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Abstract: This paper presents closed-form optimal cooperative guidance laws for two UAVs under
information constraints that achieve the required relative approach angle. Two UAVs cooperate to
optimize a common cost function under a coupled constraint on terminal velocity vectors and the
information constraint which defines the sensor information availability. To handle the information
constraint, a general two-player partially nested decentralized optimal control problem is considered
in the continuous finite-horizon time domain. It is shown that under the state-separation principle
the optimal solution of the decentralized control problem can be obtained by solving two centralized
subproblems which cover the prediction problem for the information-deficient player and the
prediction error minimization problem for the player with full information. Based on the solution of
the decentralized optimal control problem, the explicit closed-form cooperative guidance laws that
can be efficiently implemented on conventional guidance computers are derived. The performance
of the proposed guidance laws is investigated on both centralized and decentralized cooperative
scenarios with nonlinear engagement kinematics of networked two-UAV systems.

Keywords: UAVs; cooperative guidance; networked systems control; decentralized optimal control

1. Introduction

1.1. Cooperative Control of Networked Systems

Cooperative control problems in networks of multiple autonomous agents have received
considerable attention in civilian and military applications. This is due to the advantages that
swarm of multi-agent system brings and the growing interest in understanding the tactical hunting
behaviors of animal group that realize greater efficiency and operational capability. Especially for
cooperative missions of multiple unmanned aerial vehicles (UAVs), cooperative control techniques
can be used to improve the operational performance and survivability, as well as greatly reducing
the overall effort that would have been previously required by independently operating multiple
agents for attack or surveillance missions. For instances, cooperative attack techniques are devised as
a countermeasure against the formidable defense systems [1–3] and cooperative surveillance techniques
are adopted in various applications in order to broadening the time and space coverage of monitoring
and detection [4–6].

To achieve high-level autonomy for cooperative UAVs, one of the fundamental capabilities
is to approach the destination with relative geometric constraints (e.g., terminal time and angle).
For instance, the terminal time and angle constraints are the fundamental components that lead
the cooperative loitering munitions to saturate and penetrate the defense systems [2]. Also they
perform the key role in cooperative surveillance missions by enhancing the observability of the
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multi-measuring environment [7] and maximizing the mutual information obtained by multiple
sensors [8,9]. Even though there have been lots of studies on this domain, complicated numerical
trajectory optimization techniques are usually used to obtain the optimal time or energy path with
the geometric constraints [10–12]. Considering the computational capacity of conventional guidance
computers, numerical optimization techniques might not be suitable to swarm UAV systems as the
computational complexity typically increases with the number of UAVs. Therefore, adopting analytical
guidance algorithm can lead more efficiency for cooperation of multiple UAVs [13].

1.2. Related Works

The most widely accepted approach for deriving analytical guidance algorithms is based on
the linear optimal control theory, e.g., linear quadratic regulator (LQR), which gives the optimal
control input in a state-feedback form [14,15]. There have been many studies on cooperative guidance
problems. To control the terminal time of multiple vehicles [1,3] have proposed impact-time control
guidance (ITCG) and cooperative proportional navigation (CPN) which synchronize the time-to-go
of each vehicle. The ITCG controls the impact time of vehicles to a predetermined desired value and
CPN decreases the variance of time-to-go during the homing. To control the impact angle of multiple
vehicles, there have been lots of studies and application such as the impact-angle control guidance
(IACG) techniques [16–18]. The IACG independently guides each of vehicle to a predetermined desired
value based on the one-on-one solution. Furthermore, studies have been extended to control the impact
time and angle simultaneously (ITACG) [2,19,20].

The aforementioned cooperative guidance laws can be categorized by two types, which are
the implicit and explicit cooperation. In implicit cooperation, multiple vehicles are guided to the
target without an information sharing networks but with predetermined objectives (e.g., ITCG,
IACG), while explicit cooperation shares information to optimize a common team criteria (e.g., CPN).
Compared to the impact-time control guidance laws, for the impact-angle control guidance laws it
is not common to construct a closed-loop structure using communication networks. Shaferman and
Shima [21] proposed an explicit cooperative guidance law for controlling the relative impact angle of
multiple vehicles for any team size which provides substantially better results than implicit guidance
laws in the acceleration requirements aspect.

However, networked systems should be considered from a realistic point of view, such as failure
or security issues that could seriously impact the system. The connectivity of networked systems
becomes a challenge for long-distance applications [4] and they are prone to malicious attacks as
the network size increases [22]. To overcome such challenges, [23] has proposed the emergent
self-organization algorithm where the strategies of the cooperative UAVs depends only on locally
available information while providing robust and dependable connections on UAV-relay networks
and [24] has proposed a distributed matching game model where the source UAVs select the preferred
relay UAVs competitively, according to their own transmission requirements. In [25] a flight planning
procedure is addressed for maintaining the connectivity in multi-UAV swam sensing missions where
the message passing procedure on decentralized coordination algorithm is used for propagating
information in an on-line learning approach. For maintaining and tracking the network connectivity
throughout the formation process of multiple UAVs, [26] presents a decentralized controller which
provides a target-centric formation.

The key approach of the aforementioned studies is handling the network with limited information
which can be described in information constraints, in optimal control problems. Accordingly,
the control problems with network under information constraints should be considered. Such problems
can be distinguished as either centralized or decentralized depend on the network structure.
In centralized problems, systems involve a single decision maker. This may be because there is only one
system involved or multiple subsystems might communicate to the central processor which decides
the decisions for the overall system. By contrast, decentralized problems are basically defined as any
system which is not centralized. Intuitively, one might think of a system in which each subsystems
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have their own processing unit and make their own decisions based on their own measurements [27].
Although the optimal solution of centralized control problems are well known, it is hard to obtain
the optimal solution of decentralized problems. The well-known example of Witsenhausen [28]
showed that the optimal controller of decentralized system with feedback is generally nonlinear
and computationally intractable. Ho and Chu [29] developed a class of information structure for
decentralized control problems, called partially nested, for which the optimal controller is linear.
A broader class of problems called quadratically invariant was developed by Rotkowitz et al. [30]
which includes the partially nested systems and have the property that the set of closed-loop maps is
convex [31]. The explicit optimal solution of quadratically invariant problems are obtained in various
search space. Swigart et al. [32] attained an explicit state-space solution in the discrete finite-horizon
time domain, using a spectral factorization approach and dynamic programming. Kim and Lall [33–36]
attained the explicit solution in the continuous infinite-horizon time domain by defining a unifying
condition that split the decentralized optimal control problem into multiple centralized problems.
However, to apply the decentralized solution to the cooperative guidance laws given as a polynomial
function of time-to-go, it is necessary to obtain an explicit solution in the continuous finite-horizon
time domain.

1.3. Contributions of This Paper

This paper aims to obtain the explicit guidance laws to control the relative approach angle of
two UAVs under the nested dynamical structures with sensor information constraints. The relative
approach angle constraints and the information constraints are considered to enhance the observability
of networked two-UAV systems on the target and to cover the failure or security issues on networked
systems, respectively. The centralized and decentralized optimal guidance solutions of networked
two-UAV systems are derived in the continuous finite-horizon time domain. The key difference from
the conventional LQR-based optimal guidance laws is that our approach considers the information
deficiency constraints between the two UAVs, i.e., the first UAV’s sensor measurement is available
to the second UAV (via communication networks or by direct measurements), so the second UAV
can use the first UAV’s information for cooperation, while the first UAV is not able to use the second
UAV’s measurements. Please note that the conventional LQR frameworks are not able to handle these
information constraints. Motivated by [35], the state-separation principle is proposed which enables
separation of the decentralized control problem into multiple centralized problems. Based on the
optimal solution of the decentralized control problem, the explicit closed-form cooperative guidance
solutions are derived in terms of the line-of-sight angles and the line-of-sight angle rates, thus it can be
easily implemented on typical guidance computers. To the best knowledge of the authors, this is the
first attempt to describe the closed-form cooperative guidance solution that explicitly minimizes the
finite-horizon linear quadratic objective function under information constraints. Finally, the solutions
are converted to the guidance form with the cost function with the terminal velocity constraint.

The remainder of this paper is organized as follows: the two-UAV cooperative engagement
geometry is presented first, and the optimal control problem under the nested dynamical structures
with information constraints are formulated in Section 2. Section 3 shows the solution and the
proofs of the decentralized control problem followed by the derivation of the cooperative guidance
laws. In Section 4, numerical simulation results of networked two-UAV systems are presented.
The concluding remarks are given in Section 5.

2. Problem Statement

Let us consider the planar homing guidance geometry of two UAVs and a stationary (or slowly
moving) target, as shown in Figure 1. The XI − YI frame is an inertial Cartesian coordinate system
which is fixed in space. Variables associated with the i-th UAV for i = 1, 2 and the target are denoted
by subscripts i and T. Here V, γ and λ denote the velocity, flight-path angle and the line-of-sight (LOS)
angle, respectively. The normal acceleration of each vehicle is denoted by a and the predetermined
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relative approach angle constraint of two UAVs are denoted by θref. The relative distance of each UAV
and target in YI axis is denoted by ζi. Other variables in Figure 1 are self-explanatory.

UAV1

a1 γ1 λ1

V1 R1
UAV2

a2
γ2

λ2

V2

R2
Target

aT

γT

VT

θref

ζ2

ζ1

YI

XI
Figure 1. Two UAVs in cooperative engagement geometry.

2.1. Kinematics Relations for Cooperative Engagement

The kinematics of each UAV for the homing problem can be expressed in vector form as follows:

Ri = Ri cos λi ı̂x + Ri sin λi ı̂y

Ṙi = (−Vi cos γi + VT cos γT) ı̂x + (−Vi sin γi + VT sin γT) ı̂y

ai = (−ai sin γi − aT sin γT) ı̂x + (ai cos γi + aT cos γT) ı̂y

(1)

where the variables in bold font represent the value in XI −YI coordinate. Here ı̂x and ı̂y are the unit
vectors of XI axis and YI axis and the velocities of each UAV and target are assumed to be constant.
Under the assumption, the constant closing velocity Vc and the interception time can be calculated as

Vc,i = −‖Ṙi‖
= Vi cos(γi − λi)−VT cos(γT − λi)

t f ,i = t0 +
Ri(t0)

Vc,i

(2)

where Ri(t) is the nominal range-to-go of the i-th UAV at time t, and t0 is the initial time.
The homing kinematics in Equation (1) is clearly nonlinear, which needs to be linearized in order

for deriving guidance laws based on the linear quadratic (LQ) optimal control theory. For this purpose,
the near-collision course assumption, which is valid for small γt and λi, is used. Then the linearized
kinematics of two UAVs can be expressed in state-space form as follows:

ẋ = Ax + Bu + w (3)

where

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0 0
1 0
0 0
0 1

 , x ,


ζ1

ζ̇1

ζ2

ζ̇2

 , u ,

[
a1

a2

]

with the process noise w which covers the wind gust or the target maneuver at. Please note that this is
a straight-forward two-agent extension of the very widely used linearization techniques for classical
optimal guidance problems [37–39].
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2.2. Nested Dynamical Systems with Sensor Information Deficiency Constraints

Let us consider the nested dynamical structures for two UAVs, as shown in Figure 2 which
implies that the dynamical interactions are directional. Without loss of generality, we consider two
interconnected linear systems with nested dynamics as follows:[

ẋ1

ẋ2

]
=

[
A11 0
A21 A22

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
B11 0
B21 B22

]
︸ ︷︷ ︸

B

[
u1

u2

]
+

[
w1

w2

]

[
y1

y2

]
=

[
C11 0
C21 C22

]
︸ ︷︷ ︸

C

[
x1

x2

] (4)

Notice the two-UAV system model in Equation (3) can be described in this form. For generality,
from here the word ’player’ is used instead of ’UAV’ until the optimal strategies are derived.

In the nested dynamics framework described above, xi and ui denote the state variable and control
input of i-th player, respectively. Please note that the above equations imply that the first player’s state
and decision affects the second player, while the second player’s does not affect the first player. Also,
the first player’s sensor measurement is available to the second player (via communication networks
or by direct measurements), so the second player can use the first player’s information for its control
(u2 depends on y2 and y1), while the first player is not able to use the second player’s measurements
(u1 depends on y1 only). Here, we assume that each player’s sensor measures its state directly which
indicates that C = I, and therefore yi = xi for i = 1, 2.

1 2

Figure 2. Two-player nested dynamical structures.

Define the random variables of the initial states which are mutually independent with the
following known probability density functions:

x1(0) ∼ N (x̄1(0), X1(0))

x2(0) ∼ N (x̄2(0), X2(0))
(5)

and the process noises are assumed to be stationary zero-mean Gaussian which are characterized by
the following covariance matrices:

E [w1(t)w1(τ)] = W1(t)δ(t− τ)

E [w2(t)w2(τ)] = W2(t)δ(t− τ)

E [w1(t)w2(τ)] = 0

(6)

The set of available information for each player is defined as follows:

z1 = {y1}
z2 = {y1, y2}

(7)

which gives the control strategies as:
u1 = f1(z1)

u2 = f2(z2)
(8)

where fi(zi) is a function or a dynamical system that describes the controller of the i-th player.
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The performance index in the finite-horizon quadratic form which couples the states x1 and x2 is
defined as follows:

J = E
[

xT
t f

Hxt f +
∫ t f

t0

(
x(t)TQx(t) + u(t)T Ru(t)

)
dt
]

(9)

where the weighting parameters H and Q are positive semidefinite and R is positive definite as follows:

H =

[
H11 HT

21
H21 H22

]
, Q =

[
Q11 QT

21
Q21 Q22

]
, R =

[
R11 0
0 R22

]

Then the optimization problem describing the cooperation of the two players can be stated
as follows:

Problem 1. (Two player LQR) For the following two-player nested dynamical systems model,[
ẋ1

ẋ2

]
=

[
A11 0
A21 A22

] [
x1

x2

]
+

[
B11 0
B21 B22

] [
u1

u2

]
+

[
w1

w2

]
[

y1

y2

]
=

[
I 0
0 I

] [
x1

x2

]

and find the optimal strategies u1 and u2 that minimize the finite-horizon quadratic cost

J = E
[

xT
t f

Hxt f +
∫ t f

t0

(
x(t)TQx(t) + u(t)T Ru(t)

)
dt
]

where u1(t) is a function of y1(τ) for 0 ≤ τ ≤ t, and u2(t) is a function of y1(τ) and y2(τ) for 0 ≤ τ ≤ t.

2.3. State Separation

The centralized controller for linear quadratic regulation problem is well known that the full-state
feedback is the optimal strategy, i.e., every player needs access to every information. However,
in decentralized control problem it is impracticable because of the information asymmetry; player
1 does not have measurement information on player 2. Therefore, the state-separation principle is
proposed which separates player 2’s state (x2) into two parts: (1) player 1’s best estimate on player
2’s state (x2|1), and (2) the remainder (x2 − x2|1 = ∆x2, i.e., the estimation error). The accessible
information with information set zi can be written to the conditional estimation E [x|zi] which are
as follows:

• For player 1:

E [x|z1] :=

[
x1|1
x2|1

]
(10)

where E
[

x1|1

]
= E [x1].

• For player 2:

E [x|z2] :=

[
x1|2
x2|2

]
(11)

where E
[

x1|2

]
= E [x1] and E

[
x2|2

]
= E [x2].

The subscript j|i indicates the state of player j estimated by player i. Notice that player 1 must
estimate the state of player 2 which is defined by x2|1, and the best estimation is given by the
dynamical propagation

ẋ2|1 = A21x1 + A22x2|1 + B21u1 + B22u2|1 (12)
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which player 1 can compute only using player 1’s measurement information and player 2’s control
strategy (it is assumed that the collaborator’s control strategy is known to each other). The definition
of the estimation error of x2|1 and the corresponding control input u2|1 = f2(x2|1) are as follows:

∆x2 = x2 − x2|1

∆u2 = u2 − u2|1
(13)

where the estimation error dynamics is given by:

∆ẋ2 = ẋ2 − ẋ2|1

= A22∆x + B22∆u2 + w2
(14)

Substituting (13) into the system model in Equation (4), the system can be rewritten with the
newly defined separated state xdec as follows:

xdec :=

 x1

x2|1
∆x2

 (15)

ẋdec =

A11 0 0
A21 A22 0
0 0 A22


︸ ︷︷ ︸

Adec

xdec +

B11 0 0
B21 B22 0
0 0 B22


︸ ︷︷ ︸

Bdec

 u1

u2|1
∆u2

+

w1

0
w2


(16)

or separately [
ẋ1

ẋ2|1

]
=

[
A11 0
A21 A22

] [
x1

x2|1

]
+

[
B11 0
B21 B22

] [
u1

u2|1

]
+

[
w1

0

]
(17)

and
∆ẋ2 = A22∆x2 + B22∆u2 + w2 (18)

2.4. Uncorrelated Variance Propagation

In this subsection, it is shown that the variances of state accessible to player 1 and the estimation
error are propagated independently, and it is used to derive two independent subproblems that give
insight of the optimal strategy. The initial probability density functions in Equation (5) are assumed to
be known to each other, where the initial probability density functions of x2|1 and ∆x2 are as follows:

x2|1(0) ∼ N (x̄2(0), X2(0))

∆x2(0) ∼ N (0, 2X2(0))
(19)

giving the structured covariance matrix of xdec(0) as follows:

P(0) =

 P11(0) 0 0
0 P22(0) 0
0 0 P33(0)

 (20)

Consider a block 3× 3 covariance matrixH which is structured as follows:

H =

 H1 0

0 H2

 (21)
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where H1 is block 2× 2 (size compatible with A) and H2 is block 1× 1 (size compatible with A22).
Suppose an arbitrary feedback gain matrix Cdec which has the same structure asH, then P propagates
with the following Lyapunov equation:

Ṗ = (Adec − BdecCdec) P + P (Adec − BdecCdec)
T + Q (22)

where Adec and Bdec are the system and input matrix in Equation (16). In addition, the autocorrelation
of process noise matrix, Q, is:

Q =

 W1 0 0
0 0 0
0 0 W2


hence Adec, Bdec, Cdec, and Q have the same structures asH, and consequently the covariance matrix
P(t) also follows the same structure as below:

P(t) =

 P11(t) P12(t) 0
P21(t) P22(t) 0

0 0 P33(t)

 (23)

Therefore, {x1, x2|1} and {∆x2} are uncorrelated and independent if Cdec follows the same
structure asH.

2.5. Cost Separation

The cost function in Equation (9) can be rewritten by substituting the state with the separated
state in Equation (15) which yields

J = E
[

xT
dec(t f )Hdecxdec(t f ) +

∫ t f

t0

(
xT

dec(t)Qdecxdec(t) + uT
dec(t)Rdecudec(t)

)
dt
]

(24)

where the state variables and the control variables are given by xdec=
[

xT
1 xT

2|1 ∆xT
2

]T
and udec =[

uT
1 uT

2|1 ∆uT
2

]T
, and Hdec, Qdec, Rdec are given by :

Hdec =

H11 HT
21 HT

21
H21 H22 H22

H21 H22 H22

 Qdec =

Q11 QT
21 QT

21
Q21 Q22 Q22

Q21 Q22 Q22

 Rdec =

R11 0 0
0 R22 R22

0 R22 R22


which helps to rewrite Problem 1 by using the following state-separated model.

Problem 2. (Decentralized two player LQR) Consider the separated system model

ẋdec =

A11 0 0
A21 A22 0
0 0 A22

 xdec +

B11 0 0
B21 B22 0
0 0 B22


 u1

u2|1
∆u2

+

w1

0
w2


[

y1

y2

]
=

[
1 0 0
0 1 1

]
xdec

and find the optimal strategies udec =
[
uT

1 uT
2|1 ∆uT

2

]T
that minimize the cost

J = E
[

xT
dec(t f )Hdecxdec(t f ) +

∫ t f

t0

(
xT

dec(t)Qdecxdec(t) + uT
dec(t)Rdecudec(t)

)
dt
]
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where u1(t) and u2|1(t) are functions of y1(τ) for 0 ≤ τ ≤ t, and ∆u2(t) is a function of y1(τ) and y2(τ) for
0 ≤ τ ≤ t.

Based on the fact that {x1, x2|1} and {∆x2} are independent, Equation (24) can be separated into
three parts following the structures ofH.

J = J1 + J2 + J3 (25)

• Part 1 :

J1 = E

[ [
x1

x2|1

]T

t f

[
H11 HT

21
H21 H22

] [
x1

x2|1

]
t f

+
∫ t f

t0

[ x1

x2|1

]T [
Q11 QT

21
Q21 Q22

] [
x1

x2|1

]
+

[
u1

u2|1

]T [
R11 0
0 R22

] [
u1

u2|1

] dt

]
(26)

• Part 2 :

J2 = E
[

∆xT
2 (t f )H22∆x2(t f ) +

∫ t f

t0

(
∆xT

2 Q22∆x2 + ∆uT
2 R22∆u2

)
dt
]

(27)

• Part 3 :

J3 = E

[  x1

x2|1
∆x2


T

t f

 0 0 HT
21

0 0 H22

H21 H22 0


 x1

x2|1
∆x2


t f

+
∫ t f

t0


 x1

x2|1
∆x2


T  0 0 QT

21
0 0 Q22

Q21 Q22 0


 x1

x2|1
∆x2

+

 u1

u2|1
∆u2


T 0 0 0

0 0 R22

0 R22 0


 u1

u2|1
∆u2


 dt

]
(28)

The cost J1 and J2 represent the performance index of the strategies by {x1, x2|1} and {∆x2}
respectively, while J3 describes the cross-coupling of {x1, x2|1} and {∆x2}. Suppose the weighting
matrix Hdec and Qdec are symmetric, then J3 can be simplified as

J3 = E

[
2
[

x1 x2|1

]
t f

[
H21

H22

] [
∆x2

]
t f
+ 2

∫ t f

t0

([
x1 x2|1

] [Q21

Q22

] [
∆x2

]
+ u2|1R22∆u2

)
dt

]
(29)

where u2|1 and ∆u2 are linear in x2|1 and ∆x2 respectively. Since {x1, x2|1} and {∆x2} are independent
random variables with the initial probability density functions given in Equations (5) and (19) where
their variance propagate with the Lyapunov equation in Equation (22), the expected values of the
linear combinations of {x1, x2|1} and {∆x2} can be derived as follows:

E [x1∆x2] = E [x1] E [∆x2] = 0 (30)

and
E
[

x2|1∆x2

]
= E

[
x2|1

]
E [∆x2] = 0 (31)

Therefore, J1 and J2 are functions of independent variables and consequently J3 = 0. Then the
minimum of J is given by the summation of the minimums of J1 and J2 as follows:

min
udec

J = min
u1,u2|1

J1 + min
∆u2

J2 (32)
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Now the optimal solution of Problem 2 can be obtained by solving two independent subproblems.
The solution of each subproblem can be obtained by each player, the leader and the follower.

Subproblem 1. (Leader problem) Consider the separated model for the leader[
ẋ1

ẋ2|1

]
=

[
A11 0
A21 A22

] [
x1

x2|1

]
+

[
B11 0
B21 B22

] [
u1

u2|1

]
+

[
w1

0

]

where the accessible information for the leader is limited to

y1 = x1

Find the optimal strategies u1 and u2|1 that minimize the cost

J1 = E

[ [
x1

x2|1

]T

t f

[
H11 HT

21
H21 H22

] [
x1

x2|1

]
t f

+
∫ t f

t0

[ x1

x2|1

]T [
Q11 QT

21
Q21 Q22

] [
x1

x2|1

]
+

[
u1

u2|1

]T [
R11 0
0 R22

] [
u1

u2|1

] dt

]

where u1(t) and u2|1(t) are functions of y1(τ) for 0 ≤ τ ≤ t.

Subproblem 2. (Follower problem) Consider the separated model for the follower

∆ẋ2 = A22∆x2 + B22∆u2 + w2

where the follower is accessible to every information[
y1

y2

]
=

[
I 0
0 I

] [
x1

x2

]

Find the optimal strategy ∆u2 that minimizes the cost

J2 = E
[

∆xT
2 (t f )H22∆x2(t f ) +

∫ t f

t0

(
∆xT

2 Q22∆x2 + ∆uT
2 R22∆u2

)
dt
]

where ∆u2(t) is a function of y1(τ) and y2(τ) for 0 ≤ τ ≤ t.

3. Main Results

In this section, the explicit optimal control strategy of the Problem 1 is obtained. Then based on the
solution, the centralized and decentralized optimal two-agent cooperative guidance laws are derived.

3.1. Decentralized Two-Player Optimal Controller

Lemma 1. Consider the Subproblem 1 and suppose that there exists a stabilizing solution X for the
Riccati equation

Ẋ + ATX + XA + Q− XBR−1BTX = 0 (33)

with the terminal condition

X(t f ) = H (34)
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where A, B are the system and input matrix in Equation (17) and H is the terminal weighting matrix defined in
Equation (26).

Then the optimal strategies for Subproblem 1 are as follows:[
u1

u2|1

]
= K

[
x1

x2|1

]
=

[
K11 K12

K21 K22

] [
x1

x2|1

]
(35)

where

K = −R−1BTX (36)

and x2|1 evolves with the following dynamics:

ẋ2|1 = A21x1 + A22x2|1 + B21u1 + B22u2|1

Lemma 2. Consider the Subproblem 2 and suppose that there exists a stabilizing solution Y for the
Riccati equation

Ẏ + AT
22Y + YA22 + Q22 −YB22R−1

22 BT
22Y = 0 (37)

with the terminal condition

Y(t f ) = H22 (38)

Then the optimal strategy for Subproblem 2 is as follows:

∆u2 = L∆x2 (39)

where

L = −R−1
22 BT

22Y (40)

Proof. (for both Lemma 1 and Lemma 2) For Subproblems 1 and 2, all the necessary information is
accessible to each player as follows:

{x1, x2|1} = x|z1 (41)

{x1, x2|1, ∆x2} = x|z2 (42)

therefore, each subproblem is a centralized problem with full information, for which the optimal
strategy is the well-known full-state feedback obtained by solving the Riccati equations in
Equations (33) and (37). For more technical details including the solution uniqueness issues, one may
refer to [33] or [35].

Theorem 1. The optimal strategies for Problem 1 are[
u1

u2

]
= K

[
x1

x2|1

]
+

[
0
L

]
∆x2 (43)

or [
u1

u2

]
=

[
K11 K12

K21 K22

] [
x1

x2|1

]
+

[
0
L

] (
x2 − x2|1

)
(44)

where K and L are obtained from Equations (36) and (40), and the state prediction x2|1 is obtained from
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ẋ2|1 = A21x1 + A22x2|1 + B21u1 + B22u2|1

Proof. The proof follows from Lemma 1, Lemma 2 and the definition of ∆x2 and ∆u2 as follows:[
u1

u2

]
=

[
u1

u2|1

]
+

[
0

∆u2

]

which achieves the minimum cost given in Equation (32).

3.2. Optimal Cooperative Guidance Laws for Two UAVs Relative Approach Angle Control

In this section, the main results in Theorem 1 are used for deriving the optimal cooperative
guidance solutions for two UAVs under information constraints with the relative approach angle
constraints. The solutions are expressed in terms of the line-of-sight parameters, so that they can
be easily understood by aerospace guidance communities and can be efficiently implemented on
conventional guidance computers.

3.2.1. Centralized Solution with Full Information Sharing

For controlling the relative approach angle between two UAVs, a linear quadratic problem with
the following cost function is considered:

min
u

J = E

[
b
2

(
ζ2

1(t f ) + ζ2
2(t f )

)
+

c
2

(
ζ̇1(t f )− αζ̇2(t f )− r

)2
+

1
2

∫ t f

t0

(
a2

1(t) + a2
2(t)

)
dt

]
(45)

where the notations follow from Figure 1, and the positive real number b and c are the penalties
imposed on the UAVs’ miss distance and the approach angle error, respectively. The parameter r above
represents the reference value inducing the terminal relative approach angle. The flight-path angle of
each UAV is related to Vi and ζ̇i as follows:

γi = sin−1 ζ̇ i

Vi

' ζ̇i
Vi

(46)

and the parameter α is the ratio of V1 and V2. Without loss of generality, it is assumed that V2 is not
smaller than V1, hence:

α =
V1

V2
≤ 1 (47)

The relative approach angle of two UAVs, γrel, which is required to be γrel → θref at the terminal
time, can be expressed as follows:

γrel = γ1(t f )− γ2(t f ) '
ζ̇1(t f )

V1(t f )
−

ζ̇2(t f )

V2(t f )
(48)

To obtain the optimal control input that minimizes Equation (45), the Hamiltonian is defined
as follows:

H = L + νT f (49)

where L = 1
2
(
a2

1(t) + a2
2(t)

)
and f = Ax + Bu, with the definitions of x and u from Equation (3).

Hereafter in this subsection, we follow the same definitions for x and u. The Lagrangian multiplier ν is
a column vector which consists of ν1(t), ν2(t), ν3(t) and ν4(t), and the first necessary conditions for
optimality are the following costate equations:
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∂H

∂x
= −ν̇

ν̇1 = 0, ν̇2 = −ν1, ν̇3 = 0, ν̇4 = −ν3, u1 = −ν2, u2 = −ν4

(50)

with the terminal conditions as follows:

ν1(t f ) = bζ1(t f ), ν2(t f ) = c
(

ζ̇1(t f )− αζ̇2(t f )− r
)

ν3(t f ) = bζ2(t f ), ν4(t f ) = −cα
(

ζ̇1(t f )− αζ̇2(t f )− r
) (51)

thus, the dynamic equations of the costates are as follows:

ν1(t) = bζ1(t f ), ν2(t) = bζ1(t f )(t f − t) + c
(

ζ̇1(t f )− αζ̇2(t f )− r
)

ν3(t) = bζ2(t f ), ν4(t) = bζ2(t f )(t f − t)− cα
(

ζ̇1(t f )− αζ̇2(t f )− r
) (52)

The second necessary condition for optimality is as follows:

∂H

∂a
= 0 (53)

which yields

a1(t) = −
[
bζ1(t f )(t f − t) + c

(
ζ̇1(t f )− αζ̇2(t f )− r

)]
a2(t) = −

[
bζ2(t f )(t f − t)− cα

(
ζ̇1(t f )− αζ̇2(t f )− r

)] (54)

Substituting the above optimal control solutions to the linear system description in Equation (3)
and integrating yields:

ζ1(t) =

[
1
2

b

(
t3

3
−

t3
0
3

)
− 1

2
bt2

0(t− t0)

]
ζ1(t f )−

1
2

b(t− t0)
2t f ζ1(t f )

− 1
2

c(t− t0)
2
(

ζ̇1(t f )− αζ̇2(t f )− r
)
+ ζ̇1(t0)(t− t0) + ζ1(t0)

ζ̇1(t) =
1
2

b(t2 − t2
0)ζ1(t f )− b(t− t0)ζ1(t f )t f − c

(
ζ̇1(t f )− αζ̇2(t f )− r

)
(t− t0) + ζ̇1(t0)

ζ2(t) =

[
1
2

b

(
t3

3
−

t3
0
2

)
− 1

2
bt2

0(t− t0)

]
ζ2(t f )−

1
2

b(t− t0)
2t f ζ2(t f )

+
1
2

cα(t− t0)
2
(

ζ̇1(t f )− αζ̇2(t f )− r
)
+ ζ̇2(t0)(t− t0) + ζ2(t0)

ζ̇2(t) =
1
2

b(t2 − t2
0)ζ2(t f )− b(t− t0)ζ2(t f )t f + cα

(
ζ̇1(t f )− αζ̇2(t f )− r

)
(t− t0) + ζ̇2(t0)

(55)

along with τ = t f − t0 and t = t f , Equation (55) can be expressed in terms of t f as follows:

ζ1(t f ) = −
1
3

bτ3ζ1(t f )−
1
2

cτ2
(

ζ̇1(t f )− αζ̇2(t f )− r
)
+ ζ̇1(t0)τ + ζ1(t0)

ζ̇1(t f ) = −
1
2

bτ2ζ1(t f )− c
(

ζ̇1(t f )− αζ̇2(t f )− r
)

τ + ζ̇1(t0)

ζ2(t f ) = −
1
3

bτ3ζ2(t f ) +
1
2

cατ2
(

ζ̇1(t f )− αζ̇2(t f )− r
)
+ ζ̇2(t0)τ + ζ2(t0)

ζ̇2(t f ) = −
1
2

bτ2ζ2(t f ) + cα
(

ζ̇1(t f )− αζ̇2(t f )− r
)

τ + ζ̇2(t0)

(56)
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Evaluating the above equation with the transition matrix Φ(t f , t0) and r gives the following
linear relations:

x(t f ) = Φ(t f , t0)x(t0) + Ψr (57)

where

Φ(t f , t0) = (I − A′)−1B′

Ψ = (I − A′)−1S

and

A′ =


− 1

3 bτ3 − 1
2 cτ2 0 1

2 cατ2

− 1
2 bτ2 −cτ 0 cατ

0 1
2 cατ2 − 1

3 bτ3 − 1
2 cα2τ2

0 cατ − 1
2 bτ2 −cα2τ

 , B′ =


1 τ 0 0
0 1 0 0
0 0 1 τ

0 0 0 1

 , S =


1
2 cτ2

cτ

− 1
2 cατ2

−cατ

 (58)

Then the resulting linear algebraic equations can be solved for the unknown terminal values x(t f )

and thus arrive at the expression for u(t) =
[

a1(t) a2(t)
]T

by replacing the arbitrary t0 by t as follows:

[
a1(t)
a2(t)

]
= −

 bζ1(t f )τ + c
(

ζ̇1(t f )− αζ̇2(t f )− r
)

bζ2(t f )τ − cα
(

ζ̇1(t f )− αζ̇2(t f )− r
)

= −
[

bτ c 0 −cα

0 −cα bτ cα2

] (
Φ(t f , t)x(t) + Ψr

)
+

[
c
−cα

]
r

= −Kx(t) + Fr

(59)

where the optimal feedback gains Kij for i = 1, 2 and j = 1, 2, 3, 4 and the feed-forward gains Fk for
k = 1, 2 are obtained as follows:

K11 =
(6b2c + 3b2cα2)τ5 + 12b2τ4 + (18bc + 36bcα2)τ2 + 36bτ

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

K12 =
(4b2c + 3b2cα2)τ6 + 12b2τ5 + (24bc + 36bcα2)τ3 + 36bτ2 + 36c

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

K13 =
−3b2cατ5 + 18bcατ2

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

K14 =
−b2cατ6 + 12bcατ3 − 36cα

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

K21 =
−3b2cατ5 + 18bcατ2

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

K22 =
−b2cατ6 + 12bcατ3 − 36cα

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

K23 =
(3b2c + 6b2cα2)τ5 + 12b2τ4 + (36bc + 18bcα2)τ2 + 36bτ

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

K24 =
(3b2c + 4ab2cα2)τ6 + 12b2τ5 + (36bc + 24bcα2)τ3 + 36bτ2 + 36cα2

(b2cα2 + b2c)τ7 + (4b2)τ6 + (15bcα2 + 15bc)τ4 + (24b)τ3 + (36cα2 + 36c)τ + 36

F1 =
−2bcτ3 + 12c

(bc + bcα2)τ4 + 4bτ3 + (12c + 12cα2)τ + 12

F2 =
12bcατ3 − 12cα

(bc + bcα2)τ4 + 4bτ3 + (12c + 12cα2)τ + 12

(60)
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Taking the limit b, c→ ∞, for obtaining the zero-miss distance with the required relative approach
angle, yields

K11 =
3α2 + 6

(1 + α2)τ2 , K12 =
3α2 + 4
(1 + α2)τ

, K13 =
−3α

(1 + α2)τ2 , K14 =
−α

(1 + α2)τ
, F1 = − 2

(1 + α2)τ

K21 =
−3α

(1 + α2)τ2 , K22 =
−α

(1 + α2)τ
, K23 =

6α2 + 3
(1 + α2)τ2 , K24 =

4α2 + 3
(1 + α2)τ

, F2 =
2α

(1 + α2)τ

(61)

and then the optimal control strategies are obtained as follows:

a1(t) = −
(3α2 + 4)(ζ1 + ζ̇1τ) + 2ζ1

(1 + α2)τ2 +
α(ζ2 + ζ̇2τ) + 2αζ2

(1 + α2)τ2 − 2
(1 + α2)τ

a2(t) =
α(ζ1 + ζ̇1τ) + 2αζ1

(1 + α2)τ2 − (4α2 + 3)(ζ2 + ζ̇2τ) + 2α2ζ2

(1 + α2)τ2 +
2α

(1 + α2)τ

(62)

which can be rewritten in terms of the line-of-sight angles as follows:

a1(t) =
1

(1 + α2)

[
−Vc,1

(
(3α2 + 4)λ̇1 +

2
τ

λ1

)
+ Vc,2

(
αλ̇2 +

2α

τ
λ2

)
− 2

τ
r
]

a2(t) =
1

(1 + α2)

[
Vc,1

(
αλ̇1 +

2α

τ
λ1

)
−Vc,2

(
(4α2 + 3)λ̇2 +

2α

τ
λ2

)
+

2α

τ
r
] (63)

where the relation of line-of-sight angle(λ), line-of-sight rate(λ̇), closing velocity (Vc) and time-to-go
(τ) are given below:

λ̇ =
ζ + ζ̇τ

Vcτ2 (64)

λ =
ζ

Vcτ
(65)

Notice in Equation (63) that each agent is required to access the measurement information from
both UAVs, to be able to compute the optimal solutions.

3.2.2. Decentralized Solution with Information Deficiency Constraints

Based on Theorem 1 the decentralized solution of the leader problem can be obtained from
Equation (62) as follows:

a1(t) =
1

(1 + α2)

[
−Vc,1

(
(3α2 + 4)λ̇1 +

2
τ

λ1

)
+ Vc,2|1

(
αλ̇2|1 +

2α

τ
λ2|1

)
− 2

τ
r
]

a2|1(t) =
1

(1 + α2)

[
Vc,1

(
αλ̇1 +

2α

τ
λ1

)
−Vc,2|1

(
(4α2 + 3)λ̇2|1 +

2α

τ
λ2|1

)
+

2α

τ
r
] (66)

and the follower problem is the well-known optimal rendezvous problem where the solution is
given as:

∆a2(t) = −
[

6
τ2 ∆ζ2 +

4
τ

∆ζ̇2

]
(67)

which can be rewritten in terms of the line-of-sight angles as follows:

∆a2(t) = −Vc,2

[
4λ̇2 + 2

λ2

τ2

]
+ Vc,2|1

[
4λ̇2|1 + 2

λ2|1
τ2|1

]
(68)
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and

a2(t) = a2|1(t) + ∆a2(t) (69)

Please note that the decentralized optimal strategy for agent1 can be computed using τ1 and λ1

only, while the optimal strategy for agent2 requires all the measurement information from both UAVs.

3.2.3. Potential Issues on Practical Implementation

The cooperative guidance laws proposed in this paper considers the matched time-horizon
for both UAVs. However, they can vary for each agent because of the different launch conditions,
uncertainties of the dynamical model, or external disturbances. To manage this issue, the cost function
in Equation (45) can be extended for different time-horizons as follows:

J = E

[
b
2

(
ζ2

1(t f ) + ζ2
2(t f )

)
+

c
2

(
ζ̇1(t f )− αζ̇2(t f )− r

)2
+

1
2

∫ t f ,1

0

(
a2

1(t) + a2
2(t)

)
dt +

1
2

∫ t f ,2

t f ,1

a2
2(t)dt

]

where the leader is assumed to intercept the target earlier than the follower does:

t f ,1 ≤ t f ,2

Before the time-to-go of the follower reach to the initial time-to-go of the leader, V1 is assumed
to be 0 that yields α = 0. Therefore for 0 ≤ t ≤ t f ,2 − t f ,1, the follower is guided with the
proportional navigation (PN) guidance law for the centralized case and u2|1 for the decentralized case,
computed as follows:

u2|1 = −3Vc,2|1λ̇2|1

For t ≥ t f ,2 − t f ,1 the proposed guidance laws are used, where the leader predicts Vc,2|1, λ2|1
and λ̇2|1 which depend on the time-to-go of the follower by using the dynamical propagation in
Equation (12), whereas the follower retains the necessary information by communication networks or
by direct measurements.

4. Numerical Experiments

In this section, the performance of the proposed guidance strategies are investigated on networked
two-UAV systems. We consider the planar nonlinear kinematics for the UAVs as follows:

ẋi = Vi cos γi

ẏi = Vi sin γi

Viγ̇i = ai + wi

(70)

where the positions of the i-th UAV in the XI − YI frame from Figure 1 are denoted by xi, yi in this
section, and the other notations follow from Section 2. The process noise wi can be interpreted as the
disturbance factor that includes the wind gust acting on the i-th UAV or target maneuver. Please note
that it has been used and proven useful in a wide range of literature from classical optimal guidance
problems [1,3,16,17,35,37].

In this example, two UAVs are launched from different locations with identical launch angle
of 10 deg and guided to approach a stationary target with different approach angles separated by
30 deg. Please note that no explicit approach angle command for each UAV was given. For each UAV,
the maximum available guidance command is assumed to be 3 g, where g represents the gravitational
acceleration. The initial states of the UAVs and the target are listed in Table 1.
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Table 1. Initial states for the numerical example.

Parameters UAV1 UAV2 Target

x(t0) [m] 0 −200 1000
γ(t0) [deg] 10 10 -
V(t0) [m/s] 100 100 0

Both the centralized and decentralized cooperation scenarios are considered here. In the
centralized cooperation scenario, the deterministic UAV dynamics, i.e., wi = 0, in Equation (70)
is considered for reference analysis. The two UAVs are assumed to share the perfect information
on τi, λi and λ̇i for i = 1, 2. In the decentralized cooperation scenario, the directional information
constraint is considered, i.e., the first UAV’s sensor measurement is available to the second UAV,
while the second’s measurement is not available to the first, and the stochastic dynamics is considered,
where wi ∼ N (0, 0.52) disturbs the dynamics and trajectories. Our main interest is to see whether the
proposed decentralized cooperation scheme let the two UAVs approach the target with the required
relative approach angle while making up the perturbed dynamics and trajectories caused by the
random disturbance wi’s.

4.1. Centralized Cooperation under Full Information Sharing

Figure 3 presents the trajectories obtained by the centralized guidance strategy. It is apparent
that the guidance strategy enforces the required relative approach angle of 30 deg with a small error
of 0.15 deg while both UAVs perfectly approaching to the target. Although both UAVs are launched
to identical direction, UAV1 approaches the target from above while UAV2 approaches from below
to satisfy the relative approach angle constraint. The impact time of each UAV is 10.12 s and 11.95 s,
respectively. The detailed results are listed in Table 2.

-200 0 200 400 600 800 1000
-300

-200

-100

0

100

200

300
Target
UAV

1

UAV
2

Figure 3. Centralized cooperation: UAV trajectories.

Table 2. Results from the centralized cooperation with full information.

UAV1 UAV2

Approach angle [deg] −29.32 0.53
Impact time [s] 10.12 11.95
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Figure 4 shows the acceleration commands during the engagement. The guidance command for
UAV1 decreases to negative value which allows UAV1 to approach the target from above to satisfy the
relative angle constraint. The guidance command for UAV2 increases from negative value to positive
to approach the target from below to satisfy the relative approach angle constraint. Please note that
UAV2 is guided with the PN guidance law for the first 1.95 s where the matched time-to-go for UAV1

does not exist in this engagement scenario. After that UAV2 cooperates with UAV1 for the matched
time-horizon.

0 2 4 6 8 10 12
-30

-25

-20

-15

-10

-5

0

5

10
UAV

1

UAV
2

Figure 4. Centralized cooperation: guidance commands.

4.2. Decentralized Cooperation under Information Deficiency

Figures 5 and 6 present the decentralized cooperation scenario. In this case, UAV1 estimates
the state of UAV2 by the dynamic propagation and UAV2 issues a correction command in order to
minimize the error caused by UAV1’s estimate. Figure 5 presents the trajectories obtained by the
decentralized guidance strategy where the thin black line (UAV2|1) represents UAV1’s best estimate
on UAV2’s position. It is evident that UAV2’s position converges to that of UAV2|1 which allows
the relative approach angle to be maintained for a similar level with the centralized cooperation.
The detailed results are listed in Table 3.

Figure 6 shows the acceleration commands during the engagement where the thin black line
(UAV2|1) represents UAV1’s best estimate on UAV2’s guidance command. UAV2’s guidance command
is maintained slightly less than that of UAV2|1 until UAV2’s correction command increases sufficiently,
and become greater than the estimated value in order to making up the perturbed trajectories caused
by the disturbance. It is obvious that the guidance command of UAV2 converges to that of UAV2|1 at
the terminal time which indicates that the correction command converges to zero.

Figure 7 shows the error in UAV1’s estimate on UAV2’s line-of-sight angle and the line-of-sight
rate. The last plot in Figure 7 shows the corresponding correction command computed by UAV2.
The estimation errors increase under the influence of the disturbance, but they quickly converge to zero,
which indicates the decentralized guidance strategy tries to follow the centralized guidance strategy.
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Please note that the fluctuating guidance commands observed when the time-to-go approaches to zero
is usual as in most of the classical and practical guidance laws [1,3,16,17,35,37].

-200 0 200 400 600 800 1000
-300

-200

-100

0

100

200

300
Target
UAV

1

UAV
2|1

UAV
2

Figure 5. Decentralized cooperation: UAV trajectories. Thin black line represents UAV1’s best estimate
on UAV2’s position, and the dotted blue line represents the actual trajectory of UAV2.

Table 3. Results from the decentralized cooperation with information constraints.

UAV1 UAV2

Approach angle [deg] −30.36 −0.47
Impact time [s] 10.12 11.96

0 2 4 6 8 10 12
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-10
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2|1
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2

Figure 6. Decentralized cooperation: guidance commands. Thin black line (UAV2|1) represents UAV1’s
best estimate on UAV2’s guidance command, and the dotted blue line (UAV2) represents the actual
guidance command of UAV2 as the sum a2 = a2|1 + ∆a2.



Sensors 2020, 20, 4790 20 of 22

0 2 4 6 8 10 12
-20

-15

-10

-5

0

10-3

0 2 4 6 8 10 12

-0.02

-0.01

0

0.01

0.02

0 2 4 6 8 10 12
-10

-5

0

5

Figure 7. Decentralized cooperation: estimation error profiles (top, middle), and the correction
command (bottom) computed by UAV2.

5. Conclusions

In this study, optimal cooperative guidance laws for two UAVs under sensor information
deficiency constraints and the relative approach angle constraints are proposed. The general
decentralized optimal control problem is formulated with the nested dynamics and information
structure where the communication between the UAVs is directional. The optimal control problem is
solved by adopting the state-separation principle which separates the decentralized optimal control
problem into two centralized optimal control subproblems. The solution of the first subproblem
considers the information deficiency which the leader is associated with according to the accessible
information. The solution of the second subproblem considers additional effort for the follower that
tries to minimize the prediction error of the leader. The optimal cooperative guidance solutions
are derived in terms of the line-of-sight angles and the line-of-sight angle rates, so that it can be
easily understood by the guidance community and can be easily implemented on conventional
guidance computers.

Based on the proposed optimal cooperative guidance solution, the centralized and decentralized
cooperative guidance laws are derived in closed form. Two UAVs cooperate to optimize
a common objective function which couples their vertical velocity components at the terminal states.
The performance of the proposed guidance strategies is investigated with nonlinear kinematics on
both of centralized and decentralized cooperation setups. In the centralized cooperation setup,
a deterministic scenario is considered, while a stochastic scenario is considered for decentralized
cooperation setup. The simulation results show the guidance strategy enforces the required relative
approach angle constraints and the decentralized guidance strategy converges to the centralized
guidance strategy as the follower supports the prediction of the leader.

Future research directions may include extensions to general n-UAV cooperative guidance
solutions or other cooperative mission objectives. Other realistic constraints such as collision avoidance,
communication range, communication delay, and so on, should also be taken into account for practical
implementation of the proposed approach.
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