
sensors

Article

Fast Detection of Olive Trees Affected by Xylella
Fastidiosa from UAVs Using Multispectral Imaging

Attilio Di Nisio , Francesco Adamo * , Giuseppe Acciani and Filippo Attivissimo

Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy;
attilio.dinisio@poliba.it (A.D.N.); giuseppe.acciani@poliba.it (G.A.); filippo.attivissimo@poliba.it (F.A.)
* Correspondence: francesco.adamo@poliba.it

Received: 7 July 2020; Accepted: 27 August 2020; Published: 31 August 2020
����������
�������

Abstract: Xylella fastidiosa (Xf ) is a well-known bacterial plant pathogen mainly transmitted by vector
insects and is associated with serious diseases affecting a wide variety of plants, both wild and
cultivated; it is known that over 350 plant species are prone to Xf attack. In olive trees, it causes
olive quick decline syndrome (OQDS), which is currently a serious threat to the survival of hundreds
of thousands of olive trees in the south of Italy and in other countries in the European Union.
Controls and countermeasures are in place to limit the further spreading of the bacterium, but it
is a tough war to fight mainly due to the invasiveness of the actions that can be taken against it.
The most effective weapons against the spread of Xf infection in olive trees are the detection of its
presence as early as possible and attacks to the development of its vector insects. In this paper, image
processing of high-resolution visible and multispectral images acquired by a purposely equipped
multirotor unmanned aerial vehicle (UAV) is proposed for fast detection of Xf symptoms in olive
trees. Acquired images were processed using a new segmentation algorithm to recognize trees which
were subsequently classified using linear discriminant analysis. Preliminary experimental results
obtained by flying over olive groves in selected sites in the south of Italy are presented, demonstrating
a mean Sørensen–Dice similarity coefficient of about 70% for segmentation, and 98% sensitivity and
93% precision for the classification of affected trees. The high similarity coefficient indicated that the
segmentation algorithm was successful at isolating the regions of interest containing trees, while the
high sensitivity and precision showed that OQDS can be detected with a low relative number of both
false positives and false negatives.

Keywords: xylella fastidiosa; multi-spectral imaging; UAV; unmanned aerial vehicle; image
processing; machine learning; precision agriculture

1. Introduction

With a mean production of 450–550 ×106 kg/year of olive oil, olive tree cultivation is undoubtedly
one of the main sources of agricultural revenue for Italy. In particular, the Apulia region in the south,
with over 360 kha (kilohectares) covered with 21 different olive cultivars with a prevalence of Ogliarola
and Coratina cultivars, is the region with the highest percentage of production (>35% of the total yearly
Italian production) [1]. In the past decade, this production has been greatly impacted by many threats,
primarily Xylella fastidiosa (Xf), a pathogen that has been known around the world for decades, but
which since 2013 has put the survival of Apulian olive cultivation at great risk. It is a bacterium that
can attack olive trees, vines, oleander, and some species of citrus fruits, causing them to rapidly dry
out. This phenomenon, when observed on the olive trees, is known as olive quick decline syndrome
(OQDS) [2–11].

Xf is endemic to the American continent and, until recently, it did not exist in Europe [12]; indeed,
its arrival in Europe was tracked back to the import of some infected ornamental plants from Costa
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Rica (Central America) to Gallipoli (province of Lecce in southern Italy) in 2013 [13]. From there,
the bacterium spread to the northwest provinces of Brindisi and Taranto, and some infected trees have
also been recently reported in the province of Bari (northeast). A large number of publications about
the impact of Xf in Puglia are available; a small selection is included in the references [14–31].

The main problems concerning the detection of this disease in olive trees are the possible lack of
symptoms over an incubation period ranging from 6 to 18 months from infection and the nonuniform
distribution of the bacterium on the infected plants, making it somewhat difficult to identify until it is
too late.

Characterization of infection spread may potentially be achieved as was done previously for citrus
using geostatistical analysis and kriging estimation, which might also be combined with Kalman filter
prediction; however, the availability of data from extended monitoring is fundamental [32,33].

To date, the most accurate method to detect the presence of the Xf bacterium is by means of
laboratory genetic analyses using the PCR technique (polymerase chain reaction [34,35]), a sophisticated
and complex technique used to reproduce small segments of DNA many times in order to be able to
process them in successive tests. The PCR technique is more sensitive than serological analyses of
the ELISA type (enzyme-linked immunosorbent assay [36,37]), which are sensitive to antibodies or
antigens of a given pathogen. Due to their inherent lower sensitivity, ELISA-type tests can produce a
greater number of false negatives. However, both these techniques require medium to long waiting
times (some days) to produce results and are applicable only in a laboratory using high-cost analytical
instruments, so they are not applicable in real time in the field. Indeed, they require intensive in situ
inspection though interesting methods useful to estimate water content and thermal characterization
have been proposed [38–41]. Recently introduced alternative techniques involve proximity or remote
sensing, i.e., the use of electromagnetic radiation and its interaction with objects and living beings.
The advancement of satellite and aerial detection techniques, telecommunications systems and optical
sensors has led to the application of these analysis techniques to images acquired by satellites (remote
sensing by satellite), small manned planes or helicopters, or aerial platforms with a remote pilot
(unmanned aerial vehicles; UAVs), commonly called “drones” in a wide range of fields [41–45]. UAV
platforms can be further distinguished as fixed-wing types, which allow monitoring of large areas
from medium–high altitudes, and rotary-wing types, which allow observation of less extensive areas
from medium–low altitudes. In recent years, the application of UAVs in precision agriculture as well
as in many other fields is becoming more and more common, requiring test systems able to guarantee
and certify both electrical and mechanical performance aspects of their propulsion subsystems [46–48].

Typically, the radiation reflected by vegetation is concentrated in the visible (VIS), near-infrared
(NIR), and medium infrared (SWIR; short-wave infrared) spectral regions, while the emitted radiation
is concentrated in the thermal infrared (TIR) spectral region.

Spectral analysis finds frequent and extensive use in many areas of the physical sciences; this
technique is one of the statistical methods used to characterize and analyze sequenced data in one-,
two-, and three-dimensional space. In this area, many studies have been devoted to reducing bias and
variance of the estimates [49,50].

The spectral signature of vegetation, which is the relative intensity of the re-radiated radiation as
a function of the wavelength of the incident light, contains a range of information. Indeed, the shape
of this curve

• depends on the photosynthetic activity in the VIS region;
• depends on the structure of plants’ leaves and foliage (size, number of leaf layers, etc.) in the

NIR region;
• is strongly influenced by the water content in the SWIR region.

The use of terrestrial or aerial drones, both manned and unmanned, equipped with multi- or
hyperspectral image cameras to study the health status of plantations of various kinds is not a novelty
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in precision agriculture or for forestry monitoring [51–55]. There are also pioneering applications of
drones for the detection of Xf -infected plants [56–59].

Xf represents such a serious threat to the future survival of the olive orchards in Italy that the
Italian Ministry of Economic Development (MiSE) recently committed €3.5 million to funding another
important research project named REDoX (Remote Early Detection of Xylella), which is focused on
the detection and monitoring of Xf using multispectral, hyperspectral, and thermal imagery obtained
by aircrafts, UAVs, and satellites. The REDoX project is being coordinated by the Apulian Aerospace
Technological District (DTA) [60].

In this paper, it is shown that multispectral imagery shot using a midsized rotary-wing UAV can
be successfully used to evaluate the health of olive trees in nearly real time with respect to olive quick
decline syndrome due to Xf. For this purpose, a tree segmentation algorithm was developed and linear
discriminant analysis (LDA) was applied to multispectral stacks. In Section 2, after a brief introduction
to remote sensing in agriculture, the equipment used in this research and standard vegetation indexes
are described. The proposed algorithm is also presented: image preprocessing is described Section 2.1;
3D reconstruction of the scene is described in Section 2.2; tree segmentation is detailed in Section 2.3;
and health status classification is described in Section 2.4. Experimental results and performance
evaluation are provided in Section 3, followed by discussion in Section 4 and conclusions in Section 5.

2. Materials and Methods

For the research work presented in this paper, which started almost two years ago and which
was funded by the Apulia Region, a medium-sized multirotor UAV (Italdron 4HSE EVO, Figure 1a)
with a maximum payload of 2.5 kg was used. It was equipped with a purposely developed payload
comprising a 3D gimbal with a compact five band multispectral camera (MicaSense RedEdge-M [61]),
a high-resolution thermal camera (FLIR Vue Pro 640 [62,63]), and a high-resolution visible camera
(Sony α7r) (Figure 1b).
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Figure 1. (a) The multirotor UAV (Unmanned Aerial Vehicle) used for this work; (b) its payload.

This apparatus was used to acquire high-resolution images of olive groves from medium altitudes
(some tens of meters). Surveys were done using the typical aerial-mapping “serpentine” profile
(Figure 2) with high across- and along-track superposition percentages in order to collect enough data
to be able to rebuild the whole high-resolution orchard image used in the processing step. Multiple
surveys of the same olive grove were acquired from different altitudes to obtain different ground
sample resolutions (GSD), to provide the opportunity to test the robustness and speed of the adopted
processing solution. The above-ground levels (AGL) of the different surveys were calculated using
a purposely developed spreadsheet, taking into account all inherent parameters: camera sensor
resolution and focal length, desired ground sample resolution, camera shutter speed, UAV translation
speed, etc.
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18° 7'2.69"E). 
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Raspberry Pi v4B + SBC (single-board computer) equipped with a 3G-4G/LTE Base Shield v2 by 

Sixfab GmbH plus an EC25 MiniPCI 4G/LTE Module by Quectel [64–66]. This was a nonstandard 

payload, the practical realization of which is shown in Figure 4, and it was purposely programmed 

and a customized 3D case was designed and printed to integrate it with the whole system. Thanks to 

this subsystem, the acquired images were transferred to a remote server where the developed 

software ran and where a GIS (geographic information system) platform completed the tagging and 

georeferencing of acquired images. Where the cellular network coverage on the field was good, the 

upload process was executed during the UAV’s flight; elsewhere, it was executed offline when the 

UAV landed. In fact, during field tests the cellular network’s availability and bandwidth represented 

a clear bottleneck for the real-time image upload process. However in the near future, when the 

coverage of new and higher-bandwidth cellular networks is sufficient, this problem should be 

resolved or at least mitigated. 
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Figure 3. Example of one aerial survey plan for an olive orchard (Squinzano-Cerrate, 40◦27′35.79” N,
18◦ 7′2.69” E).

The UAV used to acquire the aerial images was also equipped with an extra payload: a Raspberry
Pi v4B + SBC (single-board computer) equipped with a 3G-4G/LTE Base Shield v2 by Sixfab GmbH plus
an EC25 MiniPCI 4G/LTE Module by Quectel [64–66]. This was a nonstandard payload, the practical
realization of which is shown in Figure 4, and it was purposely programmed and a customized 3D
case was designed and printed to integrate it with the whole system. Thanks to this subsystem,
the acquired images were transferred to a remote server where the developed software ran and where
a GIS (geographic information system) platform completed the tagging and georeferencing of acquired
images. Where the cellular network coverage on the field was good, the upload process was executed
during the UAV’s flight; elsewhere, it was executed offline when the UAV landed. In fact, during field
tests the cellular network’s availability and bandwidth represented a clear bottleneck for the real-time
image upload process. However in the near future, when the coverage of new and higher-bandwidth
cellular networks is sufficient, this problem should be resolved or at least mitigated.
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Figure 4. The Raspberry Pi SBC with the MiniPCI 4G/LTE Module used onboard the UAV to upload
acquired images to the remote server.

The image-processing software developed for this work was written in Python 3.7 extended with
many additional modules. It processed multispectral images related to a single overflight, performing
the essential alignment operation of images returned by the five different sensors of the multispectral
camera and those taken by thermal and visible camera, and returning multispectral and calibrated
reflectometric stacks. Spectral characteristics of the MicaSense RedEdge-M sensors are given in Table 1.

Table 1. Spectral characteristics of the MicaSense RedEdge-M multispectral camera sensors
(FWHM = full width at half maximum).

Sensor Central Wavelength
(nm)

Filter Bandwidth (FWHM)
(nm)

Blue 475 20
Green 560 20
Red 668 10

Near-IR 840 40
Red-Edge 717 10

Starting from these intermediate multispectral stacks, the software returned the following images
in TIFF format:

• RGB images (red–green–blue), i.e., common visible images.
• CIR images (color and infrared = Red + Green + NIR) were obtained by substituting the NIR

(near-infrared) images into the blue channel on the common RGB images. NIR wavelengths are
effective in penetrating atmospheric mist and in determining the health of vegetation. The pigment
in the leaves of plants, chlorophyll, strongly absorbs visible light, but the cellular structure of
healthy leaves, on the other hand, strongly reflects NIR radiation. Therefore, the stronger the NIR
radiation detected by the camera, the healthier the plant is.

• NDVI images. In normalized-difference vegetation index images, each pixel was calculated from
the pixels of the same position in the NIR and RED images through the well-known relationship

NDVI =
NIR − RED
NIR + RED

(1)

The NDVI value is highly informative about the local health status of plants and soil, since it
allows immediate recognition of areas of the canopy or of the underground soil that have development
or irrigation problems. The interpretation of NDVI values is relatively simple; in fact, its value varies
between 0 and 1, and each value corresponds to a different agronomic situation, regardless of the
crop [67,68].
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The NDVI value can be influenced by a variety of factors including soil brightness, air humidity,
and plant foliage structure. Therefore, two NDVI maps taken on different days in the same field
can look completely different due to different weather and/or light conditions. This can make the
comparison of such NDVI images difficult, so it is essential to calibrate the remote-sensed images
using a radiometric calibration panel on the ground before the acquisition process, or by other means.
In our case, the multispectral Micasense RedEdge-M camera was equipped with its optional DLS
(downwelling light sensor) module, a five band light sensor which is mounted on the top of the
UAV pointing toward the sky and connected directly to the camera. The DLS module continuously
measured the ambient light during the flight for each of the five bands of the camera and recorded this
information in the metadata of the captured images.

The experimental data illustrated in Section 3 of this paper were acquired on 19 April 2019 at two
sites located in Apulia, southern Italy, with a clear sky.

- San Vito dei Normanni (BR), 40◦38′1.12” N, 17◦42′49.10” E, time 12:45 UTC, with healthy olive trees
with a planting layout of about 10 m × 12 m and an age of about 80 years. Sun elevation and
azimuth were 51◦ and 229◦, respectively.

- Squinzano (LE), 40◦27′35.79” N, 18◦ 7′2.69” E, time 14:30 UTC, with olive trees with symptoms of
Xf, with a planting layout of about 8 m × 8 m and an age of about 50 years. Sun elevation and
azimuth were 33◦ and 255◦, respectively.

Images were taken with the MicaSense RedEdge-M multispectral camera with 1.2 megapixel
resolution, flying at an AGL (above-ground level) of 70 m; ground sample resolution was 5 cm/pixel,
and forward/cross-overlaps during image acquisition were 80%. The acquired images were processed
as described in following subsections and to develop and validate the machine-learning algorithms
they were organized into a training and a test set, both containing 71 trees.

For the two critical tasks of the algorithm, namely the automatic tree segmentation and the tree
classification, performance figures were evaluated. In particular, for tree segmentation, it was evaluated
whether the binary mask representing trees overlapped well with actual trees. Thus, the Sørensen–Dice
similarity coefficient (DSC) was calculated for each tree (trees with merging foliage were treated as a
single tree), and its statistics were reported. This similarity coefficient represents the degree of matching
between two binary images, where each pixel in common contributes to increasing the coefficient
towards the limiting value of 1 (perfect match) and each different pixel decreases the coefficient towards
the limit of 0 (complete absence of matching pixels). The DSC was calculated as twice the number
of pixels common to the two sets obtained via automatic segmentation (proposed algorithm) and
manual segmentation (ground truth), respectively, divided by the sum of the number of pixels in each
set. The ground truth was obtained by manually segmenting RGB and CIR images extracted from
the multispectral stacks. A few trees that were not olive trees were individuated and excluded in the
evaluation of segmentation and classification performance.

The confusion matrix, sensitivity, and precision of the tree classification were calculated.
The ground truth of health status was assessed by an expert agronomist and was compatible
with information about the Apulia area provided by the institutional Apulia monitoring system for
Xf [69].

Further details and results are provided in Section 3.
Data processing in the proposed system was subdivided into four main tasks, which are listed in

Figure 5. They are analyzed in the following subsections. The list of main mathematical symbols can
be found in Table 2.
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Table 2. Main mathematical symbols. The parameters of the algorithm are in bold.

Symbol Description

Nr, Nc
Number of pixel rows and pixel columns in each band of the multispectral

reflectance stack

(r, c) Row and column indexes of a pixel in a band, r = 1, . . . , Nr and c = 1, . . . , Nc.

BLUE(r, c), GREEN(r, c),
RED(r, c), NIR(r, c),

REDEDGE(r, c)
Reflectances corresponding to pixel index (r, c) of the five bands.

K Number of pixels in a given image that match with other images for 3D reconstruction
with photogrammetry

P Set of matched pixels

(ui, vi) Pixel indexes of matched pixels, (ui, vi) ∈ P, i = 1, . . . , K

(xi, yi, zi) 3D coordinates corresponding to matched pixels, i = 1, . . . , K

e′i Standardized difference between zi and interpolating plane

t′H = 0 Standardized elevation threshold

sF = 50, σF = 0.5,
mF = 50

Parameters for Felsenszwalb’s oversegmentation, respectively: scale; standard
deviation of Gaussian kernel for preprocessing of image; minimum component size.

NF Number of Felsenszwalb’s segments

F j
Set of pixels indexes (r, c) in the jth Felsenszwalb’s segment, j = 1, . . . , NF. It is used

to indicate that segment.

a j Number of pixels in F j

S′j, S′′j , S j Results of the first, second, and final segment-classification method, respectively

CNT, CT, CU
Classes defined for the segment-classification methods: CNT (“not part of a tree”), CT

(“part of a tree”) and CU (“unknown”)

tr
area = 0.1 Relative area threshold for the first segment-classification method

tNIR = 0.15 Mean NIR reflectance threshold for the first segment-classification method

tNDVI = 0.5 Mean NDVI reflectance threshold for the first segment-classification method

pT, j
Probability of a segment F j of being in class CT calculated by the LDA classifier of the

second segment-classification method

tT = 0.3 Probability threshold of pT, j for putting F j in class CT

C0, C1
Classes defined for health status classification of trees: C0 (“negative”) when they are in

good health status, and C1 (“positive”) for bad health status

X0, X1 Classes defined for pixels of negative and positive trees, respectively

p(u, v) Probability that a pixel of coordinates (u, v) belongs to the class X1 of pixels of
positive trees

re = 4 Radius in pixels of the disk for morphological binary erosion of segmented trees

L Labeled image of connected components of segmented trees

T Set of pixels of a given component in L, representing a segmented tree

M Number of pixels in T

P Set of probabilities associated with pixels in T, relevant to a given tree segment[
p(1), . . . p(M)

] Sequence of probabilities calculated by the LDA classifier for pixels in a given set T,
sorted from higher to lower probability

N = 2 Number of highest-probability pixels used for tree classification

v Mean probability value over N pixels for a given set T

t = 0.8 Probability threshold for classifying a segmented tree into C1
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2.1. Image Calibration and Alignment

The five images grabbed from the multispectral sensor were calibrated and aligned as discussed
below to obtain a proper multispectral reflectance stack, following the procedure recommended by the
manufacturer [70]. The processing steps are summarized in Figure 6 and described below.

Figure 6. Steps of image calibration and alignment.

a. Input data were constituted by shots, also named “captures”, where each capture contained five
raw digital images in Tagged Image File Format (TIFF), acquired synchronously by the sensors
of the five band multispectral camera. One capture was processed at a time.

b. The spectral radiance in wavelength, units W·m−2
·sr−1
·nm−1, was obtained from pixel values in

each raw image, taking into account calibration and lens vignette effect parameters provided by
the manufacturer, as well as exposure time, black level, and gain of the imaging sensors at the
time the images were shot. Spectral radiance images Li, i = 1, . . . , 5 were obtained, where each Li
is an array.

c. Spectral irradiances, E1, . . .E5, which are the amount of energy per unit area per unit bandwidth
(W·m−2

·nm−1) incident on the ground, were calculated from data measured by the downwelling
light sensor (DLS) mounted on the drone. Data were acquired by the DLS at the same time as the
images were captured by the multispectral camera. When calculating irradiance, the position of
the DLS (measured by an onboard sensor) and solar orientation were considered, and clear sky
conditions were assumed.

d. Spectral reflectance images Ri were obtained from the ratio of reflected and incident light,
calculated precisely as

Ri = π
Li
Ei

(2)

e. Reflectance images were corrected for lens distortion using parameters provided by the
manufacturer, namely three-element radial distortion and two-element tangential distortion
correction parameters. After distortion correction, the five images were aligned by correcting
the different points of view of each sensor. For this purpose, the image in the green band was
(arbitrarily) selected as a reference, and the other four images were aligned by calculating, for each
of them, an eight-parameter homography that maximized the enhanced correlation coefficient
(ECC) [71] with the reference. The parameters were obtained using the findTransformECC function
of the OpenCV library [72]. Since estimating the parameters of the four homographies was
time-consuming, they were calculated for a capture in the middle of the flight and their inverse
functions were applied to align the other captures; this procedure was correct because all of
them were taken at the same distance from the ground, and at a distance which was greater than
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the change of depth of the subjects (trees and ground); hence, the images could be aligned in the
same way.

f. As a result, a properly aligned stack of spectral reflectances was obtained and saved in a five
channel TIFF file. Channels in the stack were named BLUE, GREEN, RED, NIR, REDEDGE.
Each channel represented an array of size Nr ×Nc, for example NIR(r, c) was the near-infrared
reflectance of the pixel in row index r and column index c, where r = 1, . . . , Nr and c = 1, . . . , Nc.

2.2. 3D Reconstruction

Images shot during the flight, which were taken from different perspectives as the drone moved,
were merged using photogrammetric techniques to create a complete map of the site. The main
outcome of this processing task, however, was the estimation of elevation of points in the images,
which permitted improved identification of trees by separating them from the ground and grass.

It is well known that GPS information is only sufficient for a coarse mosaicing of images. What was
needed here was, instead, an accurate mosaicing and alignment that could be obtained by individuating
corresponding points on the partially overlapping margins of the images. For this reason, it was
important that images were shot with high overlap. Moreover, if georeferencing is required with
accuracy greater than that of GPS systems, ground trust points can be used; however, this was not
deemed necessary for the purposes of the present study, since only relative height measurements were
used, as is made clear in Section 2.3. Indeed, some advanced studies have been done to improve the
accuracy of UAVs’ positioning with GPS [73].

In this work, the VisualFSM application was used, which allowed the 3D reconstruction using
structure from motion [74]. Hence, as a result of this photogrammetric dataflow, a 3D reconstruction of
the soil, vegetation, and buildings and an N-View Match (NVM) file were obtained. In particular, the
latter file contained the 3D coordinates (xi, yi, zi) associated with the pixel index (ui, vi) of matched
points between the images that were used in the subsequent segmentation technique. The set of K
matched points for a given image was denoted as P =

{
(ui, vi), . . . , (uk, vk)

}
.

2.3. Tree Segmentation

Tree segmentation was performed according to the algorithm outlined in Figure 7, which is
detailed below. Its purpose was to separate trees from soil and apply health status classification to
trees only. The algorithm was composed of many steps because differentiating trees and their irregular
contours from soil or even from soil covered with grass proved to be a difficult task.
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(a) Classification of Sparse 3D Points

In the first step (a), several points were subdivided into low- and high-elevation to facilitate tree
segmentation. Let (xi, yi, zi) be the 3D coordinates of a pixel (ui, vi), in the multispectral stack, where
pixels (ui, vi) belong to the set of the K matched points P defined previously. Three-dimensional
points are interpolated by a plan z̃i = αxi + βyi + γ, where α, β, and γ are obtained by the
ordinary least-squares method. This plan represents a raw linear approximation of the ground surface.
Afterwards, the residuals z̃i − (αxi + βyi + γ) are calculated and standardized by subtracting their
mean and dividing by their standard deviation to obtain the standardized residuals e′i . A point (xi, yi, zi)

and its corresponding pixel (ui, vi) are classified as high-elevation if e′i ≥ t′H, where t′H is a purposely
defined standardized elevation threshold.

(b) Felsenwalb’s Oversegmentation

In the second step (b), an oversegmentation is performed using Felsenszwalb’s method [75] applied
to the NIR channel to obtain NF segments described by the pixel sets F j, j = 1, . . . , NF. The scikit-image
Python image-processing library is used for that purpose [76]. Parameters of the oversegmentation
are scale sF , standard deviation σF of the Gaussian kernel for image preprocessing, and minimum
component size mF enforced in postprocessing.

The purpose of this step is to obtain areas with contours that can follow the irregular borders of
crowns of trees, for which the difference with soil is shown by the greater NIR reflectance. As a side
effect, single trees are also oversegmented and split into many segments, which should be subsequently
identified and merged as described later.

Afterwards, two different classification methods, in steps (c) and (d), are applied to Felsenszwalb’s
segments, and their results are combined in step (e). Let S′j and S′′j be the classification results for the F j
segment according to the first and second method, respectively, and let S j be the final classification into
class CNT (“not part of a tree”) or class CT (“part of a tree”). We used, for example, notation S j = CNT

to say that segment F j has been classified as not part of a tree.

(c) First Classification Method for Felsenszwalb’s Segments

In the first method, step (c), a segment F j is classified into class CNT if the segment contains points
on the ground or nonvegetation, otherwise it is classified into class CT. More precisely, to classify a
segment F j into class S′j = CNT, at least one of the following four conditions should be satisfied.

(1) It contains at least one matched pixel below the elevation threshold. This is justified by
the fact that if a segment contains low-elevation points, it is likely it belongs to the ground
rather than trees. This condition is expressed as

∃ i s.t. (ui, vi) ∈ F j ∧ e′i < t′H (3)

(2) Its area, i.e., the number of pixels, a j : = #F j, divided by whole image area Nu ×Nv, is larger
than the relative threshold tr

area. This is justified by the fact that it is unlikely that large
segments are part of trees. The relevant condition is

a j

Nu ×Nv
≥ tr

area (4)

(3) Its mean NIR reflectance is below the threshold tNIR. Indeed, a low NIR reflectance can be
associated with nonvegetation segments. This is expressed as

1
a j

∑
(r,c)∈F j

NIR(r, c) ≤ tNIR (5)
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(4) Its mean NDVI is below the threshold tNDVI. Analogously to NIR, a low NDVI can be
associated with non-vegetation segments. This is expressed as

1
a j

∑
(r,c)∈F j

NDVI(r, c) ≤ tNDVI (6)

where NDVI(r, c) : = (NIR(r, c) − RED(r, c))/(NIR(r, c) + RED(r, c)).

If F j is not assigned to class CNT, it is assigned by exclusion to class CT, that is

S′j =

{
CNT, if any of (3), (4), (5), (6) is satisfied

CT, otherwise
(7)

(d) Second Classification Method for Felsenszwalb’s Segments

In the second segment-classification method, step (d), segments of the same image that can be
classified more easily were used to classify the remaining segments via a machine-learning technique.
Each segment was first assigned to class CNT if it contained low-elevation points or is large; to class
CT if it contained only high-elevation pixels, distant from the borders of segments; or to class CU

(“unknown”) otherwise. Afterwards, segments in class CU were reclassified using linear discriminant
analysis (LDA) trained with segments already classified as CNT and CT on features that are statistics of
NIR and NDVI. In detail, the algorithm of the second classification method is as follows.

(1) The training set of segments F j assigned to class CNT, that is S′′j = CNT, is built with any
segment that contains at least one matched pixel below the elevation threshold or that is
large—in other words, any segment that satisfies the previously defined condition (3) or
the condition (4). For these segments, the condition to satisfy is

∃ i s.t. (ui, vi) ∈ F j ∧
(
e′i < t′H

)
∨

( a j

Nu ×Nv
≥ tr

area

)
(8)

(2) The training set of segments of class CT, for which S′′j = CT, is built with any segment that
satisfies both of the following conditions:

a It has not been already classified into the training set of class CNT, that is, both conditions
(3) and (4) are not satisfied.

b At least one high-elevation matched point of the segment is not on the border of all
segments. Here, the border B of all segments is defined as the set of any pixel not
completely surrounded (considering four-neighborhood connectivity) by pixels of the
same segment, further thickened with an additional morphological binary dilation.
This condition can be expressed as

∃ i s.t.
(
(ui, vi) ∈ F j

)
∧

(
e′i ≥ t′H

)
∧ ((ui, vi) < B) (9)

(3) Three features are calculated on each segment in the training set: arithmetic mean of NIR
values over the pixels of the segment; standard deviation of NIR; arithmetic mean of NDVI.
These features are used to train the LDA classifier.

(4) The trained LDA classifier is used to obtain the probability pT, j of each segments of class
CU being in class CT. Reassignment to class CT is performed if that probability is above the
threshold tT, otherwise the assignment is made to class CNT.

S′′j =

{
CNT, otherwise
CT, if pT, j > tT

(10)
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(e) Final Classification of Felsenszwalb’s Segments

Final classification S j of each segment F j was performed in step (e) as follows. A segment was
put in class CT (“part of a tree”) only if both classifiers agreed:

S j =

 CNT, otherwise
CT, if S′j = CT ∧ S′′j = CT

(11)

All the pixels that belonged to segments in class CT constituted the segmentation mask. In fact,
the mask was subject to morphological binary erosion with a disk of radius re to eliminate pixels at the
border because there the crown density was lower and soil was partially visible. The final segmentation
image L was obtained by labeling the connected components of the mask, where each component
represented a tree or multiple trees touching each other.

2.4. Classification of Health Status

The last processing stage was the classification of olive trees in two classes according to their
health status.

We investigated the feasibility of an approach in which the analysis was not limited to a few
vegetation indices, but included all the spectral information across five bands.

In the proposed method, linear discriminant analysis (LDA) was used, which has already proven
useful in medical applications for the assessment of diseases and for biological classifications.

Two classes of trees were defined: the class C0 of negative trees, which were in good health,
and the class C1 of positive trees, which were in poor health. Analogously, two classes of pixels were
defined: class X0, which belonged to negative trees, and class X1, which belonged to positive trees.

Briefly, in this paper, the LDA classifier was used to obtain a probability map p(r, c) that a pixel of
the multispectral stack of coordinates (r, c) belonged to class X1 of pixels of positive trees. If a tree
contained a significant number of high-probability pixels, it was classified as positive (class C1).

In further detail, in the training phase, trees were manually segmented and classified as C0 and
C1, and the two sets of pixels of class X0 and X1 were used to train the LDA classifier. Each pixel value
was a quintuple of reflectance values.

After training the classifier, it was used as follows on a new multispectral stack. In the first step,
it operated at the pixel level, giving the already mentioned probability p(r, c). Indeed, the posterior
probability p(r, c) of a pixel belonging to a class X0 or X1 was provided directly by the LDA classification
technique [77]. Afterwards, each segmented tree was classified in the positive class if the average of its
N higher-probability pixels was above the threshold t. Hence, given a segmented tree consisting of the
set T =

{
(r1, c1), . . . , (rM, cM)

}
of M pixels, the set of probabilities P =

{
p(r1, c1), . . . , p(rM, cM)

}
was

calculated by using the LDA classifier, and P was then ordered from maximum to minimum, giving
the sequence

[
p(1), . . . p(M)

]
. Finally, the mean value over only N pixels was calculated [78],

v =
p(1) + . . .+ p(N)

N
(12)

and the tree was classified into class C as follows.

C =

{
C0, if v < t
C1, if v ≥ t

(13)

In this paper, the LDA implementation of the scikit-learn v0.20.3 Python package was used [79].

3. Results

In this section, results obtained by the data processing described in Section 2 are illustrated.
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One example capture, before any processing, is shown in Figure 8, where the different points of
view of, for instance, the red and the blue channels are apparent if one considers the tree indicated by the
orange box in the upper right corner. All the acquired images were processed as described in Section 2.1
to obtain properly aligned multispectral reflectance stacks. Photogrammetric reconstruction was then
applied to obtain the 3D point cloud shown in Figure 9 for the site in Squinzano. That reconstruction
allowed us to distinguish between points on the ground and points on tree crowns, as shown in
Figure 10, relevant to the site in Squinzano. Figure 10 is a single shot taken from an altitude of 70 m,
has a size of 930 pixels × 1232 pixels or about 1.1 megapixels, and corresponds to a ground size of
about 47 m × 62 m, with a resolution of 5 cm/pixel.
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to a ground size of about 64 m × 48 m.
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In the following part of the paper, results of the training phase are reported, followed by those
relevant to the test phase. The latter were used to validate the proposed approach.

For training, the parameters for tree segmentation and classification, shown in Table 2, were found
heuristically by considering one multispectral stack from each site, including 71 olive trees overall.

The statistics of the resulting DSC, which expressed the Sørensen–Dice similarity coefficient
between automatic segmentation and ground truth, are reported in Table 3 and Figure 11. The similarity
coefficient averaged over all the trees was 0.68 with std 0.16, and its minimum was 0.12. All trees
were identified.
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Figure 11. Boxplot of DSC for the training set. The dotted green line represents the mean.

The LDA classifier of plant health was trained using the previously described set of multispectral
stacks. Only the pixels belonging to trees, as identified by the ground truth segmentation,
were considered for training.

To evaluate the effectiveness of the training, the classifier was applied to the training set. It was
used to obtain a probability map as described in Section 2.4. In particular, for each true tree area,
the segmented regions which had at least one pixel in common with that area were selected and the
probability map was evaluated. If the mean of the N = 2 higher-probability pixels was above the
threshold t = 0.8, then that region was classified as positive. The resulting confusion matrix of the
classifier is shown in Table 4, where four false-positive and zero false-negative can be observed. False
positives were due to the inclusion of bare soil between branches of trees.
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Table 4. Confusion matrix for the training set.

Ground Truth Predicted
Negative

Predicted
Positive

Negative 15 4
Positive 0 52

Hence the classifier sensitivity on the training set was 100%, and its precision was 93%.
After training, segmentation and classification performance were evaluated on test images taken

on each site, including 71 olive trees overall. The automatic segmentation and classification were
applied to each image to classify each tree.

The statistics of the Sørensen–Dice similarity coefficient are reported in Table 5 and in the boxplot
of Figure 12. Its mean value was 0.66 with std 0.21. Performance decreased slightly with respect to
the training set. However, it should be noted that all trees were successfully identified, at least on a
portion of them, with a minimum DSC of 0.02.

Table 5. Statistics of DSC for the test set.

# of Trees 71

Mean DSC 0.66
Std DSC 0.21

# of trees with DSC < 0.5 16
# of trees with DSC < 0.25 4

# of trees with DSC = 0 0
Min DSC 0.02
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Table 6 shows the confusion matrix for the test set. The observed classification accuracy was
good, in agreement with previous results for the training set or even better, with 98% sensitivity and
100% precision.

Table 6. Confusion matrix for the test set.

Ground Truth Predicted
Negative

Predicted
Positive

Negative 18 0
Positive 1 52

Processing one image took 6.2 s for segmentation and 0.2 s for classification on a laptop with an
Intel i7-8850H processor and 16 GB of RAM.

Figures 13 and 14 show the results for the test set, where segmented trees are surrounded with
different colors, green for healthy ones or red for infected ones, depending on their health status as
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inferred by the algorithm. The images shown in Figure 13 were acquired at the San Vito dei Normanni
olive grove, where olive trees were not affected by Xf. Figures 13d and 14d show the probability map
obtained by the classifier, represented as a blue to yellow color map, and the segmentation contour.
The RGB, CIR, and NDVI images are also shown as an aid for understanding olive condition. Images
of Figure 14 were acquired in Squinzano, where the olive trees were affected by Xf and clearly showed
OQDS symptoms. These images are discussed in the following.
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Figure 14. (a) Segmented RGB image; (b) segmented CIR image; (c) NDVI image; (d) probability map. 
The blue arrow in the upper left corner of (a) indicates a classification error. 

4. Discussion 

The results shown in the previous section indicate that high classifier sensitivity and precision 
were achieved in both training and test sets.  

It is worth noting that the test images were acquired in suboptimal conditions, with evident 
shadows cast on the ground and self-shadowing; however, both the segmentation and classification 
algorithms succeeded. This is very important, because due to logistic constraints, it is not always 
possible to survey a field under optimal irradiation, i.e., when the sun is directly overhead. 
Parameters such as gain and exposure time were optimized automatically by the multispectral 
camera according to shooting conditions and were saved in image metadata. According to 
manufacturer’s data, automatic gain control keeps the exposure below 2 ms. No attempt was made 
to correct specular reflection from vegetation, since it was considered negligible in the case of trees 
observed at that distance.  

Altitude and resolution were such that individual leaves were not discernible; however, that 
level of detail was not deemed necessary and the analysis was performed on the spectral content of 
the crown as a whole. Moreover, lowering the altitude would have increased the time necessary for 
the survey, reaching the autonomy limit of the drone, while air moved by propellers during close-up 
shots would have shaken branches. Leaves’ and branches’ fluttering due to wind was low (7–9 mph 
wind from NNW) during the survey; however, it should be noted that flutter, if significant, may 
reduce the accuracy and reliability of photogrammetry. 

Further details on the achieved result are discussed with the help of Figure 13 and Figure 14. 
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4. Discussion

The results shown in the previous section indicate that high classifier sensitivity and precision
were achieved in both training and test sets.

It is worth noting that the test images were acquired in suboptimal conditions, with evident
shadows cast on the ground and self-shadowing; however, both the segmentation and classification
algorithms succeeded. This is very important, because due to logistic constraints, it is not always
possible to survey a field under optimal irradiation, i.e., when the sun is directly overhead. Parameters
such as gain and exposure time were optimized automatically by the multispectral camera according to
shooting conditions and were saved in image metadata. According to manufacturer’s data, automatic
gain control keeps the exposure below 2 ms. No attempt was made to correct specular reflection from
vegetation, since it was considered negligible in the case of trees observed at that distance.

Altitude and resolution were such that individual leaves were not discernible; however, that level
of detail was not deemed necessary and the analysis was performed on the spectral content of the
crown as a whole. Moreover, lowering the altitude would have increased the time necessary for the
survey, reaching the autonomy limit of the drone, while air moved by propellers during close-up shots
would have shaken branches. Leaves’ and branches’ fluttering due to wind was low (7–9 mph wind
from NNW) during the survey; however, it should be noted that flutter, if significant, may reduce the
accuracy and reliability of photogrammetry.

Further details on the achieved result are discussed with the help of Figures 13 and 14.
For the test set, only one misclassification error (false positive) was observed. It should be noted

that the false negative was due to a very small branch, indicated by a blue arrow in the upper left
corner of Figure 14a; given the small number of pixels, 24, it was not possible to detect that the tree
was affected by Xf.

The figures illustrate the usefulness of considering all the spectral information, as was done
by using the LDA classifier. Since the IR channel is represented with a false red color in CIR
images, areas of a tree marked in green had smaller IR reflectivity, which is indicative of desiccation.
This distinction becomes clearer if one compares Figure 13b (trees unaffected by Xf ) and Figure 14b
(trees affected by Xf ), where desiccated parts are shown in green. However it is well known that IR
reflectivity alone is not sufficient to evaluate the state of health of vegetation, and indices such as NDVI,
which combines NIR and RED into a single value, have been widely adopted for this purpose [68].
Unfortunately, while NDVI is effective in differentiating healthy trees from bare soil, it provides no hints
for distinguishing affected trees from healthy grass, as can be seen in Figure 13c. This motivated the
usage of a suitable machine-learning algorithm based on at least the two-dimensional space constituted
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by NIR and RED values. It turned out that the usage of all the five bands was feasible and the proposed
classification approach, based on the probability maps shown in Figures 13d and 14d clearly separated
affected tress from healthy trees, and from grass and bare soil.

It should be mentioned that recent studies on Xf have been conducted using hyperspectral
sensors. The advantage of using hyperspectral indices is that precise diagnoses can be performed,
distinguishing further between positive asymptomatic and symptomatic trees. This was used in
Reference [67], where the phaeophytinization index (NPQI) calculated using narrow blue 415 and
5 nm spectral reflectance bands proved effective. In the same study, it was shown that NDVI did not
differ significantly between asymptomatic and symptomatic trees. In our work, too, indices such as
NDVI were discarded for the purpose of classification; however, we found that using multispectral
imagery, which can be obtained with less demanding hardware than hyperspectral images, and directly
processing the five broad bands with LDA was sufficient to discriminate between negative and
symptomatic trees.

The same observation made for Figure 14c, that NDVI does not differentiate trees from grass,
also motivated the approach used for tree segmentation. Indeed, the algorithm proposed in this paper
takes into account several parameters, not only spectral ones but also points’ elevation, to accomplish
the segmentation task in a robust way. However, it should be stressed that the elevation of points was
obtained using photogrammetry on images shot with the multispectral sensor. In contrast, sensors
such as LiDAR (light detection and ranging) can be used to ensure higher reconstruction accuracy and
high point density, with good performance in the precise determination of canopy geometry, as was
analyzed in Reference [79]. In our work, the precise analysis of canopy geometry was unnecessary and
the obtained sparse 3D reconstruction, even if more prone to errors than LiDAR, nonetheless permitted
identification of all trees thanks to our purposely developed segmentation algorithm.

As previously stated, a few non-olive trees were discarded from processing in Figure 13.
That exclusion was performed manually. Automatic methods for tree species recognition have
been proposed in the literature; LiDAR data together with geometric models were used to distinguish
among five species in forest plots in Finland with a classification accuracy above 93% [80]. However,
such a technique was not applied in our work in order to relax hardware requirements. In Reference [81],
it was shown that shape, texture, and color analysis of airborne winter imagery taken with a pocket
camera could discriminate between three boreal forest species with 82% accuracy. Even if tree
segmentation was facilitated by snow on the ground in that study, it is foreseen that this class of
techniques may be exploited to complement the method proposed in this paper, which does not suffer
from background discrimination, in order to automatically select olive trees.

5. Conclusions

In this paper, a technique is presented to monitor the spread of olive quick decline syndrome
(OQDS) in olive trees using remote sensing with a multispectral camera mounted on a multirotor
UAV. The entire data flow is described, including preprocessing to obtain calibrated reflectance images,
3D reconstruction of a sparse cloud of points with stereophotogrammetry, segmentation of trees,
and classification of their health status.

Segmentation was complicated by the presence of grass on the soil; hence, a hybrid approach
was used based on the combination of multispectral information and spatial data, producing a mean
Sørensen–Dice similarity coefficient of about 70% with respect to the ground truth. That value was
worsened with respect to the intermediate segmentation result because it took into account the final
morphological erosion of segmented trees aimed at reducing the superposition of terminal parts of
branches with soil; that erosion was introduced because including soil areas may reduce classification
accuracy. It can therefore be assumed that there is a trade-off between segmentation and classification
accuracy. It should be appreciated that in one step of the segmentation algorithm, an LDA classifier
was trained using decisions made on easy cases and applied to dubious ones. This technique has the
advantage of being potentially self-adapting to different kinds of trees and soil. In this work, the LDA
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classifier was trained on each multispectral stack separately, but training on a whole set of homogenous
stacks would increase further its reliability.

Detection of disease was based, again, on an LDA classifier trained on segmented trees from five
band multispectral stacks. Hence, in this approach, all the available spectral information was used
without resorting to simplified vegetation indexes. Overall, classification performance was very high,
with 98% sensitivity and 100% precision in a test set of 71 trees, 75% of which presented OQDS.

Moreover, the proposed method is computationally feasible. Indeed, processing times for both
segmentation and classification were fast enough, amounting to about 6 s. This implies that this system
is adequate for faster and less expensive monitoring of olive orchards than sampling in the field by
agronomists and laboratory analysis.

As an alternative approach to segmentation, the authors are experimenting with the use of
convolutional neural networks and have obtained promising results that will be illustrated in a future
publication based on a larger dataset.
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