments 4-category
classification tasks (Healthy, Inner Race, Outer Race, Ball).

4.2.1. Dataset and Implementation

We mainly fellow the experimental setup in [39] where each class has 1000 samples. The samples
are generated from sensory vibrational data using an adjustable sliding window frame method to

https://github.com/schwxd/TLADA
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augment the dataset. The length of each sample is 2048, and the fast Fourier transform (FFT) is applied
to each sample to obtain the frequency spectrum. Since the frequency spectrum is symmetric, only the
first half of the spectrum is kept. Hence, the feature dimension of each sample is 1024.

The dataset consists of four working conditions with different motor load and rotating speed, i.e.,
Load0 = 0 hp/1797 rpm, Load1 = 1 hp/1772 rpm, Load2 = 2 hp/1750 rpm and Load3 = 3 hp/1730 rpm.
When transferring from different load conditions, all 4 load conditions are used to perform 12 transfer
scenarios. When transferring from different sensor locations, 2 transfer scenarios (DE -> FE and
FE -> DE) are performed. When transferring from dataset A to dataset B, all samples of A and
half samples of B are used for training, and the models are tested on another half samples of B.
The description of CWRU dataset in use is shown in Table 3. The vibration signals of different working
conditions are shown in Figure 4.

Table 3. Description of CWRU dataset.

Datasets Working Conditions # of Categories Samples in Each Category Category Details

DE0 0 10 1000 Health,
Inner 0.007, Inner 0.014, Inner 0.021,

Outer 0.007, Outer 0.014, Outer 0.021,
Ball 0.007, Ball 0.014, Ball 0.021

DE1 1 10 1000
DE2 2 10 1000
DE3 3 10 1000

DE 1/2/3 4 6000 Health, Inner (0.007, 0.021),
Outer (0.007, 0.021), Ball (0.007, 0.021)FE 1/2/3 4 6000
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Figure 4. Collected signals of Ball Fault with fault depth 0.014 inch under different working conditions.
The horizontal axis represents the time and the horizontal axis are the acceleration data. Four
vibration signals under load conditions of 0, 1, 2, 3 from the drive end are shown in (a–d), respectively.
Four vibration signals under load conditions of 0, 1, 2, 3 from the fan end are shown in (e–h), respectively.

The hyperparameters used in the experiment are as follows. Learning rates of classifier and
domain critic are α1 = 1 × 10−4 and α2 = 1 × 10−4. The gradient penalty ρ is 10. Coefficient λ1 and λ2

are 1.0 and 0.2, respectively. For MMD (Coral) based methods, the coefficient between classification
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loss and MMD (Coral) loss is chosen from {0.01, 0.1, 1.0, 10, 100}. For Wasserstein based methods
(WDGRL and TLADA), the coefficient λ1 is chosen from {0.1, 0.2, 0.5, 0.8, 1.0, 2.0}.

4.2.2. Results and Analysis

Table 4 shows the results of domain adaptation tasks on CWRU dataset. For transfer tasks between
different working conditions, TLADA achieves 100% accuracy on 3 tasks and has an average 98.48%
accuracy overall. For tasks having a larger margin between working conditions like ‘DE0 -> DE3’, the
compared methods declined, while the Wasserstein based methods still have high accuracy. For the
more complicated transfer tasks between different sensor locations, the results show a significant
decline compared with results between different working conditions. Specifically, the result of WDGRL
transferring from drive end to fan end drops to 61.02% while our method still has accuracy of 64.08%.

Table 4. Test results of domain adaptation tasks on CWRU dataset. (Accuracy %).

Task TCA CNN Deep
CORAL DDC DAN DCTLN WDGRL TLADA

DE0 -> DE1 62.50 95.07 98.11 98.24 99.38 99.99 99.71 99.68
DE0 -> DE2 65.54 79.28 83.35 80.25 90.04 99.99 98.96 99.81
DE0 -> DE3 74.49 63.49 75.58 74.17 91.48 93.38 99.22 99.61
DE1 -> DE0 63.63 79.99 90.04 88.96 99.88 99.99 99.67 99.82
DE1 -> DE2 64.37 89.33 99.25 91.17 99.99 100 99.88 100
DE1 -> DE3 79.88 58.48 87.81 83.70 99.47 100 99.16 99.51
DE2 -> DE0 59.05 90.96 86.18 67.90 94.11 95.05 95.25 98.32
DE2 -> DE1 63.39 88.81 89.31 90.64 95.26 99.99 93.16 96.61
DE2 -> DE3 65.57 87.15 98.07 88.28 100 100 99.99 100
DE3 -> DE0 72.92 68.09 76.49 74.60 91.21 89.26 90.75 94.37
DE3 -> DE1 68.93 75.11 79.61 74.77 89.95 86.17 95.75 95.97
DE3 -> DE2 63.97 89.84 90.66 96.70 100 99.98 99.46 100

average 67.02 80.47 87.87 84.12 95.90 96.16 97.58 98.48

DE -> FE 34.37 28.42 54.14 51.38 58.67 58.74 61.02 64.08
FE -> DE 36.40 56.65 64.93 57.67 69.14 60.40 66.23 69.35
average 35.39 42.54 59.54 54.53 63.91 59.57 63.63 66.72

To better understand the effect of class-level alignment in domain adaptation, we compare
the domain-invariant representations between WDGRL and TLADA via t-SNE in Figure 5, and the
confusion matrix results in Figure 6. We choose the task ‘FE -> DE’ for these comparisons. As shown in
t-SNE result, the class of healthy condition is clearly separated, and both accuracy and recall are 100%
in the confusion matrix. The accuracy of TLADA on ‘Inner Race’, ‘Outer Race’ and ‘Ball’ is higher
than WDGRL. This is consistent with the t-SNE results, where the learned feature representations
of TLADA on those classes are better separated than WDGRL results. By imposing triplet loss on
samples, the samples far away from their class centers, which are prone to be misclassified, are further
reduced compared to WDGRL.

4.3. Case 2: Results and Analysis of Paderborn Dataset

In case 2, we evaluate our method on Paderborn University bearing dataset [40]. The dataset
consists of 6 healthy bearing sets and 26 damaged bearing sets. Current signals and vibration signals
are sampled from the test rig. In this study, we only adopt the vibration signals which are sampled
with 64kHz resolution. In addition to 12 artificially damaged bearing sets, 14 bearing sets are real
damaged using accelerated life tests, which are prone to have multiple damages.
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Sensors 2020, 20, 320 12 of 19 

 

 

 
Figure 5. t-SNE results of task ‘FE -> DE’ on CWRU dataset through method (a) WDGRL, (b) 
TLADA. To better inspect the class-level alignment between domains, we draw the features of both 
the source domain and the target domain into single images. Two shapes represent two domains 
(square for source domain and triangle for target domain), and four colors with numbers represent 
four classes. 

 
Figure 6. Confusion matrix results of task ‘FE -> DE’ on CWRU dataset through method (a)WDGRL, 
(b) TLADA. The accuracy and recall of each class are added to the matrix as well. 

4.3. Case 2: Results and Analysis of Paderborn Dataset 

In case 2, we evaluate our method on Paderborn University bearing dataset [40]. The dataset 
consists of 6 healthy bearing sets and 26 damaged bearing sets. Current signals and vibration 
signals are sampled from the test rig. In this study, we only adopt the vibration signals which are 
sampled with 64kHz resolution. In addition to 12 artificially damaged bearing sets, 14 bearing sets 
are real damaged using accelerated life tests, which are prone to have multiple damages. 

In this study, we adopt 5 healthy bearing sets and 10 real damaged bearing sets to evaluate our 
method. Since 5 of damaged bearings are in the inner race and 5 are in the outer race, the 
experiment is a 3-way classification task. The healthy bearing sets mainly differ in the operating 
hours, as shown in Table 5. The real damaged bearing sets differ in many ways, such as damage 
mode, damage combination, damage extent, etc. The differences between bearing sets make it a 
more complex task to correctly fault classification. The parameters of faulty bearing sets are 
detailed in Table 6. The vibration signals of different working conditions are shown in Figure 7. 

Figure 6. Confusion matrix results of task ‘FE -> DE’ on CWRU dataset through method (a)WDGRL,
(b) TLADA. The accuracy and recall of each class are added to the matrix as well.

In this study, we adopt 5 healthy bearing sets and 10 real damaged bearing sets to evaluate our
method. Since 5 of damaged bearings are in the inner race and 5 are in the outer race, the experiment is
a 3-way classification task. The healthy bearing sets mainly differ in the operating hours, as shown
in Table 5. The real damaged bearing sets differ in many ways, such as damage mode, damage
combination, damage extent, etc. The differences between bearing sets make it a more complex task to
correctly fault classification. The parameters of faulty bearing sets are detailed in Table 6. The vibration
signals of different working conditions are shown in Figure 7.

Table 5. Operating parameters of healthy bearing of Paderborn dataset [41].

Bearing
Code

Bearing
Name Damage Class Run-in

Period [h] Radial Load [N] Speed [min]

K001 H1 no damage H >50 1000–3000 1500–2000
K002 H2 no damage H 19 3000 2900
K003 H3 no damage H 1 3000 3000
K004 H4 no damage H 5 3000 3000
K005 H5 no damage H 10 3000 3000
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Table 6. Operating parameters of damaged bearing of Paderborn dataset [41].

Bearing
Code

Bearing
Name Damage Class Combination Arrangement Damage

Extent
Characteristic

of Damage

KA04 OR1 fatigue: pitting OR S no repetition 1 single point
KA15 OR2 plastic deform: indentations OR S no repetition 1 single point
KA16 OR3 fatigue: pitting OR R random 2 single point
KA22 OR4 fatigue: pitting OR S no repetition 1 single point
KA30 OR5 plastic deform: indentations OR R random 1 distributed
KI04 IR1 fatigue: pitting IR M no repetition 1 single point
KI14 IR2 fatigue: pitting IR M no repetition 1 single point
KI16 IR3 fatigue: pitting IR S no repetition 3 single point
KI18 IR4 fatigue: pitting IR S no repetition 2 single point
KI21 IR5 fatigue: pitting IR S no repetition 1 single point

IR: Inner Race Defect; OR: Outer Race Defect; S: Single Damage; R: Repetitive Damage; M: Multiple Damage.
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Figure 7. Vibration signals of Paderborn dataset under different working conditions. The horizontal
axis represents the time and the horizontal axis are the acceleration data. Health signals (K001) under
working conditions of 1, 2, 3 are shown in (a–c), respectively. Outer Race signals (KA04) under working
conditions of 1, 2, and 3 are shown in (d–f), respectively. Inner Race signals (KI04) under working
conditions of 1, 2, and 3 are shown in (g–i), respectively.

4.3.1. Dataset and Experiment

To validate our method in the setting of unsupervised domain adaptation, we compose 6 transfer
learning tasks between 3 working conditions. The vibration data is also preprocessed under the sliding
window mechanism as case 1. Since the sample rate is 64 kHz and the rotational speed is 1500 rpm,
the frame length of each sample is set to 5120 to cover 2 cycles of bearing running. Each class has
4000 training samples and 1000 test samples. Fast fourier transform (FFT) is applied to each sample to
obtain the frequency spectrum and the first half of the spectrum is kept. Hence, the feature dimension
of each sample is 2560. The description of Paderborn dataset in use is shown in Table 7.

The hyperparameters used in case 2 experiment are as follow: Learning rates of classifier and
domain critic are α1 = 10−3 and α2 = 10−3. The gradient penalty ρ is 10. Coefficient λ1 and λ2 is 1.0
and 0.1, respectively.
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Table 7. Description of the Paderborn dataset.

Dataset
Faulty Conditions Working Conditions

Normal Inner
Race

Outer
Race

Rotational
Speed [rpm)

Load Torque
[Nm]

Radial
Force [N]

PA
Train 4000 4000 4000

1500 0.1 1000Test 1000 1000 1000

PB
Train 4000 4000 4000

1500 0.7 400Test 1000 1000 1000

PC
Train 4000 4000 4000

1500 0.7 1000Test 1000 1000 1000

4.3.2. Results

Table 8 shows the results of our experiments on the Paderborn dataset. Although diagnosis on
the artificial damaged dataset is considered to be a more challenging task, the accuracy on Paderborn
dataset remains high level, which may be contributed to the huge number of training data compare
to CWRU dataset. Specially, all models achieved high accuracy in tasks ‘PA -> PC’ and ‘PC -> PA’,
in which the load conditions have the same radial force but different load torque. In other tasks,
the Wasserstein based methods (WDGRL and TLADA) have an obvious improvement over Coral-based
and MMD-based methods (DAN and DDC). Specifically, for tasks ‘PB -> PA’ and ‘PB -> PC’, CNN
method without domain adaptation achieved accuracy below 90%, while other domain adaptation
methods have demonstrated significant improvement. For tasks ‘PA -> PB’ and ‘PC -> PB’, TLADA
exceeds WDGRL by approximately 5%. Overall, among all methods, TLADA achieved the highest
average accuracy, which proves the strong domain adaptation.

Table 8. Test accuracy of the Paderborn dataset (Accuracy %).

3-Category Task TCA CNN DeepCoral DAN DDC DCTLN WDGRL TLADA

PA -> PB 87.27 90.93 92.23 91.70 90.83 96.17 96.33 99.00
PA -> PC 99.87 99.73 99.54 99.33 99.97 99.84 99.97 100
PB -> PA 92.99 88.73 92.20 93.03 98.13 99.87 98.80 99.17
PB -> PC 92.53 84.20 95.10 91.03 97.23 99.75 97.90 99.97
PC -> PA 99.80 99.36 99.60 97.37 99.83 99.91 99.80 99.93
PC -> PB 89.71 92.80 92.93 95.00 93.37 91.32 93.23 98.67
average 93.70 92.63 95.27 94.58 96.56 97.81 97.67 99.46

The visualization results produced by t-SNE method are shown in Figure 8, and the confusion
matrix in Figure 9. Task ‘PA -> PB’ is chosen for comparison. Generally, the healthy condition of
Paderborn dataset is not perfectly separated as CWRU dataset, and ‘Outer Race’ samples are prone to
be misclassified as healthy condition. ‘Inner Race’ and ‘Outer Race’ are prone to be misclassified to
each other, and this is slightly improved by TLADA. As shown in t-SNE result, more discriminative
features could be achieved by TLADA compared with features learned by WDGRL.

4.4. Analysis

4.4.1. Ablation Analysis

To further inspect the effects of triplet loss in unsupervised domain alignment, other two variants
of TLADA are built for comparison: one imposes triplet loss only on data samples from source domain
called TLADA-S, and another one imposes triplet loss only on data samples from target domain called
TLADA-T. We perform the experiments on four tasks: ‘DE -> FE’ and ‘FE -> DE’ on CWRU dataset,
‘PB -> PC’ and ‘PC -> PB’ on Paderborn dataset. The results are shown in Figure 10. Compared
with WDGRL with no triplet loss, the other three methods have demonstrated higher accuracies,
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and TLADA has the most improvement among them. The TLADA-T has a better effect than TLADA-S,
possibly because the classifier has been well trained on labeled samples from the source domain already.
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4.4.2. Parameter Sensitive Analysis

We investigate the parameter sensitivity of threshold when assigning pseudo-labels. Figure 11
gives an illustration of the variation of transfer classification performance as threshold ∈ {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The comparison was performed on tasks ‘DE -> FE’ and ‘PB -> PC’.
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We can observe that the for task ‘PB -> PC’, TLADA accuracy is not much affected by variants of
threshold since the majority of samples have been correctly classified. For task ‘FE-DE’, the accuracy of
TLADA first increases and then decreases as the threshold varies. When the threshold is too low, more
samples with falsely pseudo-labels will be involved in triplet loss, thus have a negative impact on the
accuracy. When the threshold is too high, fewer samples are involved in triplet loss and class-level
alignment will not work. It is suggested to use a moderate threshold value for hard transfer tasks.

4.4.3. Computational Cost

The triplet loss comes with run-time complexity O(N3/C) per epoch, where N is the number
of samples and C is the number of classes. In our method, we use two approaches to reduce the
complexity of computation. One approach involves selecting samples using online hard triplets
within each mini-batch. For example, in the experiment of Paderborn dataset, we observed that about
1000~2000 triplets are selected in each minibatch with batch size of 256, thus only a small portion of
samples are selected for training. Second approach is imposing triplet loss only when the training
of Wasserstein distance and the classifier have been stabilized, since the selection of triplet samples
of target domain depends on the pseudo-labels. At the beginning of model training, the model is
not discriminative enough and the predicted labels have low confident. In the experiment we found
that the triplet loss could be enabled during the last 20 epochs of training, which not only aligned
the distribution at class-level, but also not bring heavy burden of computation. The time cost of each
method are listed in Table 9. All the methods run 200 epochs, and triplet loss of TLADA is imposed on
last 20 epochs. From the results, the time cost of TLADA takes about twice of DCTLN and WDGRL,
but less than the time cost of DAN method.

Table 9. Comparison of computational cost. time of 200 epochs on ‘DE -> FE’ of CWRU dataset is listed
(in seconds). triplet loss of TLADA is imposed on last 20 epochs.

Task CNN DeepCoral DDC DAN DCTLN WDGRL TLADA

Time (seconds) 245 530 493 2543 930 823 2079
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5. Conclusions

In this paper, we propose a triplet loss guided adversarial domain adaptation method for bearing
fault diagnosis. We match distribution at domain-level using Wasserstein distance, as well as class-level
using pseudo-labeling and triplet loss. We use triplet loss to guide the feature extractor to preserve class
information for target samples in aligning domains. Experiments on two different bearing diagnosis
scenarios verify the efficacy of our proposed approach.

In the future, we plan to eliminate the effect of falsely pseudo-labels in the target domain.
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