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Abstract: Accurate assessment of building damage is very important for disaster response and rescue.
Traditional damage detection techniques using 2D features at a single observing angle cannot
objectively and accurately reflect the structural damage conditions. With the development
of unmanned aerial vehicle photogrammetric techniques and 3D point processing, automatic
and accurate damage detection for building roof and facade has become a research hotspot in
recent work. In this paper, we propose a building damage detection framework based on the
boundary refined supervoxel segmentation and random forest-latent Dirichlet allocation classification.
First, the traditional supervoxel segmentation method is improved to segment the point clouds into
good boundary refined supervoxels. Then, non-building points such as ground and vegetation are
removed from the generated supervoxels. Next, latent Dirichlet allocation (LDA) model is used to
construct the high-level feature representation for each building supervoxel based on the selected
2D image and 3D point features. Finally, LDA model and random forest algorithm are employed to
identify the damaged building regions. This method is applied to oblique photogrammetric point
clouds collected from the Beichuan Country Earthquake Site. The research achieves the 3D damage
assessment for building facade and roof. The result demonstrates that the proposed framework is
capable of achieving around 94% accuracy for building point extraction and around 90% accuracy
for damage identification. Moreover, both of the precision and recall for building damage detection
reached around 89%. Concluded from comparison analysis, the proposed method improved the
damage detection accuracy and the highest improvement ratio is over 8%.

Keywords: earthquake; building damage; photogrammetric point cloud; supervoxel segmentation;
latent Dirichlet allocation model; random forest

1. Introduction

It is crucial to conduct the accurate assessment of structural damage to buildings after
disaster events. Final assessment results are beneficial to immediate relief efforts and subsequent
post-disaster reconstruction [1,2]. Traditional ground-based investigations are time-consuming and
dangerous. They also require a large amount of labor and material resources. That is because with
the development of remote sensing (RS) technology, building damage information can be obtained
efficiently. RS offers an efficient way of obtaining building damage information [3,4].

Recently, very high resolution (VHR) optical images, synthetic aperture radar (SAR) data, and light
detection and ranging (LiDAR) data provide more detailed damage characteristics in the detection
of damaged buildings [5-7]. In practical applications, optical data are preferred because they are
relatively easy to interpret. With the continuous improvement of RS image resolution, disaster
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damage assessment can be conducted through various platforms, such as satellites, manned aircraft,
and unmanned aerial vehicles (UAVs) [8-10]. In addition, with the development of RS platforms,
recent research focused on the application of airborne techniques in emergency response [9,11].
Spaceborne RS technology is typically used to discover building damage within a large area. It is an
effective method that assures satellite image availability. In contrast, data acquisition methods based
on airborne UAVs benefit from flexibility, low cost, and real-time monitoring [12]. Unlike traditional RS
observation methods, which only acquire single view image features and plane geometry information
of ground objects, UAVs can observe object features from multiple angles. With the development of
oblique photography techniques, building facade information can be obtained directly from the UAV
platform [13,14]. “Intact buildings” are identified from orthophotos (for example, Figure 1a) is actually
inclined and partially collapsed as appear when it is portrayed by UAV images (for example, Figure 1b).
Thus, the detection accuracy of structural building damage cannot be assured when detection is merely
based on a single view. As such, the UAV oblique observation technique has the potential to improve
structural damage detection accuracy with a more detailed facade and roof information.

Figure 1. UAV image with (a) vertical and (b) oblique viewing.

Apart from new observation techniques, new damage detection methods are being rapidly
developed with the aid of artificial intelligence and computer vision [15,16]. Based on the results of
latest studies, it can be said that deep-learning algorithms are becoming popular for the detection of
building damage and have greatly improved in terms of their detection accuracy [15-17]. Deep learning
is extremely efficient as in this technology, nonlinear spatial filters can be automatically learned and a
hierarchy of increasingly complex features can be directly generated from the original data. Furthermore,
deep learning has demonstrated superior flexibility and capability compared with the traditional
classification methods [18]. Owing to the convolutional neural network (CNN) structure, the entire
CNN system alleviates the requirement to design a suitable feature extractor manually. However, deep
learning requires several training samples and a long training time owing to its deep CNN structures.
Typical damage characteristics may also vary depending on the area and the spatial image resolution,
limiting the generalization and application of a specific trained model [19]. Furthermore, considering
the complexity of building damages, 3D damage features (i.e., geometric and elevation features) are
more useful than 2D image features for damage detection [16,20]. Thus, a multi-feature building
damage detection method combining 2D and 3D features is critically needed. Nowadays, several
studies use 3D features to classify or detect typical objects, such as buildings, vegetation, cars, and traffic
signs [21,22]. Although 3D structural analysis for building can significantly improve the detection
accuracy, it has not yet been fully exploited due to the following reasons: (1) the object features are
complex and vary for most of the damaged buildings, making it difficult to select typical 3D features of
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the damaged buildings; (2) structural building damage details (e.g., cracks, local scaling) are difficult
to detect with traditional observation methods.

To address these issues, we proposed herein a building damage detection method based
on oblique photogrammetric point clouds using supervoxel segmentation and a latent Dirichelet
allocation model. Upon selecting the data source, oblique photogrammetric points were used to
extract the 3D damage features rather than the LIDAR points. This method has proved to be low cost,
with point precision similar to LIDAR technique, and rich in RGB information. For the correct selection
and representation of typical features of damaged buildings, we accounted for the complexity and
particularity of building damage. Thus, we combined the 2D and 3D features to achieve accurate
building damage detection based on supervoxels and an LDA model. We provided a fully automatic
and general framework for detecting building damage by effectively overcoming the influence of other
ground objects.

The innovative contributions of our proposed approach are as follows: (1) Different from the
traditional point-based classification method with low accuracy, we developed one supervoxel-based
damage detection method. Considering the generated supervoxels using the classic Voxel Cloud
Connectivity Segmentation (VCCS) algorithm suffer from “zig-zag” effect, we developed a refined
boundary supervoxelization algorithm. The proposed method consists of detecting and refining the
boundary points, which significantly enhances the precision of damage locations. (2) Considering the
detection accuracy of structural building damage cannot be assured when detection is merely based on
a single view, we combined 2D and 3D features together using the LDA model in this study. The LDA
model generalizes these point-based features and builds the representation of high-level features.
This new approach provides a systematic view on the efficient and autonomous processing of rooftop
and facade features into useful structural damage information. (3) In view of the difficulty in replicating
the approach, we provided a general and accurate realization framework combining building point
extraction with building damage detection. Such a methodology improves damage-detection accuracy
and can be replicated in fine building damage assessment.

2. Study Area and Data Sources

A violent Ms 8.0 Wenchuan earthquake occurred on 12 May 2008. It killed nearly 70,000 people,
injured more than 370,000, left more than 17,000 listed as missing, and destroyed most of the buildings.
We selected the old town of Beichuan in Sichuan province, China, as our study area because it was
completely preserved as the site of the Wenchuan earthquake. Although the town was largely destroyed
due to the strong earthquake, different types of building damage can still be found in this site even
after 12 years. Even though the initial damage features are no longer significant, the building damage
research at the site is of high value due to the abundant and variable building damage types and
damage samples. An overview of the study area, including its spatial location on Google maps,
is presented in Figure 2.

To evaluate the effectiveness of our proposed method, we mapped the Beichuan earthquake
ruins on the ground during 12-16 August 2019. As a UAV platform, we used DJI-Phantom 4 Pro,
which was equipped with a digital camera (8.8-24 mm £/2.8-11 lens, 5456 X 3632 pixel image size) and
APS CMOS sensor (25.4 x 25.4 mm). The camera rotated freely, thereby allowing multiple views and
taking images with a count of 20 million pixels. The DJI software package, Ground Station, was used
for photogrammetric flight mission planning. The flights were performed with a planned side overlap
of 80%, and oblique photos were obtained with a dip angle of 55°. To acquire additional damage
details with a flying height limitation, we set the flying height to approximately 100 m to achieve a
spatial resolution of 1 cm. Considering the large flight area of nearly 15 km? and the battery limitations,
the entire study area was divided into five parts. We took overlapped photos from the adjacent regions.
More than 1400 digital images (Figure 3b) were collected. These images were imported into the Pix4d
software to generate dense point clouds (Figure 3c). To avoid the occurrence of ‘empty holes’ in the
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final point clouds, formed due to the platform’s instability during flight, we organized multi-group
images for each subset area.
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Figure 3. UAV data acquisition and some data products.

3. Methodology

Our methodology included the following steps: extraction of building points, supervoxel
construction, and supervised extraction of damaged regions (Figure 4).

3.1. Extraction of Building Points

The premise of identifying building damage after a disaster is to distinguish building regions from
various land-cover types. We extracted the building points after masking out the ground vegetation
and conducting the statistical outliner removal (Step 1, Figure 4). In this study, ground vegetation and
building points were classified at supervoxel level from the post-event UAV-based photogrammetric
point clouds by combining point-level extraction and supervoxel-based optimization. The extraction
of a specific class was first conducted at the point level. After three land-cover types were extracted,
supervoxel-based majority rules were used to produce classification results at the supervoxel level.
The supervoxel was identified as a specific class if most points within the object (more than 60%)
belonged to that specific class.
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Figure 4. Framework of building damage detection using photogrammetric point clouds.
3.1.1. Progressive Morphological Filter

The progressive morphological filter (PMF) algorithm was used to remove the non-ground points
from the point cloud [23]. Using an open operator with increasing window size, the filter can remove
non-ground points grid by grid. In this method, the elevation difference threshold Dy is calculated
according to the change of adjacent window size and terrain slope, as shown in Equation (1).

D hr l f wk S 3
DT,k: s(wk—wk_l)c—i—Dh, lfwk <3 (1)
D hmaxs if D Tk > Dhmax
where wy is the window size of kth filter; Dy, is the initial elevation difference threshold; s is the slope; c

is the cell size; and Dy, is the maximum elevation difference threshold. Thus, different windows
correspond to different thresholds. By comparing the elevation difference before and after the point
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cloud operation, the points whose height difference change is greater than the threshold value are
determined as non-ground points and filtered out. Iterations are continued until the size of the filtering
window was greater than the previously defined maximum threshold. In conclusion, the adopted
approach takes full into account different terrain conditions using slope factor, and can be used in both
the urban and mountain areas [24].

By setting Dy, very low, PMF contributed to the detection of regions with debris, which could
be misclassified as ground points due to a similar elevation. After several tests, the initial elevation
difference threshold directly affected the extraction of debris. Points with a height above the estimated
ground surface of more than Dj, were classified as non-ground points. Based on the statistical results
of the point cloud error (0.22 m) and vertical accuracy (0.14 m), optimal threshold Dj, was determined
by referring to the lower value (0.14 m). In this study, the PMF algorithm was run together with the
Point Cloud Library.

3.1.2. Point Vegetation Index

Vegetation was extracted based on the RGB features using the calculated point vegetation
index (PVI), as shown in equation (2), where R, G, and B represent the red, green, and blue
channel, respectively. The specific constants were determined following [25]. Unlike the traditional
normalization difference vegetation index (NDVI), which requires near-infrared information, PVI only
requires the RGB information. A point with a PVI value higher than selected threshold Py, (0.03) was
identified as vegetation; otherwise, it was identified as non-vegetation. The optimal segmentation
threshold was determined using the Ostu method. Ostu was based on the adaptive threshold selection
and maximization of interclass variance. By statistical analysis of histogram features of the whole
image, the optimal global threshold was determined as

PVI = (2G - R - B)/(2G + R + B) )

3.1.3. Statistical Outlier Removal

After masking out the ground and vegetation points, the isolated points were likely outliers.
The statistical outlier removal (SOR) algorithm was used to remove outlier points that were further away
from their neighbors than the average for that point cloud, including vehicles, people, and undetected
vegetation points [26,27]. After SOR processing, the remaining points were regarded as the final
building point clouds would be used for the follow-up study. Based on the mean Euclidean distance
between each point and its closest neighbors, statistics of the mean distances were applied to characterize
the distribution across all points in the cloud. Specifically, we calculated the mean and standard
deviations. We removed the extracted statistical outliers based on those univariate values using
Equation (3)
Px = {peP|d < (g +y-01)}, ®)

where P* is the entire point cloud after the statistical outlier removal; iy and o represent the mean
and standard deviation of the Euclidean distance between each point and its k-closest neighbors,
respectively; and v is the scalar multiplier that controls the neighboring distance for the point removal.
After repetitive testing experiments, v is set to 0.4 in this study.

3.2. Boundary Refined Supervoxel Segmentation

Similar to superpixel segmentation in 2D image processing, supervoxel segmentation tends to be
used to divide the point cloud into simple yet meaningful segments. It provides a salient and distinctive
local geometric representation of 3D points and enables the operations to be performed on regions
rather than on scattered points [28]. Generally, supervoxel segmentation is achieved using the VCCS
algorithm [29]. However, the generated supervoxels of VCCS cause the “zig-zag” pattern with uneven
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edges [30]. To overcome this problem, we adopted a boundary refined supervoxel supervoxelization
method, which consisted of supervoxel generation and boundary refinement (Step 2, Figure 4).

3.2.1. Supervoxel Generation

To reduce the number of points, 3D points were first grouped to generate a voxel. Then, voxels
were clustered to form supervoxels based on the spectral and geometrical relationships of voxels
in the 3D space. The VCCS algorithm was used to produce a 3D point cloud supervoxel based on
modified k-means clustering and a local iterative clustering algorithm, which used geometric and
color attributes. In particular, seed voxels were first clustered into supervoxels based on the selected
seed resolution. Then, supervoxel attributes were initialized for every seed voxel comprising the color
and geometric properties of the voxel. From the limited search space, we calculated the distance from
the center of supervoxels to the neighboring voxels using Equation (4)

AD?  uD?
Dlz\/ b2 et @
m

3R?

where, D; is the distance between the center of supervoxels and the neighboring voxels; D, is the
normalized Euclidean color distance; D is the normalized spatial distance for clustering; R; is the
seed resolution; and Dy is the distance on the fast point feature histogram (FPFH) space computed
using the histogram intersection kernel. In addition, A, y, and ¢ represent the influence degree that
determine the color, spatial, and geometric relationships between the voxels, respectively. The color
and spatial distances would be assigned equivalent weighting, while the weight of the FPFH distance
was slightly higher. Voxels would be assigned to adjacent supervoxel centers by distance measurement
to update the centroid of the supervoxels. This process continued until the searching of adjacent points
for supervoxel construction stopped, and the supervoxels centroids were stabilized.

3.2.2. Boundary Refined Supervoxelization

Our proposed method for boundary refined supervoxel generation consist the detection of
boundary points, and the refinement of boundary points. Firstly, based on the generated VCCS
supervoxel, points within each supervoxel were defined by the distance from the point to the supervoxel
center considering the local curvature exploring the spatial proximity of adjacent supervoxels in
geodetic space [31]. If the distance was larger than a given threshold, which was empirically set to be
one-half of the seed supervoxel resolution, the point was regarded as a boundary point. The radius
size of the spherical neighborhoods for estimating the normal vector was equal to the supervoxel
size. Then, we conducted local k-means clustering based on the boundary point and the centers of
neighboring supervoxels. As Equation (5) showed, the whole clustering process was governed by a
distance measurement considering the normal vectors and spatial distance.

D3 = \wulIN; = Nyl + wg-IP; = Pyll, ©)

where, D, is the distance between the boundary point and the neighboring supervoxel centers; N;
is the normal vector of the center of one neighboring supervoxel; Nj is the normal vector of the
boundary point; and P; and Py, are their positions on the tangent plane defined by the normal vector N;.
In addition, w, and w,; denote the weight factors for the angle between normal vectors and the distance
between centroids, respectively. Empirically, they were set to 1 and the reciprocal value of the voxel
size, respectively.

As for the key parameters, the voxel size was set to 0.2 m, and the seed resolution of supervoxels
was set to 0.8 m. As shown in Figure 5, there are great differences between the supervoxels using
the VCCS algorithm and our boundary refined algorithm. A ‘zig-zag’ effect is very obvious for final
boundary between supervoxels using the traditional VCCS algorithm. In contrast, the boundary
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between supervoxels using the proposed method is obviously smoother, which can reflect the real
boundary between different objects to a certain extent.

Figure 5. Examples of VCCS supervoxels (a) and boundary refined supervoxels (b).

3.3. Supervised Extraction of Damaged Building Regions

We conducted the supervised extraction of building damage based on 2D features, 3D features,
and the LDA model (Step 3, Figure 4). First, we extracted different features of each point,
including color features, texture features, and geometric features. The features were derived from the
2D images and discrete 3D point clouds. These point-based features were then used to generate more
discriminative features of supervoxels at a high level. Finally, a supervised method was used to extract
the damaged regions.

3.3.1. Damage-Related 2D and 3D Multi-Features at Point Level
1. 2D features

Spectral and textural differences usually form the basis of 2D building damage detection [32,33].
The combination of 2D image features and 3D point features is characterized by accurate space
registration for the image and point cloud. Based on the strict geometric model for oblique photos
and photogrammetric point clouds, the collinear equation is used to register them [34]. Point clouds
are commonly used as a reference to correct the intrinsic and extrinsic parameters of those photos.
To accelerate the proceeding speed, we first constructed an image mosaic for the UAV images obtained
in the same flight route. Then, we addressed the following steps: (1) registration of mosaic images and
point clouds; (2) calculation of 2D features from mosaic images; (3) selection of minimum or maximum
feature value for each point with the same spatial location from different images. Considering that
the same point may be visible from multiple oblique images of different flight routes, we used the
maximum value from all of the selected mosaic images at the specific pixel as the optimal value to
represent the unique damage feature.

(a) Hue and saturation: In contrast to the original RGB values, the hue-saturation-value (HSV)
color space is less sensitive to illumination changes. The HSV color space separates the luminance
and brightness components from the hue, which indicates it is more advantageous for extracting
color features. In addition, due to the enhancement of diffuse reflection for damaged building regions,
they are generally represented by dark gray colors, dissimilar to the colors of intact building regions.

(b) Gray level co-occurrence matrix (GLCM)-based texture features: The image texture of intact
buildings is uniform, whereas the texture structure of damaged buildings appears broken, disordered,
and inconsistent. GLCM is a statistical analysis method for describing regional texture and was used
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herein to extract the texture features. Similar to Wei and Yang [35], we applied only two effective
features in this study: angular second moment (ASM) and entropy (ENT). We used ASM to describe
the uniformity of gray-scale distribution and ENT to describe the amount of information.

2. 3D features

(a) Eigenvalue-based feature: Eigenvalues represent the 3D ellipsoid form along its principal axes.
The axes provide additional features and help discriminate between the planes, edges, corners, lines,
and volumes. For each point, its neighbors within a series of radii are searched, and their covariance
features are derived from the local covariance matrix. Considering the neighborhood size directly
affects the value of these geometric features, Shannon entropy was used to determine the suitable
size [36]. The Shannon entropy was maximized across the increasing K-nearest neighbor with an
interval of 10 points and ranged from 50 to 300. Then, we established the optimal neighborhood size
(120 points) to compute the covariance eigenvalues and construct 3D geometric features. Linearity (Ly),
planarity (P, ), scattering (S;), and omnivariance (O ) were applied according to their effectiveness in
damage detection, as determined from the latest research [16,37], where A1, Ay, and A3 represent the
covariance matrix’s three eigenvalues (A1, A2, and A3, A1 > A2 > A3 > 0).

Ly =1 = A2)/Mq, (6)
Pr =2 = A3)/M @)
Sx = A3/ 8)

Oxn = /(M *A2%A3) )

(b) FPFH feature: FPFH attempts to find surface variations by exploring the relationships between
point’s k-neighbors and their estimated surface normal. Through representations of the geometrical
properties around a specific point in a high-dimensional space, FPFH provides an informative signature
for the feature representation. An FPFH descriptor can depict 3D point clouds effectively, as has been
previously proven by other researchers [21,22]. The outcome of FPFH at a point is a multi-dimensional
histogram, which describes and generalizes the local curvature at this point. For different types
of geometric surfaces, FPFH exhibits different distribution characteristics. In this study, the FPFH
descriptor was selected as a component feature for damage detection.

(c) Other features: Apart from the above-mentioned common spectral and geometric features,
other features can be used in damage detection. The normal vector for intact buildings, including the
roof and facade components, is fixed. However, for damaged buildings (i.e., collapsed and inclined
buildings), the normal vector varies. Herein, we used the Z component of the normal vector (N;)
to identify the damaged regions. Some damaged roof or facade were represented by ‘empty holes’.
Although we could not directly build point features for such regions, we utilized the surrounding points
clustered by the VCCS algorithm to represent relative damage. We also found by visual comparison
that the number of points in a segment surrounding these ‘empty holes” was relatively low. Specifically,
in contrast to the intact building region, the point distribution within each supervoxel was more
discrete, and the number of points within each supervoxel was small. Thus, the number of points in a
supervoxel was defined as the area feature (N;,) and reflected the segment area. For heavily collapsed
buildings, elevation difference was also a significant feature. Thus, we used the normalized elevation
(H;) to identify the collapsed regions. This feature demonstrates the difference in elevation between
the selected point and the lowest point of the segment.

3.3.2. Supervoxel-Based Feature Representation Using the LDA Model

Generally, point-based low-level visual features cannot provide the effective descriptive ability
for object detection. With the development of object-based techniques, multiscale feature construction
based on supervoxels has become an effective strategy to extract higher-level semantic features [29].
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In this study, the features listed in Section 3.2 were used to form the high-dimensional point descriptor F.
We also opted for a method different from the traditional one, where the overall feature for each
supervoxel is obtained. We utilized a one feature generalizing method based on the LDA model
to generalize the supervoxel features and build an optimal feature representation. Specifically, we
extracted the vectors of the same length from various supervoxels. Each vector generalized F, of
the points and contained the relation of points in each supervoxel. Moreover, the features should
have inherited the advantage of F,. In contrast to the commonly used bag-of-visual-words (BOVW)
approach, which only considers supervoxel as a set of disordered ‘visual words’ and ignores the
semantic relationship between the points, the LDA model helped improve the discriminate power of
the feature descriptors to a certain extent and reduce its sensitivity to the varying point density.

Although LDA is commonly used to classify documents and words, the advantage in multiscale
feature description allows its application in feature representation of point clouds. In this study,
each point-based feature F, was regarded as a word, and each supervoxel was taken as a document.
LDA extracted a certain number of latent topics to represent the main characteristics of a point
cluster and describe the documents. Each document was expressed by a vector that consisted of the
probability of each latent topic in the corresponding document. As shown in Figure 6, the feature of
each supervoxel was expected to be generated as follows:

point-based feature vector words distribution
................... 5 prmrmm ey topic feature for
each supervoxel

supervoxel of point clouds

vocabulary with K words

T T—=] LDA
I — Y model ! [ [ [ [ ] ]
. ; K-means ; i

i

i .

: 5 — —
i

i

Figure 6. Extraction of supervoxel-based topic feature using LDA model.

Step 1: Each feature vector of F, was normalized to the range [-1,1], which could effectively
eliminate the numerical difficulties during the feature calculation.

Step 2: The fuzzy k-means algorithm was employed to aggregate all point features F,, into k-clusters.
After clustering, k-center vectors denoted the word that formed the last dictionary. Then, F, of each
point was represented by a word (cluster center vector) if the distance between the center and the word
was the shortest. In addition, the cluster centers were considered the latent topics of the supervoxels.

Step 3: By calculating the number of occurrences of the same latent topic within each supervoxel,
the frequency vector of the supervoxel could be obtained. In this way, each supervoxel was represented
by a frequency vector of the latent topic in the k-dimensional space.

Step 4: Based on the frequency vectors, the LDA model was used to obtain the features of each
supervoxel, which consists of the probability of each latent topic.

3.3.3. Damage Extraction Based on RF Classifier

Upon completing the data processing, as described in Section 3.2, each supervoxel was
assigned a more discriminative feature representation at a higher level and a reference label.
The derived normalized feature vectors served as input to a binary supervoxel-based classification
in order to distinguish between the ‘damaged points’ and ‘undamaged points’. Considering the
classification accuracy and efficiency, a random forest (RF) algorithm, which was a combination of
trees-structured classifiers, was used in this study [38]. For non-expert users, RF algorithm is easy
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to use and tune. Compared with other classifiers, the RF classifier stands out in noise elimination
and fast data processing. In addition, it can also achieve an estimate of internal errors [39]. Using the
cross-validation method, the optimal RF parameters can be obtained.

4. Experiments

In our experiments, the proposed building damage extraction framework was tested using
Microsoft Visual C++ (embedding PCL1.8.1) and PyCharm 2019. All of the experiments were carried
out on a PC with 40 GB memory and Intel Xeon E5 Central Processing Unit (CPU) with 2.7 GHz. It is
worth noting that a sensitivity analysis has been conducted for those significant parameters. Based on
final sensitivity analysis results, the optimal majority percent was set to 75%, the optimal supervoxel
resolution was determined to be 1.4 m, the optimal number of latent topics and visual words were set
to 40 and 400, respectively. As for the RF algorithm, the optimal number of trees and depth were set to
50 and 30, respectively.

4.1. Experimental Dataset

In this experiment, to illustrate the applicability of the proposed method for different types of
damage conditions and present more damage details, we applied the proposed method in different
damage scenarios: (1) mostly intact buildings with slight damage, (2) mostly collapsed buildings,
and (3) buildings with moderate damage. These three scenarios are presented in Scene I in Figure 7a,
Scene II in Figure 7b, and Scene III in Figure 7c.

0 125 25 50 75 100
0 15 30 60 % 120

- — —
o —— m—terS Meters

(a) Scene 1 (b) Scene II (c) Scene 111
Figure 7. Selected different damaged scenes for test (a,b) and validation (c).

4.2. Training Sample Collection

The LDA and RF classifiers were obtained in the training process and applied to classify
the unlabeled point clouds. To train the RF classifier, we considered that a sufficient number of
representative training examples were required, and that an unbalanced distribution of training
examples per class might have a detrimental effect on the training process. Hence, after masking out
the ground, high vegetation, and other ground point clouds, we selected as many points as possible for
damaged and undamaged building regions outside of the test scenes in the study area with roughly
equal numbers, covering as many damage types as possible. Then, we combined these two types of
labeled samples from different scenes and trained the classifier. Considering the diversity of building
damage types and referring to the European Macroseismic Scale 1998 (EMS98) [40], we categorized the
damaged buildings by damage type: collapsed buildings, inclined buildings, roof damaged buildings,
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and facade damaged buildings. The selected damage samples mainly referred to the following features
in Figure 8.

Collapsed
building

Inclined
buildings

Roof
damaged

Facade
damaged

Figure 8. Representative damage samples based on different damage features.

4.3. Evaluation Metric

To evaluate our classification, we compared the obtained results with the manually labeled
reference data based on field survey data and visual interpretation results using the 3D points.
Precision (Pre.), recall (Rec.), overall accuracy (OA), and F;-score were used to evaluate the extraction
and classification performance for each scene as per Equations (10)-(13). OA provided under- or
over-estimates of damage classification in uneven positive and negative samples. Pre. was used
to evaluate the false detection ratio, while Rec. was utilized to evaluate the missed detection ratio.
F;-score denoted the comprehensive evaluation index of Pre. and Rec. Herein, TP denoted the
true positive, i.e., the number of positive samples correctly classified as positive. FP stood for the
false positive, i.e., the number of negative samples incorrectly classified as positive. FN was the false
negative, i.e., the number of positive samples incorrectly classified as negative, and TN denoted the
true negative, i.e., the number of negative samples correctly classified as negative.

Pre. = TP/(TP + FP) (10)

Rec. = TP/(TP + FN) (11)

OA = (TP + TN)/(TP + EN + FP + FN) (12)
Fq-score = (2 X Pre. X Rec.)/(Pre. + Rec.) (13)

5. Results and Discussion

5.1. Extraction of Building Points and Accuracy of Evaluation

Building points were extracted after filtering and denoising, as illustrated in Section 3.1. We also
considered that totally collapsed building objects, such as debris and rubble piles, belonged to
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the buildings. As such, we set elevation difference threshold Dj, to 0.14 to provide a complete damage
assessment of collapsed buildings, including their debris. Debris around the base of the damaged
buildings had also to be correctly classified in order to facilitate damage assessment in a later portion
of the workflow. In addition, last threshold P;, of PVI was determined to be 0.03, based on the statistics
results from the histogram by the Ostu method.

After masking out of ground and vegetation points, the remaining points were regarded as
building points (Figure 9) and were used in damage extraction. In the accuracy evaluation process,
we applied a stratified sampling scheme to select the representative supervoxels and ensure that
they were uniformly distributed. For each scene, 3000 damaged and 4000 undamaged supervoxels
were compared with the manually labeled reference data based on the field investigation and visual
interpretation results. The final accuracy evaluation results are presented in Table 1. Precision, recall,
and overall accuracy reached 0.94, demonstrating excellent performance of the proposed method
at building point extraction. Based on the step-by-step analysis of the remaining points, two main
building point extraction errors resulted from the threshold for Dy, and Pj,. Due to the long time span
after the disaster, few building regions were covered with bryophytes or low vegetation, which caused
missed extraction. A small percentage (6%) of missed extraction was due to the presence of low
vegetation and bryophyte in the vicinity of the observed buildings. Although there were a few missed
and false extractions, the test results met the basic requirements and set a foundation for further study.
In terms of time consumption, extracting building points in Scene I and II cost about the similar amount
of time, despite there being a much larger number of points in Scene II. The final result demonstrated
the validity and efficiency of the proposed method.

(a) (b) (©)

(d) (e)

Figure 9. Extraction process and results for building points. (a,d) represent remaining points after

ground filter for Scene I and II. (b,e) represent remaining points after vegetation removal. (c,f) represent

remaining points after denoising.
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Table 1. Accuracy evaluation results of building extraction.

Scene 1 Scene 2
Pre. Rec. Pre. Rec.
Building 0.9416 0.9227 0.9525 0.9232
Non-building 0.9408 0.9555 0.9406 0.9635
OA 0.9411 0.9457
TIME (min) 10.11 10.25

5.2. Identification of Damaged Building Points and Accuracy of Evaluation

In the previous sections, we extracted 16,528,693 and 18,269,569 building points from Scene I and
Scene 11, respectively. After the extraction of building points, supervoxel segmentation was conducted
for each scene, with a total of 41,925 supervoxels. Based on the supervoxels from Scene I and I,
4126 damaged building supervoxels and 4259 intact building supervoxels (approximately 20%) were
randomly selected to learn the LDA model and RF classifier. In addition, for a supervoxel-based
REF classifier, we performed a heuristic grid search to define the settings of the RF classifier. We set
the number of involved decision trees to 50 for all of the considered feature sets. The LDA-based
methods also involved two parameters: Niy;c (number of topics) and Nyictionary (number of words).
Although the number of trees was set to 50, more trees would have yielded slightly better accuracy
but also would have linearly increased the computation cost. The depth of RF was estimated with
cross-validation over a parameter from 20 to 40 with a step length of 2. Through trial-and-error
experiments, we found that an RF depth of approximately 30 (with the Gini-index as the splitting
criterion) yielded the most accurate results. The selection process of these parameters is presented in
Parameter Sensitivity Analysis, including the detailed parameter sensitivity analysis.

Based on the learned LDA and RF classifiers, the identification of damaged building regions
was conducted for Scene I and Scene II. As can be deduced from the final global classification
results (Figure 10) and a local area enlargement (Figure 11), with the red regions indicating damaged
rooftop areas, the extracted results substantially covered the true damaged building regions and
demarcated roughly the position of damaged regions (e.g., facades, roofs), despite some false and
missed extraction results. Moreover, the proposed method showed great applicability for damage
detection of different types, including debris, spalling, rubble pile, and ‘hole areas’.

For quantitative validation, extraction results were compared with the manually labeled reference
data based on the visual interpretation results, including 10,000 damaged and undamaged samples.
The accuracy indices are listed in Table 2. The results show that the damage detection technique
for building areas performed well (average OA: ~89%) for classifying both intact and damaged
building areas. As a result, the proposed method yielded satisfactory results in building damage
detection. However, we still noted a few errors in several regions, with some typical error examples
shown in Figure 11. For instance, even though some white areas in Figure 11a were located in the
damaged buildings and belonged to the damaged roof areas, they were not detected. We suggest
that the main reason for these errors is that these regions formed part of the building structure with a
large area, and the color or geometric features were similar to the intact areas. Hence, these areas were
identified as non-damaged ones. Some damaged facade areas were left undetected likely due to the
insignificant damage type, and the selected features were used to discriminate them from the intact
building areas. In terms of time consumption, detecting building damage in Scene II cost more time
compared with in Scene I. The total number of points and different damage types may be the main
reasons causing the difference in time consumption.



Sensors 2020, 20, 6499 15 of 26

Figure 10. Supervoxel segmentation and damage identification results for test scenes. (a,d) represent
supervoxel segmentation results. (b,e) represent classified damaged regions. (cf) represent
reference results.

(c) Example 3 (d) Example 4

Figure 11. Cont.
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(e) Example 5 (f) Example 6
Figure 11. Some examples for building damage extraction.

Table 2. Accuracy evaluation of proposed methods in different damage scene.

Scene 1 Scene 2
Pre. Rec. Pre. Rec.
Damage 0.8622 0.8664 0.9026 0.9284
Non-damage 0.8964 0.8931 0.9125 0.8813
OA 0.8814 0.9069
TIME (min) 7.22 8.90

5.3. Comparative Analysis

5.3.1. Comparison of Different Methods for Building Point Extraction

To demonstrate the advantages of our method in building point extraction, we compared
our method with the other three methods. The first method (Method I) was based on the RF
algorithm applied to combined radiometric and geometric features, following Sanchez et al. [41].
The classification was performed based on radiometric features (e.g., HSV information) and geometric
features (e.g., height, slope, linearity, planarity, scatter, and eigenentropy). The second method
(Method II) used a commercial software Agisoft PhotoScan to extract the building points. To illustrate
the advantages of adopting the PMF algorithm in landcover classification, the third method (Method
III) separated ground from non-ground points based on the commonly used normalized digital surface
model (nDSM), where processing was similar to the proposed method [42]. The model comparison
results are presented in Figure 12. Referring to manually labeled reference data based on the visual
interpretation results, Table 3 lists the comparison results using the different methods for building
point extraction and taking both scenes (I and II) into account.

As shown in Figure 12 and Table 3, our proposed method performed the best in comparison
with the three other methods. For Method I, the typical feature and sample selection determined
the classification results to a large extent, making the process complicated and time-consuming.
Moreover, the Method I final results included some noise, and it was unable to cover all of the collapsed
building areas. Method II was characterized by high automation and time efficiency. Its final results
covered all of the collapsed buildings to a certain extent. However, it included many extraction noises
and falsely detected building points. Although Method III was distinguished by the high compactness
of the final extracted building points, some debris around the collapsed buildings was misclassified as
ground points, referring to the visual interpretation results. From final time consumption, the proposed
method cost much more time compared to Method II and Method III. However, it was better to
improve classification accuracy than costing much more time. In summary, the method proposed
herein presents a balance of efficiency and accuracy. Even though the initial extraction of building
points takes considerable time, the final results are highly accurate.
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(d) Scene II, Method 1 (e) Scene II, Method 1T (f) Scene I, Method III

Figure 12. Performance comparison between different methods for building extraction.

Table 3. Performance comparison for building point extraction using different methods.

Method I Method II Method III Proposed Method
Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.
Building 0.8627 0.8044 0.8526 0.8391 0.9236 0.8905 0.9471 0.9229
Non-building 0.8348 0.8853 0.8713 0.8824 0.9148 0.9411 0.9407 0.9595
OA 0.8471 0.8631 0.9186 0.9434
TIME (min) 16.85 6.26 9.30 10.18

5.3.2. Comparison of Different Methods for Building Damage Extraction

In this study, we proposed a combination of the supervoxel-based LDA and RF models to identify
the damaged regions from building points. To prove the superiority of the proposed method and
demonstrate its advantages, we used the following three methods for the comparative experiments:

(a) Supervoxel-based LDA and SVM classification (Method I): Based on the impact of different
classifiers, we employed a support vector machine (SVM) to classify supervoxels using the generalized
supervoxel features.

(b) Point-based RF classification (Method II): Point-based approaches commonly have a low
recognition rate owing to the noise. To illustrate the influence of different basic units on damage
classification, we used each discrete point as a classification object. We then integrated different features
to compose the feature vectors. The discrete points were later classified using the RF classifier.

(c) Supervoxel-based BOVW and RF classification (Method III): Different feature representations of
supervoxels were also a key issue, which directly influenced the classification accuracy. By employing
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the feature constructed by BOVW, instead of our LDA-based features for the supervoxels, we classified
and labeled supervoxels using the RF classifier [34].

The final damage detection results are shown in Figure 13, whereas the accuracy evaluation results
are listed in Table 4.

B

(d) Scene II, Method 1 (e) Scene II, Method 11 (f) Scene II, Method III
Figure 13. Performance comparison between different methods for building damage extraction.

Table 4. Performance comparison for building damage detection using different methods.

Method I Method II Method III Proposed Method
Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.
Damage 0.8758 0.8801 0.8158 0.7998 0.8561 0.8441 0.8835 0.8987
Non-damage 0.8837 0.8795 0.8009 0.8168 0.8427 0.8574 0.9029 0.8882
OA 0.8798 0.8082 0.8498 0.8933
TIME (min) 8.37 22.31 8.93 8.06

We performed both qualitative and quantitative evaluations based on the classification results
for Scene I and Scene II. A comparison of the extraction results between the RF and SVM classifiers
showed similar extraction performance, which can be reflected from the final approximate extraction
accuracy (Table 4). As this paper focused on the application of the proposed method in 3D and not on
distinguishing greater differences between the supervised methods, we conducted only one simple
comparison experiment. The point-based and supervoxel-based strategies led to significantly different
classification results (Figure 9b,e and Figure 12b,e). The application of point-based methods presented
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a significant ‘salt and pepper’ phenomenon, whereas the supervoxel-based method suppressed the
‘salt and pepper” phenomenon, with remarkable improvements in OA of around 8% (particularly
for classifying small objects). When we compared the extraction results for the LDA-based feature
representation and the BOVW-based feature representation, pronounced differences existed in the
extracted damaged regions. In contrast, the completeness of the LDA-based results was higher. Assuch,
the LDA model was more sensitive to the specific classes and showed high accuracy for the extracted
damaged regions, indicating its superiority. Compared with other methods, the proposed method cost
less time, which suggested that LDA model promoted damage detection efficiency to some degree.

5.3.3. Comparison of Different Features for Building Damage Extraction

In this study, the proposed building damage detection method was based on the combined 2D
and 3D features. To illustrate the difference in the usage of 2D and 3D damage features (the same
ones as introduced in Section 3.3), we conducted a comparative experiment (Feature I and Feature II).
In addition, to present the extraction difference in the CNN features, we also conducted damage
extraction from the orthophotos of the test scenes (Feature III)—a commonly used method in the
existing research. Herein, we conducted the experiment based on the well-known AlexNet model,
which recognized for its high performance in object detection. The damage extraction results are
presented in Figure 14, and the average evaluation accuracies are listed in Table 5.

(d) Scene 11, Feature I (e) Scene II, Feature II (f) Scene II, Feature III

Figure 14. Performance comparison between different features for building damage extraction.
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As can be seen in Figure 14, Features I and II caused higher levels of false extraction
(some undamaged regions were misclassified as damaged regions) and missed extraction, which
can also be reflected from the extraction accuracy (Table 5). Using 3D features for object detection
tends to show better results than merely using 2D features. As for the commonly used CNN feature
(Feature III), the final results presented the ‘salt-and-pepper’ effect, which significantly reduced the
extraction accuracy. Furthermore, the CNN method was unable to preserve the abundant boundary
information of damaged regions. Thus, using only 2D or 3D features was not sufficient for describing
the actual damage situation, and the advantages of combining them is clearly demonstrated herein.
As for the time consumption, Features I and II were more time-efficient than the proposed combined
method due to fewer feature calculations and model training. In addition, Feature III took even more
time to operate than the combined method due to its complicated model training and prediction.
However, compared with time consumption, the improvement in the classification accuracy was more
significant and important.

Table 5. Performance comparison for building damage detection using different methods.

Feature I Feature II Feature III Combined Feature
Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.
Damage 0.7518 0.7264 0.7818 0.7861 0.8561 0.5829 0.5888 0.8987
Non-damage 0.7239 0.7494 0.7925 0.7883 0.6031 0.5972 0.9029 0.8882
OA 0.7377 0.7872 0.5931 0.8933
TIME (min) 6.12 6.85 12.37 8.06

5.4. Parameter Sensitivity Analysis

5.4.1. Majority Percent

In the post-processing stage, the ground and vegetation data were first extracted at the pixel level.
Then, the initial classification results were optimized based on the majority percent of the supervoxel.
To analyze the impact of different majority percentages on post-processing results, the test majority
percent was set from 55% to 90% at intervals of 5%. As shown in Figure 15, the variation in damage
extraction accuracy was similar to that of image classification accuracy, indicating that the majority
percent affected the final image classification and damage extraction. Nevertheless, its influence was
limited (within 3%) likely due to the fact that the generated supervoxels (based on an improved VCCS
algorithm) were individual, and most supervoxels could only contain one object class. As indicated in
Figure 14, we set the optimal majority percent to 75% for ground and vegetation.
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—A—point classification accuracy —#-damage extraction accuracy —A—point classification accuracy —#-damage extraction accuracy
(a) Scene I (b) Scene I

Figure 15. Parameter sensitivity analysis of majority percent for Scene I (a) and Scene II (b).
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5.4.2. Supervoxel Resolution

Supervoxel was used as a unitary element to classify the damaged and undamaged points. Thus,
the number and shape of the supervoxel directly affected the final classification results. In this section,
we explored the relationship between the supervoxel and classification results by changing the
initial supervoxel resolution. Fj-score and OA were used to evaluate the final performance of
damage detection. As the histogram in Figure 16 illustrates, the F;-score over various objects changed
as the supervoxel resolution increased. The line graph shows the effect of the supervoxel resolution on
the classification results. Based on the overall accuracy, different supervoxel resolutions significantly
influenced the final classification results, and the optimal value of the supervoxel resolution was
determined to be 1.4 m. Concluded from the F;-score of the damaged and undamaged regions,
the classification accuracy of the damaged regions was more influenced by the supervoxel resolution
than that of the undamaged regions. Thus, both damage classification and the parameter sensitivity
experiments were conducted based on the 1.4 m supervoxel resolution.
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Figure 16. Parameter sensitivity analysis of supervoxel resolution for Scene I (a) and Scene II (b).

5.4.3. Latent Topic Number

For the LDA model, different numbers of latent topics may directly influence the classification
performance. In this section, we used the point clouds from Scene I and Scene II to compare the damage
classification results based on different numbers of topics. The histogram and the line graph in Figure 17
show the evaluation results based on the F;-score and overall accuracy, respectively. Different topic
numbers influenced the final classification accuracy to a certain extent. However, compared with the
influence of the supervoxel resolution, their influence was weaker, as concluded from the range of
F1-score and overall accuracy. Moreover, the classification accuracy of the damaged regions was much
more sensitive to the topic number than that of the damaged regions. When the number of ‘latent
topics’ increased to 40, the highest accuracy was achieved.
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Figure 17. Parameter sensitivity analysis of latent topic number for Scene I (a) and Scene II (b).

5.4.4. Visual Word Number

In this paper, we used the defined ‘visual word’ to generalize each supervoxel. ‘Visual word’ is
the cluster center based on the feature vectors of the point cloud. The performance of the ‘visual word’
dictionary is determined directly by the number, n, of cluster centers. If the value of n is too small,
two dissimilar points may be mapped to the same ‘visual word’, whereas if n is too large, two similar
points might be mapped to different ‘visual words’. As shown in Figure 18, we analyzed the impact of
different numbers of visual words on the final result based on the point clouds of Scene I and Scene II.
Other parameters, such as the number of topics and the supervoxel resolution, were referred to as the
optimal results. As shown in Figure 18, we set the optimal number of visual words to 400.
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Figure 18. Parameter sensitivity analysis of visual word number for Scene I (a) and Scene II (b).

5.4.5. Number of Trees and Depth for RF Algorithm

For the RF algorithm, the depth of RF and the number of trees directly affect the classification
efficiency in damage detection. As shown in Figure 19 we conducted the parameter sensibility test
for both of them. When the number of trees was less than 50, the damage classification accuracy
rapidly increased. When the number of trees was over 50, the damage classification accuracy grew
slowly and increased the cost of classification exponentially. Similarly, with the increase in depth for
the RF algorithm, the classification accuracy and cost time presented a significant growth tendency.
To maintain a good balance between accuracy and efficiency, the optimal number of trees and depth
for the RF algorithm were set to 50 and 30, respectively.
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Figure 19. Performance comparison of different number of trees (a) and depth (b) for RF algorithm.

5.5. Transferability Analysis of Other Areas

To assess the transferability of the proposed framework, including building point extraction,
building damage classification, obtained parameters, and trained classifier, we used Scene III with
moderate damage for the building damage experiment. The final building results are shown in
Figure 20. The evaluation indices, including precision, recall, and overall accuracy, are shown in Table 6.
The proposed framework achieved overall accuracy of 0.92 for building point extraction and of 0.90 for
building damage identification (Table 6). The overall extraction and classification accuracy for Scene
III illustrated the good transferability of the proposed framework.

(@) (b) (©)

Figure 20. Results of the proposed framework for Scene III. (a) Extracted building points results; (b)
boundary refined supervoxels of building points; (c) extracted damaged building regions.

Table 6. Accuracy assessment of building points and damage extraction for Scene III.

Building Point Extraction Building Damage Extraction

Building Non-Building Damage Non-Damage
Pre. 0.9103 0.9216 0.8974 0.8996
Rec. 0.9121 0.9199 0.8860 0.9098

OA 0.9163 0.8986
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6. Conclusions and Future Work

This study used the high-accuracy and semi-automated method to assess building structural
damage by integrating 2D and 3D features. The entire process was conducted systematically,
including model implementation of building point extraction, sample set construction, and model
implementation of damage extraction. The proposed damage detection framework was additionally
compared with other commonly used approaches. We verified its effectiveness through the
transferability analysis in another scene.

Considering its low cost and convenience, we used the UAV-based oblique photogrammetry
technique to obtain dense building point clouds. As the final classification results in traditional
methods tend to be easily affected by land-cover types, we proposed a systematic and detailed damage
extraction framework. It included building point extraction and damage classification, which offered a
balance between efficiency and accuracy. After confirming that the extraction results using traditional
point-based methods suffered from the ‘salt-and-pepper’ effect, we proposed a supervoxel-based
damage classification method. In contrast to the VCCS algorithm, we developed a boundary refined
supervoxelization algorithm to improve the damage classification precision. Our proposed method
also fully considered the 2D and 3D damage features of the building roof and facade using the LDA
model for damage extraction. The proposed method improved the damage detection accuracy and
the highest improvement ratio is over 8%. As determined by the quantitative analysis, the extraction
accuracy of the building points reached approximately 94%, while the detection accuracy of building
damage reached almost 90%. Moreover, both the precision and recall for damage detection reached 89%,
illustrating both the reliability and accuracy of the proposed method. In terms of time consumption,
the proposed LDA model promoted the damage detection efficiency compared with the classic model.
In conclusion, the new building damage detection framework is based on the 3D analytical method
and is convenient for a post-disaster emergency, meeting the need for accuracy and efficiency under
emergency response.

In future studies, we plan on expanding the data source onto various post-disaster areas. With the
use of additional damage samples, we can not only verify the further transferability of the proposed
method but also integrate other types of building damage characteristics to help determine a specific
damage level. Considering different manually selected damage features can significantly affect the final
damage detection results, we must find those discriminative and representative high-level features to
conduct building damage classification. With the development of 3D deep learning, increasing focus
on 3D object recognition has motivated more research to conduct related studies. However, owing to
the limited number of damage samples and complex building damage features, existing 3D recognition
models are insufficient to cope with building damage detection. Thus, a more effective 3D detection
method for building damage needs to be developed.
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