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Abstract: Hydrometeorological data sets are usually incomplete due to different reasons (malfunctioning
sensors, collected data storage problems, etc.). Missing data do not only affect the resulting decision-
making process, but also the choice of a particular analysis method. Given the increase of extreme
events due to climate change, it is necessary to improve the management of water resources. Due to
the solution of this problem requires the development of accurate estimations and its application
in real time, this work present two contributions. Firstly, different gap-filling techniques have been
evaluated in order to select the most adequate one for river stage series: (i) cubic splines (CS), (ii) radial
basis function (RBF) and (iii) multilayer perceptron (MLP) suitable for small processors like Arduino
or Raspberry Pi. The results obtained confirmed that splines and monolayer perceptrons had the
best performances. Secondly, a pre-validating Internet of Things (IoT) device was developed using a
dynamic seed non-linear autoregressive neural network (NARNN). This automatic pre-validation in
real time was tested satisfactorily, sending the data to the catchment basin process center (CPC) by
using remote communication based on 4G technology.

Keywords: gap-filling; river stage data; cubic splines; radial basis functions; multilayer perceptron;
Arduino; Raspberry pi; IoT

1. Introduction

As in the case of hydrologic variables such as precipitation [1], complete historical records are
necessary in river stage data sets. In the current climate change context, complete time-series of
these data are essential for a comprehensive study of the evolution of the magnitude of changes.
An adequate water resources management process is crucial to minimize the impact of extreme
events [2]. One of the main problems in the analysis of time series is the absence of data, with gaps
of different widths, number of missing data and frequency, which makes the model identification
harder and prevents the adoption of common validation procedures, usually applied to complete
data sets [3–6]. These deficiencies in hydrologic time series are usually due to the malfunctioning
of monitoring equipment, the occurrence of anomalous natural phenomena and data transmission
storage and retrieval process issues [7]. Sometimes, the solution of these problems is not instantaneous,
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demanding the intervention of qualified personnel at the measuring point or the development of
specific methods for the detection of spurious signals in datasets from automatic acquisition systems [5].
Occasionally, when there are no data, they can be recovered by making a backup from the data loggers,
although this is not always possible. Nevertheless, even when the back-up is made, quality of data
sets could be preserved. To avoid these drawbacks, data recovery systems or infilling procedures
are needed.

There are different gap-filling procedures usually specific for the nature of the hydrologic variable
under study. River stage data present some stationarity so that interpolation methods can be directly
applied in order to rebuild the data set. This can be achieved with statistical methods [8,9], or by
applying artificial neural networks (ANNs) [7]. The use of the auto regressive moving average (ARMA)
method [10,11], allows the estimation of missing data in stationary sets, but the problem with these easy
and available interpolation methods is that they needs a pre-identification of the data-set model [12]
which could be an inconvenience for the real time validation. On the other hand, there are other
procedures such as the Gray model [13], wherein the assumption in the probability distribution of
data is not required and only three data points are required for the modeling; the computation effort
required is small for the construction of the model and it is highly adaptive to system dynamics
behavior. Other approximations [14] have faced this issue using an appropriate weighting of the
estimated values generated by two autoregressive processes operating: in the forward and backward
directions of time [15,16].

The main aim has been to design the best gap-filling techniques updated with the new social
environment and new electronic products which associated with a good Internet of Things (IoT)
technique could provide real-time and cheaper maintenance, being the citizenry and scientific
community the first to benefit. This gap-filling technique for river stage data sets, which had to
be developed to efficiently run on low-cost architecture (e.g., Arduino and Raspberry Pi), allowing
easy positioning at both single and multiple locations. The use of small processors, with low energy
requirement, and reduced computing potential, is justified in the case of outdoor sensors, which have
to be supplied with batteries of great size to be lodged in a large gauge cabin. With these low-cost,
low-consumption devices the gauge cabin could be reduced, and, the most important, the system will
have greater autonomy even in critical cases (electrical supply failure). In addition, although the price
of processors is getting down, the largest size and price of a personal computer still represents an
inconvenient. Some examples are reported in Table 1.

Table 1. Consumption and time-comparison of different low capacity processors (LCPs).

Consumption (Watts) Duration (Number of Times)

PC Raspberry
Pi (RPi)

Arduino
DUE

Arduino
UNO RPi/PC Arduino

DUE/PC
Arduino
UNO/PC

Arduino
DUE/Rpi

Arduino
UNO/Rpi

220 1.8 0.8 0.4 122 220 550 2 4.5

To achieve this, three different customized gap-filling estimation methods with increasing processor
speed requirements were taken into account. The first method adopts cubic splines [17–23]. The second
one interpolates with radial basis functions [24–30]. Finally, the third method is an ad hoc neuronal
network: the multilayer perceptron (MLP) [31–40], expecting in this case that fitting weighed and
biased algorithms would be compatible with a simple calculation based on metaheuristic techniques
such as simulated annealing (SA) or particle swarm optimization (PSO), [41]. To compare the results
of these three different methods, a statistical study was carried out with random samples from a
measurement point placed in the Andalusian Guadalquivir river basin, (A08_101). This work assesses
the previously cited gap-filling techniques in order to find out the best method depending on the size
of the gap in river stage data.
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On the other hand, in order to include this pre-validation system, an Internet of Things (IoT)
device has been developed, being capable of making a remote 4G connection and returning the data
that have already been corrected.

2. Materials and Methods

2.1. Study Area and Data Source for Data Correction

In this study, river stage data from one-gauge station (A08_Mengíbar), located in the Basin of
Guadalquivir River (Southern Spain), were used. This station belongs to the Automatic Hydrologic
Data Collection System (SAIH), controlled by the Spanish goverment [42].

These river stage records managed by the Catchment Basin Process Center (CPC), have a 15-min
sampling. The data are collected by a Vegaplus 62 radar sensor [43], with a 4–20 mA output loop signal,
35 m measurement range, +/− 2 mm of error accuracy and resolution of 12 bits.

One of the inherent features in these data records is that any minor variation is recorded due to
the accuracy of the radar system, in contrast with the data recorded by mechanic sensors based on float
level systems, which return smoothed values.

This station, A08_101 (Mengíbar), has been selected due to: (i) its location in the main axis of
Guadalquivir river at the boundary of the influence of Atlantic winds, Figure 1, (ii) its relevance in
being the data source most consulted on the Web, and (iii) its strategic value for flooding control,
downstream of a dam.
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Figure 1. Control points on the main Guadalquivir’s river axis: E10 (Pedro Marín), A08_101 (Mengibar),
E25 (Marmolejo), E78 (El Carpio), E79 (Villafranca), I11 (Fuente Palmera), E53 (Peñaflor), and E60
(Alcalá del Río).

2.2. Control Point Used to Test the Alternative Pre-Validation System Developed

The selected control point to verify the alternative pre-validation system is part of the Guadalquivir
Alert Hydrological Information System (SAIH in Spanish) network (A17 Genil-Écija), with UTM
coordinates: 37.5580723149, −5.0777982501, zone 30. This selection was made due to (i) the ease of
periodic access, so that any incident could be resolved in a timely manner relatively short; (ii) good 4G
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coverage to have a 24-h remote connection with the equipment; (iii) enough physical space to install all
the equipment; (iv) possibility of powering the equipment from the point’s own 24 V batteries; and (v)
ability to double the level sensor output with a galvanic separator. After consulting with the SAIH
management and taking into account the strategic importance of the point due to the risk of frequent
floods, this point was selected from among those suggested by the agency.

In Figure 2, an image of the external booth of the control point is shown, of the SAIH equipment [44],
installed inside and finally of the Vegaplus 62 radar sensor in the Iron Bridge (Genil River).
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SAIH equipment (SAINCO/Telvent) and the Vegaplus 62 radar sensor.

2.3. Gap-Filling Techniques

The World Meteorological Organization [45] proposed some general criteria which have been
adapted to the implemented measurement system recording and analyzing these data. Consequently,
data records are classified in 6 different types characterized by a flag (Table 2).

Table 2. Different flags in data records.

Flag Type of Data

0 Correct
1 None
2 No satellite connection
3 Out of range
4 Manual
5 Non-observed-change in time interval

These flags allow an analysis of the different kind of gaps present in the data set, applying the
three techniques detailed below.

In this work, three gap-filling methods have been used with a similar validity to the methods
ARIMA or Holt-Winters [46], with the possible advantage of a greater simplicity, which is required
for in-situ setups. In addition, it is important to emphasize that the data once formally validated
in the central database unit are returned to the remote device (Arduino/RPi). These devices will be
continuously feeding with quality data and having, in the worst case, up to 2-week of pre-validated
data processed by themselves.

2.3.1. Cubic Splines

Originally, spline was a term used for flexible rulers that were bent to pass through a number of
predefined points, “knots”, hence the name S-line. Since several decades, the method has been widely
applied in industrial design, especially in automobile manufacturing [47].
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Splines are piecewise polynomials, like Lagrange or Hermite polynomials, maintaining continuities
at the knots in only primary functions but their derivatives down to a certain order, which makes
them very useful as interpolators, and, consequently in Computer Aided Design [48–50]. Due to their
simplicity, cubic splines are a widely used tool [51].

2.3.2. Radial Basis Functions

Radial basis functions (RBF) are real-valued functions whose argument is the distance from the
origin [52]. Let x1, x2, . . . xN ∈ Ω ⊂ Rn be a given set of nodes. Given interpolation data values y1, y2,
. . . yN ∈ R, at data locations x1, x2, . . . xn, RBF, gj(x) are defined as follows:

gj(x) ≡ g
(
‖x−xj‖

)
∈ R, j = 1, . . . , N (1)

where ‖x−xj‖ is the Euclidean distance. RBFs are used to interpolate scattered data. The RBF
interpolant is:

F(x) =
N∑

j = 1

αj·gj(x)+αN+1 (2)

It is obtained by solving the system of N+1 linear equation, for N + 1 unknown expansion
coefficients, αj an independent term, αN+1. Among the huge amount of RBF functions, those most
commonly used are:

thin-plate splines : g(x) = ‖x−xj‖· ln
(
‖x−xj‖

)
(3)

linear splines : g(x) = ‖x−xj‖ (4)

cubic splines : g(x) = ‖x−xj‖
3 (5)

gaussian splines : g(x) = exp

−‖x−xj‖

c2
j

 (6)

multiquadric splines : g(x) =

√√√
1 +
‖x−xj‖

2

c2
j

(7)

2.3.3. Multilayer Perceptrons

The use of perceptrons is a reasonable way to reduce the risk of incorporation spurious data [3].
A conventional multilayer perceptron (MLP) [53] has three layers: an input layer, one or more

hidden layers and an output layer. In a traditional MLP the information, or input signal, is moved
forward as shown in Figure 3. The MLP output is a node or neuron with a linear activation function (f).
On the other hand, hidden layers have a sigmoid activation function (g):

ŷ = f(
h∑

j=1

wj·g(Si) + b2) (8)

This kind of model is usually trained with a back-propagation algorithm (BP). These neural
networks are universal approaches of any continuous function, as long as there is at least one hidden
layer. There are no rules for the selection of the best number of nodes in the hidden layer in order to
achieve a certain level of error [54]. The updating weight and bias values has been calculated according
to the Levenberg-Marquardt optimization (LM).
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Figure 3. Scheme of a conventional multilayer perceptron.

2.4. Gap Filling Techniques Used

With the aim of using small processors, with low energy requirement and reduced computing
potential, two types of studies have been carried out:

2.4.1. Test Type I (Scattered Gaps)

In order to analyze scattered gaps comparing the differences between the three different methods
proposed, size-limited random samples (n) from the data set were chosen as a first test. The maximum
number of gap-data in the set should not be more than a m fraction of n, m1, being the number of gaps
found in that random sample no more than m fractions of n. In addition, a new type 6 flag was added
to fraction, p, of m1, Figure 4.
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Therefore, if we have a random sample n = 1000 and a gap fraction m = 0.1, the number of
maximum gaps should be 100. Thus, if m1 = 70 gaps found and the fraction of data to be marked
is p = 0.80, then q = 70 × 0.8 = 56 Type 6 data will be added. These data are used to estimate the
goodness-of-fit of the curve in each one of the different methods. This comparison is evaluated by the
standard error of the estimate (SEE), considering the marked data as Type 6 and following [55]:

SEE =

√∑q
i = 1 e_splinei

2

q− 2
(9)

The e_spline represents the difference between the original, correct value and the value estimated
by the method used in each case. In this example, q = 56. Additional information on the software
developed for this study can be found in the Appendix 1 [56].

As mentioned before, the gap-filling has been calculated by three methods: cubic splines (pchip),
radial basis functions with five variants of these (lineal, Gaussian, quadratic, multiquadric and thin
plate spline), using the Chirokov algorithm, [57] and multilayer perceptron.

2.4.2. Test Type II (Multiple Gaps)

As will be shown in Section 3, MLP may be suitable for filling multiple gaps. A test has been
developed to analyze its performance. The sequence followed in this second test is shown in Figure 5.
Additional information on the software developed for this study can be found in the Appendix 2 [56].

Sensors 2020, 20, x FOR PEER REVIEW 7 of 22 

 

2.4.2. Test Type II (Multiple Gaps) 

As will be shown in Section 3, MLP may be suitable for filling multiple gaps. A test has been 
developed to analyze its performance. The sequence followed in this second test is shown in Figure 5. 
Additional information on the software developed for this study can be found in the Appendix 2 [56]. 

Data set

Random examples 
without any gap

Adding fractions of 
gaps (0.05, 0.75)

Results averaged for 
both methods 

(splines, perceptron)

SSE splines/SEE 
perceptron

 
Figure 5. Block diagram followed in Test II. 

2.5. Using a NARNN with Dynamic Seed 

A non-linear autoregressive neural network with external input (NARNN) [58] has been used 
with a seed that increases gradually during the validation process [3], whose performance has been 
contrasted by comparing it with the standard methods applied in validating the data of a float 
sensor to which errors of known magnitude have been added. 

The great disadvantage of this method is that a seed size is reached in the recursive training of 
the NARNN that demands such computing power that it is not of practical application. For this 
reason, a new dynamic seed will be used here such that: 

seed∈ t1+k, t2+k  ∀ k∈ 0,  m  (10) 

where m is the number of data to validate, and t2-t1 is the number of data of the seed. 
Thus, if the data that feed the NARNN are correct, it will be able to make correct predictions 

for the t + 1 data. If the data that arrives is not correct, the NARNN may issue an alert signal so that 
the operator in charge of analyzing the data warns of the incident and makes the corresponding 
correction. The NARNN will have the capacity, given its natural tolerance to failures, to support a 
fraction of erroneous data with which it will provide feedback. Ideally, in the practical validation 
process, the data marked as erroneous should be extracted from the series from time to time, 
corrected, so the NARNN always is retrained with correct data in order to achieve optimal use of it. 

To analyze the behavior of this dynamic NARNN, it has been trained with validated data from 
the 21 days that the trial lasted and its resolution has been quantified by varying its parameters: 
cadence between data (3600 s,..., 60 s), the delay of feedback (1, 6, 11, 16, 21 and 24) and the ratio 
between the data used for training and the total of those acquired (0.25,…, 0.95), the difference up to 
1 (0.75,…, 0.05) is the fraction that would be used for validation. Figure 6 describes the operation of 

Figure 5. Block diagram followed in Test II.

2.5. Using a NARNN with Dynamic Seed

A non-linear autoregressive neural network with external input (NARNN) [58] has been used
with a seed that increases gradually during the validation process [3], whose performance has been
contrasted by comparing it with the standard methods applied in validating the data of a float sensor
to which errors of known magnitude have been added.



Sensors 2020, 20, 6354 8 of 22

The great disadvantage of this method is that a seed size is reached in the recursive training of the
NARNN that demands such computing power that it is not of practical application. For this reason, a
new dynamic seed will be used here such that:

seed ∈ [t1+k, t2+k] ∀ k ∈ [0, m] (10)

where m is the number of data to validate, and t2−t1 is the number of data of the seed.
Thus, if the data that feed the NARNN are correct, it will be able to make correct predictions for

the t + 1 data. If the data that arrives is not correct, the NARNN may issue an alert signal so that the
operator in charge of analyzing the data warns of the incident and makes the corresponding correction.
The NARNN will have the capacity, given its natural tolerance to failures, to support a fraction of
erroneous data with which it will provide feedback. Ideally, in the practical validation process, the data
marked as erroneous should be extracted from the series from time to time, corrected, so the NARNN
always is retrained with correct data in order to achieve optimal use of it.

To analyze the behavior of this dynamic NARNN, it has been trained with validated data from the
21 days that the trial lasted and its resolution has been quantified by varying its parameters: cadence
between data (3600 s,..., 60 s), the delay of feedback (1, 6, 11, 16, 21 and 24) and the ratio between the
data used for training and the total of those acquired (0.25, . . . , 0.95), the difference up to 1 (0.75, . . . ,
0.05) is the fraction that would be used for validation. Figure 6 describes the operation of the validation
algorithm with a dynamic seed NARNN. Additional information on the software developed for this
study can be found in Appendices 3 and 4 [56].Sensors 2020, 20, x FOR PEER REVIEW 8 of 22 
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2.6. Alternative Electronic Equipment Developed for IoT Communication

An electronic equipment has been developed with capabilities similar to the SAIH equipment for
signal capture, conditioning, storage and sending of the same data in remote connection. In the block
diagram of Figure 7, the original set of equipment the one proposed here are illustrated.
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The proposed system has the advantage that, in addition to the functions described above, it can
fill in incomplete data series and validate them in real time. The elements of this system (Figure 8) are:

1. ABB CONTROL model 1SVR011718R2500 galvanic isolator [59] powered at 24 V DC, with input
and outputs in the 4–20 mA range

2. Arduino DUE module with a 32-bit Atmel SAM3 × 8E ARM Cortex-M3 CPU microcontroller [60],
with a 12-bit analog/digital converter (A/D) and 0–3.3 V measurement range

3. Arduino DUE also has a USB connection for a virtual RS232C port through which it obtains power
4. This microcontroller has several input/output ports, it will be connected to the memory module

(micro SD) with the serial peripheral interface (SPI) protocol and with the clock-calendar module
with the inter-integrated circuit (I2C) protocol. In both cases, the signal voltage will be 3.3 V

5. Precision resistor of 165 Ω, 0.25 W, ± 0.1% precision and ± 15 ppm/◦ C, [61], to go from 4–20 mA
current levels to voltages between 0.66 V and 3.3 V, (V = IR)

6. Ethernet module with a micro SD card socket [62], compatible with 3.3 V level signals, and with a
W5100 Ethernet controller for local area network (LAN) communications. For the configuration
that has been used, it only requires an SPI connection to access the micro SD card, which is used
to record the data including the date and time they were acquired

7. ChronoDot Real Time Clock (RTC) module [63], which is a temperature compensated calendar
clock based on the DS3231SN chip with a drift of only ± 2 pmm, (1 min per year). It includes a
CR1632 lithium battery, which gives it autonomy for about 8 years, being compatible with I2C
signals of level 3.3 V

8. Single-phase inverter from 24 V DC to 230 V AC of 300 W model A301-300W-24 [64] with square
wave output at 50 Hz, ideal for supplying current to the power supply of a laptop

9. Huawei 4G USB Modem model ES3372 [65] for internet connection
10. Laptop with i7 processor, 8GB of RAM, Windows 10 and Matlab 2018b
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The signal from the sensor through the 4–20 mA current loop is copied by the galvanic isolator,
transformed into the input of the A/D converter to voltage through a 165 Ω resistor and finally
over-sampled (1000 times in each acquisition) to obtain its average value, so that the system acts
as a low-pass filter that eliminates possible electrical noise from the signal. The acquisition has a
cadence of one second. Each new data is stored on the micro SD card together with the date and time
from the ChronoDot module. Subsequently the data is sent to the laptop through the virtual serial
port generated with the USB connection. This equipment is autonomous and repeats this process
continuously, regardless of whether the computer processes the information or not, thereby ensuring
that the information acquired remains intact and ready to be read at any time from the memory card.
Figure 9 shows the system together with the SAIH equipment.

2.6.1. Calibration of the Developed Equipment

To calibrate the developed equipment, a HT8000 digital process calibrator [66] has been used,
which applies known intensity values in the 4–20 mA range to the current loop. With the calibration
data obtained, the adjustment data provided by the SAIH for point A17 Genil-Écija, 4 mA for the 0 m
level and 20 mA for the 10.71 m level, have been applied. Calibration results appear in Appendix 5 [56].

2.6.2. Implementation in LCPs

As it has discussed above, the use of small processors, are justified not only due to their low cost
but also due to their technical advantages in the management of this kind of data. These data need a
smaller storage size, a small battery, with a lower maintenance cost, all of which are an advantage
from the economical point of view and collection of quality data set. The developed software is in
Appendix 6 [56].
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2.6.3. Using Arduino

Two models of Arduino has been used in this work, Arduino UNO (FLASH = 32kB, SRAM = 2
kB, CLK = 16 MHz), and Arduino DUE (FLASH = 512 MB, SRAM = 96 kB, CLK = 84 MHz), in order to
compare their capacity with these algorithms and their electrical consumption.

The data series to be validated come from a laptop connected to Arduino. These data are sent to
the Arduino basic board in real-time to be validated. After the validation process, the data series is
received by the laptop. This process depends on the processing speed of the evaluated board.

Firstly, the implementation of the Splines in Arduino has been developed following a sketch
from [67]. This is a simple library for different types of 1-D Splines, written for the Arduino environment.
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Secondly, the implementation of RBF in Arduino was developed following [68] and [69]. Finally,
for MLP implementation the developed sketch is based on [70]. The method chosen to fit weight
coefficients in this neuronal network has been the simulated annealing algorithm [71].

2.6.4. Use of Raspberry Pi 3

All the functions related to Splines, RBF and MLP are developed using the same source in Arduino,
but in this case with an adaption to Python 2.

2.7. Previous Simulation in Matlab

The techniques further explained ahead have been ran previously on MatLab. With the aim
of measuring their capabilities in real time process, these techniques were written under Arduino
programming language (a specific language for Arduino, it is a high-level processing language similar
to C++). Regarding Raspberry Pi 3, the language used has been Python, which comes from the
free operating system based on Debian called Raspbian. The main characteristics of the three basic
electronic boards used in this work are summarized in the Table 3.

Table 3. Main characteristics of the three basic electronic boards used in this study.

Board Processor Bits MIPS SO

Arduino UNO ATMEGA328P-PU 8 16 NO
Arduino DUE SAM3 × 8E ARM Cortex-M3 32 84 NO
Raspberry PI 3 Broadcom BCM2837 32 2441 RASPBIAN

2.8. Methods Used for IoT Connection

For the distribution of the data over the internet (using 4G), a shared folder in DropBox is used [72].
On the other hand, the remote control of the laptop located at the control point is done through the
LogMeIn Pro application [73].

The data were validated with a 24-h cadence, using either remote access to the latptop or the
reading of the file stored in DropBox.

To analyze the different gap-filling methods proposed and their accuracy, two approximations
were considered. The first one, Test I, (Section 3.1) is designed for scattered gaps, and the second one,
Test II, (Section 3.2) for multiple gaps. In Section 3.3 Test III has been carried out for comparison of
the three different boards. In the same section Test IV has been performed to check the processing
speed on RPi3 with MLP = (50 50 5). In Section 3.4 the data from the control point A17 Genil-Écija
are analyzed. In Section 3.5 the quantification of the maximum resolution of the dynamic NARNN is
studied. Finally in Section 3.6 the computational cost of real-time pre-validations is analyzed.

3. Results

3.1. Test I

The goodness of fit found was with the application of the three methods suggests a ranking
such as Splines > RBF > MLP. The SEE values obtained for the spline technique and RBF methods
are one order of magnitude lower than for MLP method (Table 4). The scant efficiency of the MLP
is attributed to the monolayer perceptron, with a small number of neurons in their hidden layer,
n < 10. The latter structure in the MLP tends to become generalized by establishing behavior patterns,
while the other two methods only take into consideration the value of the known data to make the
gap-filling estimation. Therefore, the MLP method performs worse than the other methods.

On the other hand, in an MLP with a larger number of neurons, the differences between the three
methods decrease. Thus, a mono layer perceptron (ANN), with n = 50, gives similar results to splines
and RBF functions. In fact, if the number of hidden layers is raised to 2 or 3, the results become equal
and, in some cases, the results are better in the perceptron than in the other two methods. In this
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case, the MLP has lost its capacity to generalize in favor of learning by a route that is good for the
estimation in small gaps. Figures 1–3 in Appendix 7 [56] depict the growing complexity of ANN in its
adaptive behavior.

The behavior of the three methods for the case of a perceptron with a more complex structure,
(MLP 50-50-5: 50, 50 and 5 neurons on the first, second and third layer, respectively) (Figure 10), is shown
in detail in Table 4 for the values of the parameters n = 300, m = 0.10 and p = 0.80. The ANN has been
trained with segmented data (80 10 10) fitting the weighting coefficients to the Levenberg-Marquardt
(LM) algorithm.
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Figure 10. (a) Comparison of the three gap-filling methods: RBFs, Cubic spline and mono layer
perceptron (50 50 5), (80 10 10). (b) Details of interpolations.

Table 4. Comparison between spline, RBF’s and perceptron (50 50 5), (80 10 10), (LM) with (n = 300,
m = 10%, p = 80%).

SEE

n m p m1 q Neurons Spline
(×10−2)

RBF_Lin
(×10−2)

RBF_G
(×10−2)

RBF_C
(×10−2)

RBF_T
(×10−2)

RBF_M
(×10−2)

MLP
(×10−2)

300 10 80 10 8 50_50_5 1.32 1.46 3.96 1.76 1.66 1.46 3.58
300 10 80 30 24 50_50_5 10.5 5.01 8.30 8.90 7.63 5.01 7.75
300 10 80 13 10 50_50_5 2.01 2.78 6.69 4.33 3.60 2.78 1.84

At this level of complexity in the ANN structure, the SEE found in the three methods shows
the same order of magnitude, but at a greater computational cost for the MLP. This fact represents a
drawback for practical use for real time computing.

The spline technique is more versatile than the other methods for the estimation in scattered gaps.
MLP has to reduce its capacity for generalising, but the increase in the memory capacity of the MLP
demands a high computing cost, which impairs its practical use. RBF methods perform similarly to
splines in all cases, but at a higher computing effort, which excludes it as an gap-filling method.

3.2. Test II

The foregoing analysis indicated that, in the case of multiple gaps, MLP could be as good, or even
better than splines as interpolating tools. The option analyzed in Test I requires a generalized coupling
of the ANN with a minimum of memory. To confirm this conjecture, a further test with only one neuron
in the hidden layer was made. For this test, a sample of 100 iterations, with the random example
size ranging between 100 and 5000 registers from the dataset, m = 0.05 as fraction of gaps, and ne = 1
neuron were taken.
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The results obtained are shown in Table 4, in which the rows are the fractions of gaps used, p (0.05
0.75), and the columns the sample size used n (100 5000). The ratio between the respective errors from
the splines and the perceptron methods (SEE cubic splines/SEE MLP) appears in the cells. These ratios
confirm the initial speculation regarding its gap-filling capacity: perceptron exceeds splines in multiple
gaps. As summarized in Table 5, there is a proper zone for each of the techniques. The not bold area
stands for the spline while the bold area represents the perceptron results.

Table 5. Comparison between cubic splines and MLP in multiple-gap interpolation (cubic spline-MLP
SEE ratio).

p/n 100 150 200 500 1000 5000

0.05 0.623 0.642 0.771 0.89 0.972 1.03
0.10 0.71 0.872 0.948 0.99 1.09 1.06
0.25 0.914 0.955 1.11 1.14 1.11 1.11
0.50 0.99 0.998 1.08 1.13 1.06 1.13
0.75 1.06 1.06 1.07 1.09 1.15 1.04

* Bold font for MLP

As can be observed in this table, when the sample size is small (n = 100), the perceptron behavior
is better than the spline method with multiple gaps (75%). On the contrary, when the sample size
increases, MLP performs better and it is able to fill gaps increasing its accuracy. For sample size
n > 5000, the gap-filling capacity of MLP is greater than that of the splines, irrespective of the gap
size (p).

3.3. Results of the Use of Boards Based on Arduino and Raspberry Pi 3

The use of Arduino UNO has quite limitations because data processing needs to use RAM memory,
and this one is quite limited (2 KBYTE). Moreover, the use of floating point is limited as well as the
maximum speed processing (16 MIPS). In the case of Arduino DUE, the RAM memory is up to 96 KB.
Programs are executed with 32 bits and 84 MIPS. The main limitation in both cases is the sample size
data, which is conditioned on the available RAM memory.

3.3.1. Test III

In order to carry out an effective comparison of the three different boards (UNO, DUE and RPI3),
a 30-data sample size has been selected. This sample size has a gap fraction m = 0.1, so only a maximum
of three data could be missing. In the case of finding m1 = 2 missed data, being the fraction to be
marked p = 1, then the number of data to be marked with the flag 6 would be q = 2 × 1 = 2, which are
used to measure the goodness-of-fit in each case.

This dataset is sent to the boards from the laptop running a MatLab application, which receives
back the results of this process to record in a text file to be studied later.

The results from the two first processes (Splines and RBF) are similar to the results obtained from
MatLab, except for the runtime needed. The implementation of a large ANN is very difficult in this
kind of low-cost architecture, Arduino UNO and DUE, due to the lack of memory and computer power
within a reasonable time.

As comparative test, a perceptron (only one layer and 5 neurons) has been set up for these three
boards. The simulated annealing process, in the case of Arduino, uses a random number generator
(RNG), whose initialization is utterly random. Table 6 shows the measured time directly from MatLab
in each case under study.
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Table 6. Processing time in Arduino UNO, DUE and Rapsberry Pi3.

Board Spline RBF
Lineal

RBF
Gaussian

RBF
Cubic

RBF
Thin-Plate

RBF
Muticuadrics MLP (n = 5)

Arduino UNO <2 s <1 s <3 s <1s <1s <3s <45 min
Arduino DUE <1 s <1s <1s <1s <1s <1s <8 min
Raspberry PI 3 <1 s <1s <1s <1s <1s <1s <1min

3.3.2. Test IV

This test has been carried out only with Raspberry Pi3, under equal conditions as in MatLab,
in order to check the processing speed.

A MLP = (50, 50, 5) has been tested, taken several sample size with different p and n, every one of
them with a 15-min data. Table 7 shows the results obtained in this test.

Table 7. Processing time in Test IV with RPi3.

p/n 100 150 200

0.05 <8 min <14 min <21 min

0.1 <12 min <18 min <32 min

0.25 <17 min <24 min < 51 min

3.4. Alternative Pre-Validation System with IoT: Analysis of the Data of the Tests Carried Out in the Control
Point A17 Genil-Écija

The tests carried out began on 15 April 2019 with the installation of the equipment, tests of the 4G
connection, analysis of the integrity of the signal from the sensor through the galvanic separator and
configuration of the remote desktop.

On 24 April 2019, tests were carried out on the 24 V supply, with which it was estimated whether
the inverter could influence the quality of the signal from the sensor, and whether a direct supply from
the 230 V grid could be of interest. From the results it was confirmed that the inverter did not alter the
quality of the signal, a predictable result given that the sensor sends its signal in a current loop.

On 1 May 2019 at 00:00:00, the data collection of the radar level sensor began; This data collection
was recorded in the micro-SD memory and downloaded through the RS232C port on the hard disk of
the laptop and simultaneously through the 4G connection in a shared DropBox folder. During this
process, the correct operation of the equipment was controlled by remote desktop, proceeding to the
daily validation by an expert of the data obtained. On 21 May 2019 at 1:51:13 p.m., data collection
ceased, the equipment was removed and the trial was terminated. During this time interval, no error
was detected in the data validation of the 1,777,874 data recorded at a rate of one second.

Figure 11a,b show the data corresponding to these 3 weeks of trials. In Figure 11a, the data
obtained by the installed equipment and in Figure 11b, those from the SAIH. Given that the data from
the SAIH has a cadence of 15 min, the data from the development equipment have been filtered in
Figure 11a so that its cadence is the same, synchronizing them approximately with those of the SAIH
(xx:00 h, xx:15 h, xx:30 h and xx:45 h).

It is noteworthy that the remote station SAP20 (SAINCO/Telvent equipment) sends the data with
a resolution of 12 bits and a cadence of approximately one minute. The SCADA of the basin processing
center (CPC) adds the approximate time to the data, so Figure 11a,b are not exactly the same.
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3.5. Alternative Pre-Validation System with IoT: Quantification of the Maximum Resolution of the Dynamic
NARNN Based on its Configuration Parameters

Multiple dynamic NARNN performance simulations have been carried out with different
parameters: cadence between data (3600 s,..., 60 s), the feedback delay (1, 6, 11, 16, 21 and 24), and
finally the ratio between the data used for training and the total of those acquired (0.25, . . . , 0.95).
The difference up to 1 (0.75, . . . , 0.05) is the percentage that would be used for validation. The results
appear in Figures 12 and 13. Complementary information can be found in Appendix 8 [56].Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 
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Figure 13. Resolution of the dynamic NARNN as a function of the selected cadence and the lag
(or delay) used in the NARNN feedback.

As can be seen in Figure 12, the best results are obtained for short cadences (5 min), and percentages
of data destined for training of 95%. In these circumstances, the resolution of the dynamic NARNN is
8 cm. In the opposite case with hourly cadences and 25% of data intended for training, the resolution
of the dynamic NARNN is reduced to 26 cm.

In Figure 13, the results for different cadences and feedbacks of the NARNN inputs are shown.
The best results (9 cm) are obtained for 5 min cadences and high delays (26). The worst results again
correspond to hourly cadences and in this case with unit delay (27 cm). In the most optimal case,
(cadence 300 s, delay 26 and percentage 95%), a resolution of 7 cm is reached. Simulations representing
a large computational effort have been carried out for cadences of 60 s. Table 8 shows some of the
results obtained.

Table 8. Simulations for 60 s cadences.

Cadence (s) n_Neurons Delay Percentage (%) Resolution (cm)

60 1 1 25 9
60 1 1 35 9
60 1 11 25 9
60 1 21 95 7.5
60 1 26 25 8
60 1 30 95 5.5

As can be seen, the greater the delay and the greater the percentage of data used for NARNN
training, the better the resolution values obtained. Thus, for example, for a delay 30 and percentage of
data for validation 95%, a resolution of 5.5 cm is reached.

3.6. Alternative Pre-Validation System with IoT. Computational Cost of Real-Time Pre-Validations

The duration of the pre-validation process in real time for the different configurations of the
NARNN has been evaluated, considering, as already mentioned, that the operating system of a
computer is not real time (RTOS), therefore it has been established a margin of safety in such a way that:

tcadence ≥ 2·tprocessing (11)

Table 9 shows the results obtained with this restriction.
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Table 9. Duration of the pre-validation processes with 1 neuron and delay 1.

Case Cadence (s) Percentage (%) Time Cost (s)

1 50 0.25 23.1
2 55 0.25 24.5
3 55 0.35 26.1
4 60 0.25 20.0
5 60 0.35 28.3
6 60 0.45 27.5

A laptop with an Intel ® Core™ i7-2670CQ @ 2.20 GHz processor, with 8GB of RAM and 64-bit
and Windows 10 was used. As described above (Table 9), case (1) to (2) or (4), and case (3) to (5) will be
preferable. Therefore, an attempt will be made to select as optimal (from a calculation effort point of
view) between cases (1), (3) and (6). The one that provides a lower value (resolution) is preferable.
Table 10 shows the results obtained in the simulation.

Table 10. Resolution in optimal cases with one neuron and delay 1.

Case Cadence (s) Percentage (%) Time Cost (s) Resolution (cm)

1 50 0.25 23.1 8.53
3 55 0.35 26.1 6.14
6 60 0.45 27.5 8.32

If it does not interest that the cadence is a whole fraction of the normal times of the SAIH
(15 min and one hour), the case (3) that offers the best resolution is preferable. Otherwise, case (6)
would be preferred, since being an interval of whole minutes, it is always an integral fraction of any
normalized interval.

4. Conclusions

In this work, as first contribution, a new assessment of different techniques for restoring missing
river stage data is proposed. Due to the increase of extreme events occurrence and, in order to
improve the management of water resources, complete river-stage time series are needed. This process
has gained great importance for scientific or technical applications, and especially -in the current
climate change context of hydrologic models running in Decision Support Systems. In addition,
the development of specific methods allowing one to complete the gaps in hydrologic datasets
appropriately will improve their reliability and increase the quality of the results from different climate
or hydrologic works that generally use these data as inputs.

To restore the full river stage data series three gap-filling methods have been studied, showing
that it is sufficient to use cubic splines for scattered gaps and monolayer perceptrons with a small
number of neurons for multiple gaps.

The use of ANNs is not recommendable for scattered gaps due to its tendency to generalize and
its high computing cost. The use of RBFs, more complex than splines, does not appreciably improve
the latter’s efficiency. Therefore, RBF is not advisable for its use in gap-filling river stage data.

The best methods according to the assessment carried out in this work are: splines and
mono-layer perceptrons. Regarding their ability to run in low capacity processors with low electrical
consumption, both gap-filling methods can be realized on low-cost architecture devices (e.g., Arduino
and Raspberry Pi), allowing easy positioning at both single and multiple locations, once the software
has been optimized.

In this case and without any optimization of the software, it has been verified that this kind of
architecture based on Arduino, especially UNO, is not suitable for perceptron. Regarding to Raspberry
Pi3, its use could be limited in this kind of test with large sample size or large gaps in the data series.
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The methods proposed here can be applied to the handling of other hydro-meteorological variables,
such as temperature, relative humidity or precipitation. The optimal method, in each case, would
depend on the nature and quality of the data set, sensor characteristics as well as the collecting data
process used. Future works will be focused on the application of these techniques to various control
points simultaneously along the river axis in order to study individual cases like the existence of flood
control reservoirs.

As a second contribution, an IoT equipment has been developed, which has been installed in a
SAIH control point, to evaluate the possibility of incorporating a river level data pre-validation system,
based on a non-linear neural network auto- Regressive (NARNN), with a dynamic training seed, tests
have shown that it works well.

The behavior of this NARNN, in terms of its ability to discern in real time between valid and
erroneous data, improves with a lower cadence between data, greater feedback and a greater number
of training data.

The duration of the process in each configuration allows proposing two alternatives depending
on the compatibility sought with the standardized data obtained by the SAIH.

These results allow us to affirm that it is possible to develop a processing equipment, with a
set of management programs, that is capable of independently validating, (i) for cases in which the
sensor has stopped working for a while, using the methods of data filling shown in this work and (ii)
pre-validating in real time using a dynamic seed NARNN.
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