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Abstract: Time series anomaly detection is widely used to monitor the equipment sates through the
data collected in the form of time series. At present, the deep learning method based on generative
adversarial networks (GAN) has emerged for time series anomaly detection. However, this method
needs to find the best mapping from real-time space to the latent space at the anomaly detection
stage, which brings new errors and takes a long time. In this paper, we propose a long short-term
memory-based variational autoencoder generation adversarial networks (LSTM-based VAE-GAN)
method for time series anomaly detection, which effectively solves the above problems. Our method
jointly trains the encoder, the generator and the discriminator to take advantage of the mapping ability
of the encoder and the discrimination ability of the discriminator simultaneously. The long short-term
memory (LSTM) networks are used as the encoder, the generator and the discriminator. Atthe anomaly
detection stage, anomalies are detected based on reconstruction difference and discrimination results.
Experimental results show that the proposed method can quickly and accurately detect anomalies.

Keywords: anomaly detection; VAE-GAN] time series

1. Introduction

In recent years, with the development of the Industrial Internet, industrial big data has become an
important research topic. Due to the complicated production process, large number of sensors and high
sampling frequency, it is easy for industrial equipment to accumulate a large amount of time series
data in a short time [1,2]. Some anomalies occurring in the production process will cause the industrial
equipment to shut down. Detecting anomalies early can improve the equipment’s overall equipment
effectiveness by implementing early preventive maintenance. The industrial time series data has the
characteristics of large scale and week periodicity. Designing an effective anomaly detection method
for it is a very valuable subject and is also the work done in this paper.

Anomalies, also referred to as outliers, are defined as observations that deviate so much from
the other observations as to arise suspicions that they were generated by different mechanisms [3,4].
Most scholars give the definitions of time series anomalies based on this and the actual application
field. Anomaly detection has been studied in a variety of data domains including high-dimensional
data, uncertain streaming data, network data, and time series data [5-12]. A significant amount
of work has been performed in time series anomaly detection. In the statistics literature, several
models were proposed, including autoregressive integrated moving average (ARIMA), cumulative
sum statistics (CUSUM), exponentially weighted moving average (EWMA), etc [13-16]. However,
in the face of industrial time series data, traditional time series anomaly detection methods cannot
meet the expected requirements in efficiency and accuracy. In the past few years, a large number of
unsupervised anomaly detection methods based on deep learning have been developed [17,18]. Many
scholars use neural network to learn the unknown relationship in time series data, and then build a
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prediction model to detect anomalies by the deviation of the predicted value from the actual value
at each time point. For example, an anomaly detection method based on LSTM prediction model
was modeled on normal time series data, and anomalies were identified by comparing the residual of
the predicted value and the true value [19-21]. Malhotra et.al use stacked LSTM networks trained
on non-anomalous data as a predictor over a number of time steps for anomaly detection in time
series [22]. Other prediction models include multilayer perceptron (MLP) predictor and support vector
regression. With the development of industrial systems, time series data become more and more
complicated. In the industrial production process, the behavior of machines always changes based on
usage and external factors that are difficult to capture [23]. Under such circumstances, it is difficult to
predict the time series even in a few time steps, resulting in the time series anomaly detection method
based on the prediction model being no longer applicable.

In order to solve such problems, some reconstruction-based models were proposed. Anomaly
detection methods based on autoencoder (AE) appeared. An encoder learns a vector representation
of the input time-series and the decoder uses this representation to reconstruct the time-series.
The method based on AE performs anomaly detection through reconstruction difference [24-27].
AE is a representative reconstruction approach that is a connected network with an encoder and a
decoder. It has also been applied for reconstructing time-series data using a sliding time-window [28].
Subsequently, some time series anomaly detection methods based on variational autoencoder (VAE)
were proposed [23]. Unlike an AE, a VAE models the underlying probability distribution of observations
using variational inference. At present, a novel time series anomaly detection method based on GAN
has been proposed [29]. The LSTM networks are used as the generator and the discriminator to capture
the distribution of the time series. However, the method based on GAN needs to find the best mapping
from real-time space to the latent space at the anomaly stage. This optimization process of finding
the best mapping brings new errors and takes a long time, so that the system cannot provide early
warning in time.

In this paper, we propose a LSTM-based VAE-GAN for time series anomaly detection, which
effectively solves the above problems. The encoder, the generator and the discriminator are jointly
trained to take advantage of the mapping ability of the encoder and the discrimination ability of
the discriminator simultaneously. In order to capture time dependence, LSTM networks are used
as the encoder, the generator and the discriminator. The model is trained on the normal time series.
The encoder maps the input time series to the latent space. The generator reconstructs the input time
series. The characteristics of the discriminator make it possible to judge anomalies directly from the
input time series [30]. Since the encoder, the generator and the discriminator are jointly trained at
the training stage, it is not necessary to calculate the best mapping from real-time space to the latent
space at the anomaly detection stage. The time required at the anomaly detection stage is greatly
reduced, which can make our model detect anomalies more quickly. At the same time, due to the joint
optimization of the various modules of our model, our model can detect anomalies more accurately.

In addition, our model design is inspired by a method applied in images of faces, which combines
variational autoencoder with a generative adversarial network and shows that this method outperforms
VAEs with element-wise similarity measures in terms of visual fidelity [31-34].

To summarize, the main contributions of our work are:

e A novel anomaly detection method based on VAE-GAN is proposed to detect anomalies in times
series data from sensors.

e  Our method jointly trains the encoder, the generator and the discriminator, which takes
advantage of the mapping ability of the encoder and the discrimination ability of the
discriminator simultaneously.

e  The anomaly score consists of the reconstruction difference of the VAE part and the discrimination
results of the discriminator, which makes it more able to distinguish anomalies from normal data.
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2. Materials and Methods

2.1. Time Series

A time series is a series of data points indexed in time order. Most commonly;, it is a sequence
taken at successive equally spaced points in time.

We use two time series datasets in our experiment. They are Yahoo and KPI commonly used for
evaluating the performance of time-series anomaly detection. In these datasets, anomaly points are
labeled as positive, and normal points are labeled as negative.

Yahoo is released by Yahoo Labs. It contains both real and synthetic time series with varying
trend, noise and seasonality, representing the metrics of various Yahoo services [35]. The Yahoo dataset
has four different parts, the first part Al1Benchmark is real data, and the other three parts are synthetic
data. The timestamps of the A1Benchmark are replaced by integers with the increment of 1, where
each data-point represents 1 hour worth of data. The A1Benchmark has 94866 points in total, 1669 of
which are anomalies, and the anomaly rate is 1.76%. We only use the real time series A1Benchmark to
evaluate the anomaly detection methods, as shown in Figure 1a.

KPI is released by AIOPS Challenge [36]. It is collected from some Internet Companies, such as
Sogo, Tencent, eBay, etc, which reflect the health status of machines (servers, routers, and switches)
and quality of Web services. We take the first 10000 points and down sample it every 2 timestamps.
After that, we obtain the dataset with 5000 timestamps length, 38 anomaly points, 0.76% anomaly rate,
as shown in Figure 1b.

time-series time-series
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(a) (b)

Figure 1. Time series used in our experiment, and the red parts are anomalies. (a) An example from
Yahoo dataset. (b) Time series in KPI dataset.

In the data preprocessing, we use the min—-max normalization to bring all values in each time
series into the range [0,1] and divide each time series into two halves according to the time. Since our
model is aimed at learning the distribution of normal data at the model training stage, we remove
the anomalies in the data of the first part to get the normal training data. The data in the second
part is used for testing. In addition, we divide the time series into training data and testing data into
sub-sequences by a sliding window with a size of 10 and a step-size of 3.

2.2. LSTM-Based VAE-GAN

This paper presents a LSTM-based VAE-GAN method for time series anomaly detection.
The method has two stages, one is the model training stage and the other is the anomaly detection
stage. Our model is trained on the normal time series data to learn the distribution of them at the
model training stage and calculates the average anomaly score of each point in testing time series data
by identifying whether the testing time series data conform to the normal time series data distribution
at the anomaly stage. The architecture of LSTM-based VAE-GAN is shown in Figure 2.
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Figure 2. LSTM-based VAE-GAN architecture. y, and ¢, are obtained by the linear transformation

of the encoder output. Wy and W, are the coefficients of the linear transformation. z = u, +0; O €,
where € ~ N(0,I) and © signify an element-wise product.

Our model is trained on normal data and learns the distribution of normal data. To make the
VAE-GAN learn the temporal dependence of time series, we combine the VAE-GAN with LSTM by
using LSTM as the encoder, the generator and the discriminator of VAE-GAN. We divide the time
series into sub-sequences by a sliding window in a certain step size, which corresponds to the input
variables. Each input sample to the encoder is a vector of a certain size denoting the sub-sequence
which is encoded to the vector in the latent space. The generator uses the vector in the latent space to
generate the vector in the real-time space. The discriminator outputs a vector which denotes whether
the vector in the real-time space obeys the distribution of the normal training data.

At the training stage, the encoder approximates the posterior distribution q(z|x) and encodes
a data sample x to a latent representation z. The generator reconstructs X by decoding the latent
representaion back to data space. As the same time, a random variable £ is sampled from p(z) = N(0,I),
which is a standard normal distribution used for the prior and sent to the generator to generate %.
The LSTM of the discriminator is followed by a full connection with activation function sigmoid. With
x, ¥ and £ as inputs, the discriminator will learn to discriminate data by making ¥, £ close to 0, and x
closeto 1.

z ~ Enc(x) = q(z|x), 1)
% ~ Gen(z) = plal2), @

For time series, instead of VAE reconstruction error, we use a reconstruction error expressed in
the discriminator and obtain better results [34].



Sensors 2020, 20, 3738 50f13

The loss of VAE-GAN consists of three parts. For the encoder,

Lenc = Lkl + Lre, (3)

with
Ly = KL(q(z]x)||p(2)), @)
Lr = _Eq(zlx) [log(p(Dis’(x)|z))], (5)

where KL is the Kullback-Leibler divergence, L, is the reconstruction of x by maximizing the

log-likelihood log(Dis’(x) |z) with sampling from g(z|x), and Dis'(x) is the representation of the hidden
LSTM in discriminator.
For the generator,

Lgen = —log(Dis(%)) —log(Dis(x)) + Lre, (6)

For the discriminator,
Lgis = —log(1 - Dis(®)) —log(1 — Dis(x)) — log(Dis(x)), (7)

We trained the encoder, the generator and the discriminator in LSTM-based VAE-GAN using
Adam optimizers with a 0.001 learning rate.

2.3. Anomaly Score

At the anomaly detection stage, the time series for anomaly detection is also divided into
sub-sequences by a sliding window in the same step size as the training stage, which are input into the
encoder. The encoder maps inputs into the latent space and sends their latent representation to the
generator. The generator outputs reconstructed sub-sequences X;.st. The discriminator outputs the
possibility of inputs being normal.

The anomaly score utilizes the encoder, the generator, and the discriminator simultaneously
trained in the model training phase, which is composed of reconstruction difference and discrimination
results. Since anomalies do not conform to the distribution of normal data, their anomaly scores will
be relatively high.

anomal]/score = (1 - a)|Xtest - Xtest| - aDis(Xtest)/ (8)

Due to the moving window mechanism, some points” anomaly scores are calculated many times,
and some points” anomaly scores are calculated only once. For each point in time series, the anomaly
detector needs to calculate its average anomaly score.

In addition, we used a small part of the test set containing anomalies to select the optimal threshold.
This threshold can accurately distinguish the anomalies in this part, and then generalize to the entire
test set.

2.4. Anomaly Detection Algorithm

Our method is divided into two stages, namely the model training stage and the anomaly detection
stage. After the data preprocessing described above, we can obtain the normal training data and the
testing data. The detailed algorithm flow is described in Algorithm 1.
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Algorithm 1. Anomaly detection algorithm used the LSTM-based VAE-GAN

Input: training data Xj,,;;,, testing data Xyest
Output: anomaly or no anomaly
At training model stage:
Initialize Enc, Gen, Dis
In each iteration:
Generate random mini-batch X from training data Xy,
Generate Z from encoder Z = Enc(X)
Generate X from generator X = Gen(Z)
Sample Z from prior p(Z) = N(0,I)
Generate X from generator X = Enc(Z)
Update parameters of encoder according to gradient
Okne < —Enc{KL(9(ZIX)|p(2)) = Eq(z1x)[log(p(Dis’ (X)]2) )]}
Update parameters of generator according to gradient
OGen < —Gm{— log(Dis(X)) - log(Dis(;()) —Eyzi%) [log(p(DiS/(X)|Z))]}
Update parameters of discriminator according to gradient
Opis < —pis|—log(1 - Dis(X)) — log(1 - Dis(X)) - log(Dis (X))}
At anomaly detection stage:
Calculate reconstruction difference: Re = |Xtest - Gen(Enc(Xtest))i
Calculate discrimination results: Dis = Dis(Xtest)
Calculate anomaly score: score = |—aDis +(1- a)Re|
Calculate average anomaly score for each point of time series corresponding to the testing data Xyest
if (score > threshold):
return anomaly
else:
return no anomaly

3. Results

3.1. Comparision with Other Reconstruction Models in F1 Score

In the LSTM-based VAE-GAN, the LSTM networks for the encoder, the generator and the
discriminator have the same size with depth 1 and 60 hidden units. In addition, we set the dimension
of latent space as 10.

We use the Precision, Recall and F1 score to evaluate the anomaly detection performance of
our model.

.. TP
Precision = TP+ P 9)
TP
RECQU = TP—|——FN (].0)
Fl— 2 X Precision X Recall (11)

Precision + Recall

where TP is the number of anomaly points correctly detected, FP is the number of normal points
incorrectly identified as anomaly points, and FN is the number of anomaly points incorrectly identified
as normal points.

To evaluate the performance of the proposed method, we implemented three baseline methods
which are the representative time series anomaly detection methods based on sample reconstruction.
They all perform anomaly detection through reconstruction difference.

e LSTM-AE: An anomaly detection method using an LSTM-based autoencoder [28].
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e LSTM-VAE: A anomaly detector using a variational autoencoder. Unlike an AE, a VAE models
the underlying probability distribution of observations using variational inference. The LSTM
networks are used as the encoder and decoder [23].

e  MAD-GAN: An anomaly detection method based on Generative Adversarial Networks which
uses the LSTM networks as the generator and the discriminator [29].

Table 1 shows the best results of our method LSTM-based VAE-GAN and those representative
time series anomaly detection methods based on sample reconstructions. LSTM-AE, LSTM-VAE, and
MAD-GAN all use LSTM networks as the basic modules and their basic parameters are the same as
those in LSTM-based VAE-GAN. In order to focus on comparing the ability of the model to distinguish
between anomalies and normal points, we use the same threshold selection strategy described in this
paper for all methods. As shown in Table 1, our method consistently outperforms the other time series
anomaly detection methods based on sample reconstruction in F1 score.

Table 1. Precision, Recall and F1 score of representative time series anomaly detection methods based
on sample reconstruction and our method LSTM-based VAE-GAN.

Dataset Method Precision Recall F1

LSTM-AE 0.4353 0.848 0.5753

LSTM-VAE 0.8464 0.8516 0.849

Yahoo MAD-GAN 0.6007 0.8509 0.7042
LSTM-based

UAD-CAN 0.8752 0.9067 0.8907

LSTM-AE 0.9474 04737 0.6316

LSTM-VAE 0.76 0.5 0.6032

KPI MAD-GAN 0.9444 0.4474 0.6071
LSTM-based

VAE-GAN 9% 95 0.6552

3.2. Time Spent in the Anomaly Detection Stage

Compared with the time series anomaly detection method based on GAN, since LSTM-based
VAE-GAN jointly trains the encoder, the generator and the discriminator at the training stage, it does
not need to calculate the best mapping from real-time space to the latent space at the anomaly detection
stage. The time required at the anomaly detection stage is greatly reduced, which can make the
model detect anomalies quicker. We do the time loss experiment on the hardware environment of
2.10 GHz CPU (24 cores, x86 64 architecture), Unbuntu OS and RAM with 128 G. Figure 3 shows the
time spent by four methods in Yahoo at the anomaly detection stage, respectively. As Figure 3 shows,
during the anomaly detection stage, the time required by our model at each step size is much shorter
than the time required by the method based on GAN. Compared with LSTM-AE and LSTM-VAE,
LSTM-based VAE-GAN needs to calculate the discrimination results of input, so it takes a little longer
than LSTM-AE and LSTM-VAE. In addition, because the number of samples decreases with increasing
step size, the time required for both methods decreases as the step size increases.
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Figure 3. With different step sizes, the time spent by four methods at the anomaly detection stage in
Yahoo dataset. (a) MAD-GAN, (b) LSTM-based VAE-GAN, (c¢) LSTM-VAE, (d) LSTM-AE.

3.3. The Impact of Latent Space’s Dimensions

The latent space representation of our data contains all the important information needed
to represent our original data point. This representation must then represent the features of the
original data. The representation capability of latent space varies with the dimensions of latent space.
We observe the effect of latent space’s dimensions on the performance of the reconstruction-based
models in time series anomaly detection. We set the dimensions of latent space to 5, 10, and 15,
respectively. Table 2 describes the performance of LSTM-AE, LSTM-VAE, MAD-GAN, and LSTM-based
VAE-GAN in different latent space’s dimensions in Yahoo dataset.
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Table 2. The experiment results in different latent space’s dimensions in Yahoo dataset.

Method Latent Dim Precision Recall F1

5 0.6095 0.7171 0.6589

LSTM-AE 10 0.4353 0.848 0.5753
15 0.4861 0.855 0.6198

5 0.7513 0.872 0.8072

LSTM-VAE 10 0.8464 0.8516 0.849
15 0.8281 0.8822 0.8543

5 0.6071 0.8434 0.706

MAD-GAN 10 0.6007 0.8509 0.7042
15 0.795 0.887 0.8385

5 0.9 0.8577 0.8784

L\figé’fgd 10 0.8752 0.9067 0.8907
15 0.8698 0.9054 0.8873

3.4. Visual Analysis

90f13

The LSTM-based VAE-GAN was trained on normal data and learns the distribution of normal
data. Since the anomaly samples do not obey the distribution of normal data, the generator cannot
reconstruct them well when inputting anomaly samples to the encoder. In order to observe this
intuitively, we draw the input time sub-sequences and the reconstructed time sub-sequences in Figure 4.
It shows that the normal samples and reconstructed samples of them are roughly the same. When the
input sample contains anomaly points as the red part in the figure, the reconstructed sample does not
reproduce abnormal points, which provides the possibility for anomaly detection.

original sample

0 25 50 75

100 125 150 175 200

timestamp

100 125 150 175 200

timestamp

0 25 50 75 100 125 150 175 200

timestamp

(@)

1.00
0.75
0.50
0.25
0.00

value

-0.25
-0.50
-0.75
-1.00

1.00
0.75
0.50
025
0.00

value

-0.25
-0.50
-0.75
-1.00

1.00
0.75

0.25
0.00

value

-0.25
-0.50
-0.75
-1.00

reconstruted sample

LNANANANANANANAN

0 25 50

125 150
timestamp

VAVAVAVAYA =aVAVAN

0 25 50

125 150
timestamp

L ANNNANANNAN

0 25 50 75 100 125 150 175 200
timestamp

(b)

Figure 4. (a) The time subsequence needed to detect anomalies, and the red parts are anomalies. (b) The

reconstructed time subsequence corresponding to the time subsequence in part a.
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Figure 5 shows the anomaly score of the time series, which were outputted by our model. The red
dotted line is the optimal threshold. It can be seen that the scores of normal points are mostly below the
optimal threshold, and the scores of anomaly points are mostly above the optimal threshold. Since our
reconstructed samples are relatively smooth as shown in Figure 4, the reconstruction differences that
are part of the anomaly score make the anomaly score curves and the time series shape approximately
the same.

time-series anomaly score
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> o
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o 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
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timestamp timestamp
(a) (b)

Figure 5. (a) The original time series containing anomalies, and the red parts are anomalies. (b) The
anomaly score corresponding the time series in part a, and the dotted line is the optimal threshold.

4. Discussion

In this paper, a LSTM-based VAE-GAN anomaly detection method for time series is proposed.
The method is designed to monitor the equipment sates through the data collected in the form of
time series.

The time series anomaly detection method based on sample reconstruction can be divided into
two stages. One is the model training stage, where the model learns the distribution of normal data.
The other is the anomaly detection stage, where the anomaly score of the time series is calculated
to identify anomaly. The LSTM-based VAE-GAN jointly trains the encoder, the generator and the
discriminator to take advantage of the mapping ability of the encoder and the discriminatory ability of
the discriminator simultaneously. The optimization process at the anomaly detection stage is avoided
so that anomalies can be detected more quickly and more accurately. In experiments based on Yahoo
and KPI time series data, our method has a higher F1 value than several classic sample-reconstruction
based time series anomaly detection methods. In the time loss comparison with GAN, our method is
shown to spend less time due to avoiding the optimization process at the anomaly detection stage.
Due to the moving window mechanisms, some points” anomaly scores are calculated many times,
the others are calculated only once. The accuracy is not influenced by the number of calculations of
the anomaly scores at the anomaly detection stage. In fact, the moving window mechanism is not
essential in the data preprocessing. It depends on the length of the time series. For increasing the
number of subsequences used to train the model at the training stage, we set the step size smaller than
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subsequence length. If the length of the time series is long enough, the time series can be divided at
the same interval.

Although our method can accurately and quickly detect anomalies in time series, there are still
some limitations. In our paper, anomalies in time series refer to anomaly points, and the anomaly
score module is designed for this background. In some application scenarios where anomalies in time
series may be successive anomaly subsequences, anomaly subsequence can be detected if some points
in it are detected by the model. A new design of the anomaly score module is needed to meet the
application scenarios.

Our research has room for further development. In the current situation, our method needs to
accumulate certain data to adjust the threshold of the anomaly score. The next enhancement of this
method is to provide an adaptive threshold adjustment method for quick use.
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