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Abstract: Mobile-edge computation offloading (MECO) is a promising emerging technology for
battery savings in mobile devices (MD) and/or in latency reduction in the execution of applications
by (either total or partial) offloading highly demanding applications from MDs to nearby servers
such as base stations. In this paper, we provide an offloading strategy for the joint optimization of
the communication and computational resources by considering the blue trade-off between energy
consumption and latency. The strategy is formulated as the solution to an optimization problem
that minimizes the total energy consumption while satisfying the execution delay limit (or deadline).
In the solution, the optimal transmission power and rate and the optimal fraction of the task to
be offloaded are analytically derived to meet the optimization objective. We further establish the
conditions under which the binary decisions (full-offloading and no offloading) are optimal. We also
explore how such system parameters as the latency constraint, task complexity, and local computing
power affect the offloading strategy. Finally, the simulation results demonstrate the behavior of the
proposed strategy and verify its energy efficiency.

Keywords: mobile-edge computing; mobile application offloading; partial offloading; channel
condition; energy-latency trade-off

1. Introduction

For the past several years, mobile devices (MDs), such as smartphones, handheld game consoles,
and vehicle multi-media computers, have become virtually ubiquitous and an increasing number
of new mobile applications, such as augmented reality (AR), image processing, natural language
processing, face recognition, and interactive gaming, have emerged and been the focus of considerable
attention [1,2]. These mobile applications are typically latency-sensitive, computation-intensive, and
have high energy consumption characteristics. However, under the constraint of physical size, MDs
have limited resources, which restricts their battery life and computational capacities [3,4]. Recent
studies have shown that mobile-edge computation offloading (MECO) technology provides a promising
opportunity for effectively overcoming the hardware limitations and energy consumption problems of
MDs, by offloading computing-intensive tasks to adjacent clouds at the edges of mobile networks.

In particular, mobile-edge computing (MEC) offers cloud computing capabilities at the very edge of
the mobile networks by deploying MEC servers with sufficient computational resources at base stations
(BSs), which thus improves the computational efficiency and reduces the latency, and it has drawn
significant attention from both academia and industry [5]. The paradigm shifts from cloud computing
to MEC can effectively reduce the backhaul latency and energy consumption, as well as support a more
flexible infrastructure in a more cost-effective way. For example, the work in [6] used unmanned aerial
vehicles (UAVs) to help device-to-device (D2D) wireless networks [7]. Furthermore, MEC together with
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virtual machine (VM) migration can effectively increase the scalability while reducing service delay [8,9].
Owing to these advantages, MEC has attracted extensive research attention from various aspects.

Because computational performance and energy consumption are competing for resources and
are critical for mobile users [10], effective computation offloading schemes have become prominent
for MEC systems. Basically, a decision on computation offloading may result in binary offloading and
partial offloading, which are closely related to the application model/type. It determines whether full or
partial offloading is applicable, what could be offloaded, and how [3]. A highly integrated or relatively
simple task cannot be partitioned and has to be executed as a whole either locally at the mobile device
or offloaded to the MEC server, called binary offloading. In practice, many mobile applications are
composed of multiple procedures/components, making it possible to partition the program into two
parts with one executed at the mobile device and the other offloaded for edge execution, called partial
offloading. Although the former is easier to implement, for a very large dataset, by offloading critical
subtasks to the MEC servers, partial offloading can help to reduce the latency and energy consumption
on the local devices more flexibly and effectively [3]. However, partial offloading is a very complex
process affected by different factors, i.e., whether the applications can be divided into offloadable parts
or not; the offloadable part may differ in the amount of data and required computation; how to decide
which parts could be offloaded to the MEC; the components of applications that need input from some
others; and parallel offloading may not be applicable. Fortunately, these factors have been discussed
and studied in many works [11–19].

For the offloading strategy, Bi et al. [20] studied the binary scheme in the wireless powered MEC
network that consisted of one server and several users, where the binary policy was adopted for
maximizing the weighted sum computational rate. Zhang et al., in [21], used the auction theory to
model the matching relationship between the MEC server and the MDs, so as to offload tasks to the
optimal MEC server. Al-Shuwaili et al., in [22], jointly allocated communication and computational
resources to minimize the total MD energy consumption under latency constraints by successive convex
approximation. In [23], by considering the data arrival time instants and computational deadlines,
You et al. proposed an energy-efficient resource management policy for MECO systems and formulated
an optimization strategy that minimized the total mobile energy consumption. For partial offloading,
the work in [24] investigated MEC systems with one energy harvesting (EH) device and proposed an
effective dynamic computation offloading algorithm to minimize the execution cost. In [25], You et al.
studied the energy saving partial computation offloading problem, for a multiuser MECO system based
on time-division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA).
In [26], Wang et al. also considered the energy consumption minimization problem in a scenario with
one MEC server and multiple users. They also employed wireless power transfer to further alleviate
the burden on battery usage. Furthermore, the work in [27] implemented a cooperative communication
system that had three nodes, in which one of them acted as the helper for relaying and computing.
Lastly, the work in [28] considered both the fronthaul and backhaul link transmission and offloading in
a small-cell architecture.

However, some of above literature only focused on the performance indicator of latency, while
this paper aims at minimizing the energy consumption, which is critical for power-limited devices,
especially for a device with lower battery energy. Furthermore, in the problem formulation, the
previously mentioned works [25,26] only considered the local computing time and transmission time,
but the server computing time was neglected; thus, they fell short of accuracy for scenarios in which the
MDs needed to offload computation-intensive jobs to MEC servers with limited computing capacity.
Moreover, most of the works performed so far performed the management aspects, the experimental
evaluation of energy savings associated with offloading, and/or the definition of an offloading criterion
that considered the energy cost of the radio interface (e.g., LTE or WiFi), but without optimizing the
energy cost of the data transfer according to the current channel conditions. Notice, however, that
depending not only on the application, but also on the current channel conditions, the best strategy
concerning the offloading process may be different. Considering minimizing the energy consumption
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at the MD for delay-constrained offloading jobs, an optimization problem can be formulated to allocate
the computation and communication resources jointly in the described MECO system.

In this paper, we pursue an energy-efficient MEC offloading design considering the partial and
binary strategies, aiming to minimize the energy consumption of the mobile application while ensuring
that the computational task can be successfully finished with a predefined hard limit of execution time.
We derive the analytical solution for the single-MD to the MEC case, which can be generalized to the
multi-MD case in later research. Our work presents some main differences from previous works. First,
we introduce an offloading model that includes energy consumption at MD and processing time at
the server side, while these offloading parameters were neglected in previous works such as [24,27].
Second, instead of considering that the application is run either totally in the cloud or totally in the
MD, we include an optimization variable as the quantity of data to be processed on each side to allow
a partial trade-off between local computing and offloading. Finally, in contrast with previous works,
our approach allows for adapting the transmission strategy to the current channel state as perceived
by the MD in the uplink.

The main technical contributions of this paper are as follows.

1. Based on the offloading model above, we formulate an offloading-optimization problem that
minimizes the MD energy usage while ensuring the task is completed within a prescribed deadline,
by jointly optimizing the transmitting time and offloading ratio.

2. We transform the latency-constrained problem into a two-stage optimization problem, which can
be analytically solved using standard convex optimization techniques. In the solution, a channel
condition threshold is derived above which full offloading is the optimal decision, whereas below
the threshold, partial offloading is performed to trade off between the time and energy cost of
offloading. For the partial offloading policy, the optimal transmission time and offloading ratio
are derived in closed form expression.

3. This paper also discusses in detail various practical aspects of the offloading strategy, including
the conditions under which total offloading or non offloading is optimal, the minimum admissible
latency constraint that renders the problem feasible, and how the system parameters affect the
offloading decision, including the energy efficiency of MD, the task complexity, and the computing
capacity of local devices.

The remainder of this paper is organized as follows. In Section 2, the communication and
computational model in mobile execution and MEC execution are presented, respectively. In Section 3,
the optimization problem is formulated and solved for optimal partial offloading, while binary
offloading decisions are also discussed under different channel conditions. The effects on the offloading
strategy of a number of system parameters are analyzed in detail in Section 4. Finally, some simulation
results and conclusions are provided in Sections 5 and 6, respectively.

2. System Model

As shown in Figure 1a, the MEC server is a computing device installed at a wireless access station.
The MD is provided with wireless access to the computational resources located in proximal servers.
By assigning the computing-intensive applications to the BS, it can help mobile users improve the
computing performance. The pioneering literature has extensively studied mobile networking and
mobile-edge computing models (e.g., [23,29–31]), which provide useful insights and make performance
analysis tractable. Based on these results, we adopted a canonical model that captured the essentials
of a typical mobile application. Although it is possible to build a system model to depict the various
aspects of MEC in detail, such a model could be too complex to be treated analytically and is difficult
for practical systems. Specifically, in this paper, the mobile application is abstracted into a profile with
three parameters [22,23], including:

• Input data size dApp: the number of data bits as the input to the application;
• Required CPU cycles cApp: the number of CPU cycles required to complete the application;



Sensors 2020, 20, 3064 4 of 22

• Application completion deadline TMax: the maximum latency, before which the application should
be completed.
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(b)

Figure 1. System model. (a) Mobile-edge computing (MEC) platform. (b) The offloading workflow.

For the partial offloading policy, let α represent the ratio of the offloaded data to the full data size,
and the offloaded data size of the mobile application can be denoted as lOff = dAppα. We consider
the application scenario to be quasi-static, where the environment at MD will not change during the
computation offloading period.

Notice that the input data size dApp, the required CPU cycles cApp, and the application completion
deadline TMax may have an impact on the energy consumption of mobile applications. With more data
input, more CPU cycles, and/or a more stringent completion deadline, the energy consumption will
be higher. Therefore, it will be beneficial to offload computation-intensive tasks to the MEC servers.

2.1. Communication Model

We first introduce the communication model between the MD and the MEC platform. The
computation offloading policy was carried out based on energy consumption and completion time.
The transmission power for the MD is denoted as pTr, and gs represents the channel gain of the BS.
The uplink data rate rTr for computation offloading of the MD is given by:

rTr = B log2

(
1 +

pTrg2
s

(N0 + I)B

)
, (1)

where N0 and I represent the power spectrum density of additive white Gaussian noise and the
interference signal, respectively. Letting B be the bandwidth of the channel, at the MEC, the received
signal power can be denoted by a function of data rate r:
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h(r) = (N0 + I)B
(

2
r
B − 1

)
, (2)

which is monotonically increasing and convex for r > 0. The offloading transmission rate can be
denoted as:

rTr =
dApp

tTr
, (3)

where tTr is the transmission time of the MD for offloading the input data size dApp. Then, the
transmission power pTr can be calculated by combining (2) and (3):

pTr =
1
g2

s
h
(dApp

tTr

)
. (4)

2.2. Computation Model

(1) Local computing: With the local computing approach, the MD executes the application locally
on the MD. Let hMD denote the computational capability (i.e., CPU cycles per second) of the MD, and
accordingly, the completion time for local computing is defined as:

tLo =
cApp

hMD
, (5)

For the local computation energy, we have:

eLo = fMD cApp, (6)

where fMD is the consumed energy per CPU cycle for the MD. Besides, fMD indicates the energy
efficiency of the MD.

(2) Edge computing: With the edge computing approach, the MD is allowed to offload its
computational load to a nearby MEC server. Subsequently, the server performs the offloaded task and
feeds the result back to the MD. Therefore, in the overall offloading, the following three consecutive
phases are included: (i) transmitting phase, (ii) computing phase, and (iii) receiving phase. According
to the communication model, the transmission time and energy consumption of the MD sending its
computational load to the MEC server are calculated by:

tTr =
dApp

rTr
, (7)

and:
eTr = pTr tTr. (8)

The execution time for the computing load dApp on the MEC server is computed by:

tSer =
cApp

hMEC
, (9)

where hMEC denotes the computational capacity of the MEC server.
For the edge computing approach, the completion time and energy consumption of the mobile

application are formulated as:
tOff = tTr + tSer + tRec, (10)

and:
eOff = eTr + eRec, (11)

where tRec and eRec denote, respectively, the time and energy required at the MD side when receiving
the computational outcome from the MEC server. As in the existing works [32,33], the receiving
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time tRec and the receiving energy eRec can be ignored because for many applications, such as face
recognition and car barrier detection, the data size of the result is relatively much smaller than the
size of the input. In this paper, we consider the energy consumption on the MD side, while our future
work will consider the execution energy consumption of the MEC server.

Generally, we can assume that the server has higher computational capacity than the mobile
device, i.e., hMEC > hMD. Therefore, if a job is fully offloaded to the MEC server, the time saved in the
computation phase can be expressed as:

TSav = cApp

(
1

hMD
− 1

hMEC

)
. (12)

2.3. Partial Offloading Model

Next, we introduce the partial offloading model. As in [22,33], we apply a linear model in this
paper and the MD enables programs to process computing tasks sequentially. Here, α is the offloading
ratio, which is the proportion of the task data offloaded to the MEC server, as shown in Figure 1b.

The offloading data rate is rTr =
dApp

tTr
, the offloading transmit power pTr, and the partial offloading time

tOffα. Therefore, the total energy consumption of the MD includes both local computing consumption
and partial offloading consumption, which is expressed as:

eTot = eOffα + eLo(1− α), (13)

= pTrtTrα + fMDcApp(1− α), (14)

Because we consider the computational performance as well, the completion time of the MD can
be denoted as:

tTot = tOffα + tLo(1− α). (15)

The completion time above also includes the partial offloading time and the local computing time,
which are proportional to the original full offloading time and local-computing time, respectively.

By the definitions of eTot and tTot, the overall energy consumption of the MD is eTot, for the task
completed duration tTot.

3. Joint Optimization of the Communication and Computation Resources with Partial Offloading

Based on the offloading model established in the previous section, we are now ready to optimize
an offloading policy. Our goal was to find a policy that satisfies the hard delay constraints with minimal
energy consumption. The steps were carried out by analytical means, and solutions were formulated
under different channel conditions and computing profiles.

3.1. Optimization Formulation

Now, we present the optimization problem of minimizing the energy consumption at the MD
while satisfying the hard delay constraint. As a first step, the total energy is a monotonically decreasing
function of transmit time, as shown in Lemma 1:

Lemma 1. For any fixed 0 ≤ α ≤ 1, the total energy eTot is monotonically decreasing with tTr.

Proof. Please see Appendix A.

Lemma 1 proves that energy can be saved by extending the full offloading time under a fixed
offloading ratio, till reaching the time constraint.

The optimization objective is to find the offloading policy to minimize the total energy consumption
for the MD. It can be noted that eTot in (13) and tTot in (15) are affine functions of α. To simplify the
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problem, we let α and tTr be the optimization variables, and the optimal p∗Tr can be calculated from t∗Tr
by Equation (4). Hence, the energy consumption minimization problem for the MD is formulated as:

min
{tTr,α}

pTr tTr α + fMDcApp(1− α)

s.t.
(

tTr +
cApp

hMEC

)
α +

cApp

hMD
(1− α) ≤ TMax.

(16)

The constraint in (16) specifies that the total completion time of the application bits is bounded by
the maximum affordable latency TMax.

It is shown from (16) that the primal optimization problem is affected by multiple parameters
from both the communication and computational aspects. Of the parameters, the channel gain gs is
crucial because it determines the quality of the wireless channel and, hence, the cost of application
offloading in terms of energy.

3.2. Offloading Policy in Good Channel Conditions

In good channel conditions, a high-data-rate link can be established and maintained at a low
energy cost. In addition, the MEC servers have greater computing capacity compared to the local MDs.
Therefore, it is of interest to determine analytically when to perform full offloading to take advantage
of high-performance servers and good channel conditions. We have the following assertion:

Assertion 1. There exists channel gain threshold gTh that, for a channel gain better than threshold gTh, full
offloading with α∗ = 1 is energy-optimal under any latency constraint, and:

gTh =

√√√√√√ (N0 + I)BTSav

(
2

dApp
BTSav − 1

)
fMDcApp

. (17)

Proof. Please see Appendix B.

To satisfy the hard latency constraint at minimum energy cost, one can substitute α∗ = 1 into (15)
and apply Lemma 1. The optimal transmission time t∗Tr for gs > gTh is given by:

t∗Tr = TMax −
cApp

hMEC
, (18)

and p∗Tr can be computed using (4).

3.3. Offloading Policy for the Channel Condition below the Threshold

On the other hand, let us consider the case gs ≤ gTh. In that situation, it takes more energy to
overcome the propagation loss to offload a task to the MEC server (eOff ≥ eLo). The objective function
of (16) has the following features:

eTot = eOffα + eLo(1− α) (19)

= pTrtTrα + fMDcApp(1− α) (20)

=
(N0 + I) B tTr

g2
s

(
2

dApp
BtTr − 1

)
α

+ fMDcApp(1− α), (21)
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and:

∂2eTot

∂t2
Tr

=
α(N0 + I)2

dApp
BtTr d2

Appr2
Tr(ln 2)2

Bg2
s t3

Tr
> 0. (22)

It can be observed that Problem (16) is non-convex and hence is challenging to solve directly.

Assertion 2. Problem (16) can be transformed into a two stage optimization problem, by iteratively finding the
optimal α∗ and t∗Tr.

Proof. Since min
{tTr,α}

pTr tTr α + fMDcApp(1− α) is equivalent to min
tTr

min
α

pTr tTr α + fMDcApp(1− α), one

can first solve α for any specific value of tTr and, next, substitute the optimal α∗ into (16) to find the
optimal t∗Tr. Therefore, in the first sub-problem (23), we optimize the offloading ratio α for a given tTr.
In the second sub-problem (29), we aim to find the optimal t∗Tr, by substituting α∗ into the original
problem.

The first sub-problem is given by:

min
α

pTr tTr α + fMDcApp(1− α)

s.t.
(

tTr +
cApp

hMEC

)
α +

cApp

hMD
(1− α) ≤ TMax.

(23)

Therefore, we define function h(α):
h(α) , eTot. (24)

It is obvious that h(α) is convex and non-decreasing monotonically with respect to α, since
eOff ≥ eLo under the condition where gs ≤ gTh. Furthermore, from the latency constraint, we can find
α ≥ tLo−TMax

TSav−tTr
, under the default condition tLo ≥ TMax and TSav ≥ tTr (When gs ≤ gTh, it costs more

energy offloading data to remote servers than local computing. Therefore, if tLo < TMax, the local
computing is optimal; otherwise, partial offloading is energy-optimal.).

Hence, for a given tTr, the optimal α∗ is given by:

α∗ =
tLo − TMax

TSav − tTr
. (25)

Next, we substitute (25) into the main problem and solve tTr. We define:

g(tTr) , α∗ = tLo−TMax
TSav−tTr

, (26)

and its second-order derivative is:

∂2g(tTr)

∂t2
Tr

=
2(tLo − TMax)

(TSav − tTr)3 ≥ 0 (27)

Therefore, g(tTr) is convex with respect to tTr. From all the above, the composite function
f (tTr) = h(g(tTr)) is convex [34] (chapter 3). By substituting (25) into (16),

f (tTr) =
(TMax − tLo)tTr

g2
s (tTr − TSav)

h
(dApp

tTr

)
+ fMDcApp

(
1− TMax − tLo

tTr − TSav

)
. (28)

we can now solve the convex sub-problem that minimizes f (tTr), thanks to the fact that f (tTr) is convex.
The optimal t∗Tr is to be found by solving the second sub-problem:

min
tTr>0

f (tTr) (29)



Sensors 2020, 20, 3064 9 of 22

Solution to the Sub-Problem

Next we solve the convex problem (29) using standard convex optimization techniques, as shown
in the following.

Assertion 3. The optimal t∗Tr is computed by the expression below:

t∗Tr =
dApp

B
ln 2 W0[(−

g2
s fMDcApp

(N0+I)BTSav
− 1

e )2
−

dApp
BTSav ] + 1 +

dApp
TSav

. (30)

where W0(·) is the Lambert Wfunction [35].

Proof. First, recall that TSav in (12) is the difference between the time that the task is executed locally
and remotely. By letting the first-order derivative of the objective function of (29) be zero, we have:

TMax − tLo

g2
s

{[
1

tTr − TSav
+

tTr

(tTr − TSav)2

]
h
(dApp

tTr

)
+

tTr

tTr − TSav
h′
(dApp

tTr

)}
+ fMDcApp

TMax − tLo

(tTr − TSav)2 = 0. (31)

It can be simplified as:

TSavh
(dApp

tTr

)
− tTr(tTr − TSav)h′

(dApp

tTr

)
− g2

s fMDcApp = 0, (32)

tTrh
(dApp

tTr

)
− g2

s fMDcApp = (tTr − TSav)

[
h
(dApp

tTr

)
+ tTrh′

(dApp

tTr

)]
, (33)

(N0 + I)BtTr(2
dApp
BtTr − 1)− g2

s fMDcApp

= (tTr − TSav)

(N0 + I)B

(
2

dApp
BtTr − 1

)
−

(N0 + I)dApp ln 2 2
dApp
BtTr

tTr

 . (34)

By denoting u ,
dApp
BtTr

and based on Equation (34), u satisfies:

(N0 + I)
[
dApp ln 2 2u + BTSav2u − BTSav ln 2 u 2u] = g2

s fMDcApp + (N0 + I)BTSav, (35)

2u ln 2
( dApp

BTSav
− 1

ln 2
− u

)
=

g2
s fMDcApp

(N0 + I)BTSav
+ 1, (36)

2

(
u−

dApp
BTSav

− 1
ln 2

)
ln 2

(
u−

dApp

BTSav
− 1

ln 2

)
=

(
−

g2
s fMDcApp

(N0 + I)BTSave
− 1

e

)
2−

dApp
BTSav , (37)

We can finally further derive that:

e
ln 2
(

u−
dApp
BTSav

− 1
ln 2

)
ln 2

(
u−

dApp

BTSav
− 1

ln 2

)
=

(
−

g2
s fMDcApp

(N0 + I)BTSave
− 1

e

)
2−

dApp
BTSav . (38)
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However, recall that the condition gs > gTh has already been discussed in Section 3.2, resulting in
full offloading.

For gs ≤ gTh, by referring to the definition of the Lambert W function [35], u in Equation (38) is
obtained as follows:

u =
1

ln 2

{
W0

[(
−

g2
s fMDcApp

(N0 + I)BTSave
− 1

e

)
2−

dApp
BTSav

]
+ 1

}
+

dApp

BTSav
,

Therefore, the optimal time t∗Tr readily follows.

The optimal transmitting power p∗Tr can be derived from Equation (4) accordingly. Finally, α∗

in (25) can be redescribed as:

α∗ =
tLo − TMax

TSav − t∗Tr
. (39)

Overall, the solution in (30) and (39) indicates that if the channel is not good enough, offloading
the computing tasks to the remote MEC will have a high energy cost; thus, the partial offloading
strategy is the preferred decision.

Combining the above subsections, the optimal solution of the primal problem (16) is finally
presented as (40). For channel conditions better than the threshold gTh defined in (17), full offloading
is carried out; for channel gs < gTh, partial offloading is performed, and the offloading ratio α∗ and
transmission time t∗Tr are optimally chosen to minimize the total energy cost while satisfying the hard
time constraint TMax. Finally, the transmission power p∗Tr can be derived from t∗Tr by (4).

t∗Tr = TMax −
cApp
hMEC

, α∗ = 1, if gs > gTh

t∗Tr =
dApp

B
ln 2 W0[(−

g2
s fMDcApp

(N0+I)BTSav
− 1

e )2
−

dApp
BTSav ]+1+

dApp
TSav

, α∗ = tLo−TMax
TSav−t∗Tr

, if gs ≤ gTh (40)

3.4. Special Cases of Full Offloading and Non Offloading

Here, we proceed to analyze the special cases of the optimization problem, to determine under
what conditions the binary decisions of full offloading or non offloading can be performed.

3.4.1. Optimality Condition of Total Offloading

Here, we investigate the conditions under which the optimum is to process all the application
bits at the MEC server, i.e., α∗ = 1. The condition is twofold: (1) α∗ = 1 should be feasible, and (2)
∂eTot∗

∂α∗ ≤ 0, ∀ 0 ≤ α∗ ≤ 1.
According to the completion time constraint, the first condition (1) holds when TMax ≥ t∗Off, and

t∗Off = t∗Tr + tSer, i.e., the time required to transmit the task to the MEC server plus the time for remote
processing should not be larger than the maximum latency constraint.

Finally, the sufficient condition (2) can be expanded as:

∂eTot∗

∂α∗
=

t∗Tr
g2

s
h
(dApp

t∗Tr

)
− fMDcApp ≤ 0⇒ e∗Off ≤ eLo. (41)

This condition holds when gs ≥ gTh and t∗Tr ≥ TSav, which is equivalent to the situation where it
will take less energy to offload the application, as discussed in Section 3.2.

3.4.2. Optimality of Non Offloading

Here, we provide the necessary conditions under which the optimal solution is to process all task
bits locally at the MD, i.e., α∗ = 0. These conditions are twofold: (1) α∗ = 0 should be feasible, and (2)
∂e∗Tot
∂α∗ |α∗=0≥ 0.
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According to the completion time constraint, the first condition (1) holds only if TMax ≥ tLo, i.e.,
the time for executing all the application bits locally at the MD should not violate the latency constraint.

On the other hand, we see from Equation (19) that e∗Tot(α
∗) is equal to fMDcApp at α∗ = 0 and is

continuous within a certain interval containing α∗ = 0. These two characteristics allow us to state that
e∗Tot(α

∗) is constant (i.e., not dependent on α∗) within a certain interval containing α∗ = 0; therefore,
the second condition (2) holds only when:

∂e∗Tot
∂α∗

=
t∗Tr
g2

s
h
(dApp

t∗Tr

)
− fMDcApp ≥ 0⇒ e∗Off ≥ eLo. (42)

This condition indicates that if offloading within a time constraint costs more energy than local
computing, the MD should rely on its own resources. This condition holds in the situation where
gs ≤ gTh, and the proof is left for Appendix B.

To summarize the results of the above subsections, the offloading policy decisions are listed in
Table 1, under different channel conditions and latency constraints.

Table 1. Offloading policy decisions.

Channel
Latency tMax < tLo tMax ≥ tLo

gs > gTh Full offloading Full offloading
gs ≤ gTh Partial offloading Non offloading

4. Analysis of the System Parameters

In this section, we investigate how the system parameters affect the optimization problem,
including the time constraint, task complexity, and processing capacity at MD. This not only enables
us to understand how the offloading strategy operates under different system settings, but also helps
the system-level investigations of practical MEC systems in further research.

4.1. The Latency Constraint TMax and Feasibility of α∗

The completion time constraint of (16) is tOffα + tLo(1 − α) ≤ TMax, which is related to the
available time budget (and formulated in terms of maximum allowed latency), and can be rewritten as
a set of two detailed constraints as follows:

tOffα ≤ TMax ⇒ α ≤ TMax

tOff
, (43a)

tLo(1− α) ≤ TMax ⇒ α ≥ 1− TMax

tLo
. (43b)

Therefore, the minimum and maximum values of variable α can be defined as follows:

α ≥ αMin, αMin = max
{

0, 1− TMax

tLo

}
, (44a)

α ≤ αMax, αMax = min
{

1,
TMax

tOff

}
. (44b)

The primal problem (16) is feasible only if αMax ≥ αMin. As shown in Equation (44a) and
Equation (44b), αMax and αMin can be viewed as linear functions of TMax, and they are upper and lower
bounded by one and zero, respectively. Next, we investigate how TMax impacts the offloading policy
in different channel conditions.
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4.1.1. Channel Gain gs > gTh

In Figure 2, it can be clearly seen that it obtains the lowest value of TMax, under which a full
offloading strategy will save energy. Let us denote such a lowest value by T1. According to the closed
form expressions of t∗Tr, eOff and eLo, T1 can be calculated as follows:t∗Tr = TMax − tSer

t∗Tr
g2

s
h
(

dApp
t∗Tr

)
= fMDcApp

⇒ TMax = T1 = 2
dApp

B −
g2

s fMDcApp

(N0 + I)B
+ tSer. (45)

�

���

�

��

�

���

���

���

���

���

���

���

���

��	

��


���

�

�	


�

���

�

��

�

�

�

�

�

��

�

���

�

�����

Figure 2. Dependence of αMax, αMin, and e∗Tot versus TMax for gs > gTh.

As seen in Figure 2, in the situation where tSer ≤ TMax ≤ T1, the full offloading strategy has
to be carried out to meet the tight latency constraint at the expense of high energy consumption. If
T1 ≤ TMax ≤ tLo, the full offloading can save both time and energy. If tLo ≤ TMax, offloading will take
advantage of the relaxed time constraint, extending the transmission time to save more energy.

4.1.2. Channel Gain gs < gTh

In Figure 3, it can be observed that, for any tOff and tLo, there exists the lowest value of TMax (also
called the minimum admissible latency) under which α∗ in Equation (16) becomes unfeasible. Let us
denote the lowest value by T0. By referring to (44a) and (44b), T0 has to satisfy that:

1− T0

tLo
=

T0

tOff
⇒ T0 =

tOfftLo

tOff + tLo
. (46)
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Figure 3. Dependence of αMax, αMin, and e∗Tot versus TMax for gs ≤ gTh.
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In fact, as shown in Figure 3, T0 is the x-coordinate of the intersection-point of the two constraint
functions αMax(TMax) and αMin(TMax). Furthermore, it can be readily verified from (46) that:

• T0 ≤ tLo, T0 ≤ tOff;
• T0 > TSer.

where tLo is the time that is needed to do all the processing locally at the MD and tSer is the time that
would be needed to do all the processing remotely at the MEC server, as defined in (5) and (9).

For the policy specified in the previous section,

t∗Off = t∗Tr + tSer, (47)

where t∗Tr is defined in (30). Now, T∗0 can be evaluated from (46):

T∗0 =
t∗OfftLo

t∗Off + tLo
, (48)

which is the minimum admissible latency under this policy. For the time constraint TMax satisfying
T∗0 ≤ TMax ≤ tLo, the partial offloading is optimal to minimize the total energy consumption for meeting
the latency constraint at the same time. If tLo ≤ TMax, the local computing strategy is optimal in terms
of energy and time consumption. Note that in the situation where tSer ≤ TMax ≤ T∗0 , the full offloading
is optimal and can meet the tight latency constraint at the expense of high energy consumption.

Interestingly, when the time budget (i.e., the maximum allowed latency TMax) is equal to the
minimum affordable latency T0, partial offloading is required, and the distribution of the task size is
given by:

αMin = αMax ⇒
tLo

t∗Off + tLo
. (49)

where the previous expressions were obtained by finding the point where functions αMax(TMax) and
αMin(TMax) intersect.

4.2. The Channel Gain Threshold as a Function of the System Parameters

For those computation-intensive applications, it is inefficient to run it locally, because too much
energy is consumed per CPU cycle at the MD or because the application spends too many CPU cycles
per bit. In this situation, the full offloading strategy is more energy and time efficient for MDs. Here,
we introduce the parameter bit-wise application complexity, which is defined as CApp ,

cApp
dApp

, and the
channel gain threshold gTh can be expressed as a function of fMD and CApp as follows:

gTh =

√√√√√√ (N0+I)B
fMD

(
1

hMD
− 1

hMEC

) 2

1
BCApp

( 1
hMD

− 1
hMEC

)
− 1

. (50)

Figure 4 shows the radius of the effective coverage x0 of an MEC server installed in a picocell
base station for full offloading, based on the relationship between path loss [36] and channel gain
LT = −20 log gTh. As shown in Figure 4, with the energy efficiency of MD becoming weaker and the
application job becoming increasingly complicated, the effective coverage region decreases; thus, more
MDs will benefit from MEC in the cell.

Moreover, for asymptotically large CApp, the channel gain threshold gTh in (50) can be further
approximated as follows:

gTh ≈
√

(N0 + I)
fMDCApp ln 2

. (51)

As shown in Figure 5, gTh is largely determined by the local computing power and task complexity.
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Figure 4. The effective coverage of MEC versus the energy efficiency of MD and task complexity
(hMD = 1 GHz, hMEC = 10 GHz, B = 5 MHz, and N0 + I = −145 dBm).
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Figure 5. Channel gain threshold gTh. (a) gTh versus B. (b) gTh versus CApp.

In conclusion, the proposed method is applicable to the emerging computational-intensive and/or
delay-sensitive applications, i.e., novel AI applications from sectors such as the Industrial Internet of
Things, intelligent robots, smart cities, and smart homes.

5. Simulation Results

The following provides simulation results to illustrate the performance of the proposed offloading
strategy. We first consider the scenario where the wireless picocell base station had a coverage radius
of 500 m and the base station antenna was located inside the building. According to the path loss
model for the residential environment, the path loss model is expressed as:

LT = 20 log fc[MHz] + 28 log xd[m] + L f (n f )− 28. (52)

where fc = 2 GHz is the carrier frequency; xd is the distance between the mobile user and the wireless
base station; L f (n f ) = 4n f (dB) is the floor penetration factor for the ITU-Rmodel (13.2) [36], and the
number of floors n f = 1. We considered the computational task to be generated by a face recognition
application, and the task profile refers to [37,38]. The computation profile refers to [38,39]. Moreover,
as the mobile devices are evolving to become smarter and the resolution of the images and videos
is getting higher, we set the data size for the task to dApp = 5000 KB. The simulation parameters are
summarized in Table 2. These parameters were used as the default in the subsequent simulations
unless explicitly specified. Beforehand, we calculated tSer = 1 s, tLo = 10 s, TSav = 9 s, eLo = 0.1 J.
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Table 2. Parameter setup.

Parameter Value

B 5 MHz
N0 −174 dBm
I −145 dBm

dApp 5000 kBytes
cApp 1000 Megacycles
fMD 1× 10−11 J/cycle
hMD 1 GHz
hMEC 10 GHz

The channel gain threshold was calculated from Table 2 where gTh = 4.0× 10−5, according to
Equation (17). The relationship between channel gain and path loss was LT = −20 log gTh; thus, the
MEC’s full offloading coverage radius x0 = 200 m, which is denoted as the effective coverage in the
rest of the paper.

Table 3. Radius of effective coverage x0.

I
x0

∗ CApp
∗∗

200 700 1300 2000 4000 6000

−145 dBm 200 433 606 759 1085 1333
−135 dBm 62 134 187 235 335 412
−125 dBm 20 42 59 74 106 130
−115 dBm 6 13 19 23 33 41
−105 dBm 2 4 6 7 10 13

∗ Unit of x0: m. ∗∗ Unit of CApp: cycles/bit.

In addition, we also list the numerical values of MEC’s full offloading coverage radius x0 for
situations of different channel interference strengths and bit-wise complexity CApp, as shown in Table 3.
For an MEC system, developers can use these values to choose the right location of the MEC servers so
as to make full use of their computing resources.
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Figure 6. The transmission energy versus transmission time.

Figure 6 shows the relationship between transmission time and transmission energy consumed

by the MD. Note that the energy spent was N0BtTr
g2

s

(
2

dApp
BtTr − 1

)
. As the transmission time increased, it

required less energy for the MD to transmit task data to the MEC server. In addition, when the MD got
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closer to the BS, the channel condition became better, i.e., the channel gain improved, and it cost the
MD less energy to offload the computing task.

Next, for gs > gTh, we verified that the full offloading policy was optimal in terms of minimizing
energy consumption, as shown in Figure 7.
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Figure 7. The energy consumption and percentage of energy savings due to offloading under different
latency constraints versus the distance between the BS and mobile device (MD). (a) Energy consumption.
(b) Energy savings.

Figure 7a shows the energy consumption for different distances between the BS and MD in the
MEC-effective coverage of gs > gTh. As shown in the figure, for gs > gTh, the full offloading policy
was optimal for saving energy, which corresponded to the optimum solution of (16). In such a situation
and TMax ≥ T1, full offloading energy was always lower than local computing energy. Moreover, only
the task data size, the task complexity, and the CPU computing capability of MDs could affect the
energy consumption and latency of local computing. Therefore, the changes in the distance between
the MD and BS or the task completion time requirement did not influence the performance of local
computing. Figure 7b shows the energy savings as a percentage for the case of full offloading. Note
that in the case of full offloading, the offloading time is TMax − tSer. As shown in the figure, if the
latency deadline became less hard, and the distance from the BS decreased (the channel gain increased),
the percentage of energy savings would increase, as expected.

In the situation in which the MD was out of the MEC-effective coverage for which gs ≤ gTh,
partial offloading was preferred, and we continued to evaluate performance of the energy-optimal
policy under various settings.

Figure 8 demonstrates that the proposed partial offloading strategy was optimal for minimizing
the energy consumption under the hard delay constraint, and the offloading fraction α∗ = tLo−TMax

TSav−t∗Tr
increased as the latency deadline became more stringent. As shown in the figure, the total energy
consumption increased as the distance from the BS increased.

Figure 9 also shows the energy and time consumption for different distances between the BS
and MD for the case of partial offloading. For comparison, full offloading and local computing are
included in Figure 9. When gs < gTh, full offloading consumed more energy than partial offloading
and local computing under the same delay constraint, as shown in Section 3. Moreover, the offloading
energy increased as the distance from the BS increased, as shown in Figure 9a. We can observe from
Figure 9b that the full offloading time was less than the partial offloading and local computing time.
In fact, to meet the time constraint of TMax ≤ tLo, it was necessary for the MD to distribute a part of
the computing load to the MEC server; thus, the partial offloading strategy always cost more energy
than local computing, as shown in Figure 9a. Additionally, to minimize the energy consumption at the
MD, the proportion of the offloaded application decreased with increasing distance. Therefore, more
time was consumed on local computing. To compensate for the additional time loss of local computing,
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the offloading data rate rTr must be increased, yielding a shorter full offloading time t∗Off, as shown in
Figure 9b.
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Figure 8. The completion energy consumption versus the distance from the BS under different latency
constraints. (a) TMax = 6.5 s. (b) TMax = 7.5 s. (c) TMax = 8.5 s. (d) TMax = 9.5 s.
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Figure 9. The completion energy and time consumption versus the distance from the BS under different
latency constraints. (a) Energy consumption. (b) Time consumption.
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Figure 10 shows the percentage of a task to be remotely processed at the MEC server versus the
distance from the BS. The task offloading percentage decreased as the distance from the BS increased,
as expected. Note that as the latency constraint became tighter, the offloading percentage increased,
and the percentage was also affected by the distance from the BS, which coincided with the optimal
solution in (39).

300 350 400 450 500

Distance (m) 

55

60

65

70

75

80

85

90
p

er
ce

n
ta

g
e 

(%
)

percentage of the task size processed at the MEC server

T
Max

 = 6.5

T
Max

 = 7.5

T
Max

 = 8.5

T
Max

 = 9.5

Figure 10. Percentage of the task remotely processed at the MEC server versus the distance from the
BS under different latency constraints.

6. Conclusions

This paper presented an offloading strategy for optimizing communication and computation
resources usage in an MEC scenario. An energy consumption minimization problem was formulated
with the latency constraint. A channel gain threshold of binary offloading and partial offloading was
derived, through analyzing the optimization problem. Since the problem was non-convex and difficult
to solve directly, we decomposed the original non-convex problem into two sub-problems to obtain the
optimal solution in closed form expression. The analytical solution also yielded new understandings
of the inherent trade-off between the energy consumption and latency.

For future work, we will extend the strategy to the multi-MD offloading scenario in a multi-access
wireless environment. In addition, we are interested in considering a more dynamic model in which
the MD may join and leave the MEC server’s coverage within a foreseeable period, in which the
mobility patterns might play an important role in the problem formulation.
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Appendix A. Monotonicity of eTot as a Function of tTr

The total energy consumption of the MD includes both local computing consumption and partial
offloading consumption, which is expressed as:
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eTot = pTrtTrα + fMDcApp(1− α) (A1)

=
tTr

g2
s

h
(dApp

tTr

)
α + fMD cApp(1− α) (A2)

To prove that eTot is a monotonically decreasing function of tTr, we need to compute the partial
derivative in which:

∂eTot

∂ tTr
= α

[
(N0 + I)B

g2
s

(
2

dApp
BtTr − 1

)
−

(N0 + I)dApp ln 2
g2

s tTr
2

dApp
BtTr

]
(A3)

=
α(N0 + I)B

g2
s

(
2

dApp
BtTr −

dApp ln 2
BtTr

2
dApp
BtTr − 1

)
. (A4)

For notational simplicity, let v ,
dApp
BtTr

, and let f (v) = 2v − v 2v ln 2− 1, then:

∂eTot

∂(tTr)
=

α(N0 + I)B
g2

s
(2v − v ln 2 2v − 1) . (A5)

It can be noticed that f (v)|v=0 = 0, besides:

f
′
(v) = −(ln 2)2 v 2v ≤ 0, v ≥ 0. (A6)

Thus, f (v) ≤ 0 for v ≥ 0. Finally, by noticing that:

∂ eTot

∂ tTr
=

α(N0 + I)B
g2

s
f (v) ≤ 0, (A7)

the lemma is proved.

Appendix B. The Existence of Channel Threshold gTh

Let us consider the case in which the offloading task can be finished in the same time interval as
the local computing time in which tMax = tLo. By referring to Equations (10) and (12), one finds that
tTr = TSav. Therefore, the energy consumption in the transmitting stage can be written as a function of
channel gain gs as follows:

e0(gs) =
1
g2

s
h
(dApp

tTr

)
=

1
g2

s
(No + I)BTSav

(
2

dApp
BTSav − 1

)
. (A8)

Next, one may compare e0(gs) with local computing energy consumption, which is fMDcApp. As
e0 is an inverse proportional function of gs in (A8), there exists a threshold gTh, such that for gs > gTh,
the offloading energy is less than the local fMDcApp. Therefore,

gTh =

√√√√√√ (N0 + I)BTSav

(
2

dApp
BTSav − 1

)
fMDcApp

. (A9)

For channel conditions better than threshold gTh, full offloading with α∗ = 1 is optimal because in
this case, transmitting the data to the MEC server always consumes less energy than local computing
under the same latency constraint.
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The result above can now be extended to prove that full offloading (α∗ = 1) is optimal for the
general channel condition gs > gTh. The constraints of TMax < tLo and TMax > tLo are discussed as
follows.

1. If TMax < tLo, then offloading has to be performed because the time constraint cannot be totally
satisfied by full local computing. Now, assume if there exists some fraction yet to be locally
processed, then it must not be the optimal choice because offloading requires less energy than
local computing for gs > gTh under the same time constraint.

2. If TMax > tLo, then tTr > TSav. By Lemma 1, offloading will further reduce energy consumption
due to the longer transmission time, which is advantageous to local computing.

Appendix C. Proof the Monotonicity of eTot with Respect to α When gs < gTh

Based on (30), it is obvious that ∂t∗Tr
∂(g2

s )
≥ 0 and t∗Tr is equal to TSav at the channel condition threshold

gs = gTh; thus, if gs ≤ gTh, we have t∗Tr ≤ TSav. In addition, e∗Tot satisfies that ∂e∗Tot
∂t∗Tr
≤ 0, which was

proven in Section 3.3. Therefore, if t∗Tr ≤ TSav, we can calculate that:

∂eTot

∂α
=

(N0 + I)BtTr

g2
s

(
2

dApp
BtTr − 1

)
− fMDcApp (A10)

≥ (N0 + I)BTSav

g2
s

(
2

dApp
BTSav − 1

)
− fMDcApp (A11)

≥ (N0 + I)BTSav

g2
Th

(
2

dApp
BTSav − 1

)
− fMDcApp (A12)

= 0
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