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Abstract: Studies have compared the differences and similarities between backward walking
and forward walking, and demonstrated the potential of backward walking for gait rehabilitation.
However, current evidence supporting the benefits of backward walking over forward walking
remains inconclusive. Considering the proven association between gait and the cerebral cortex,
we used electroencephalograms (EEG) to differentiate the effects of backward walking and forward
walking on cortical activities, by comparing the sensorimotor rhythm (8–12 Hz, also called mu
rhythm) of EEG signals. A systematic signal procedure was used to eliminate the motion artifacts
induced by walking to safeguard EEG signal fidelity. Statistical test results of our experimental
data demonstrated that walking motions significantly suppressed mu rhythm. Moreover, backward
walking exhibited significantly larger upper mu rhythm (10–12 Hz) suppression effects than forward
walking did. This finding implies that backward walking induces more sensorimotor cortex activity
than forward walking does, and provides a basis to support the potential benefits of backward
walking over forward walking. By monitoring the upper mu rhythm throughout the rehabilitation
process, medical experts can adaptively adjust the intensity and duration of each walking training
session to improve the efficacy of a walking ability recovery program.

Keywords: movement-related cortical potentials; treadmill; backward walking; electroencephalography
rhythms; gait rehabilitation
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1. Background

This section is organized as follows: Section 1.1 reviews the similarities and differences between
forward walking (FW) and backward walking (BW), Section 1.2 discusses brain response measurement
methods, and Section 1.3 introduces the brain response measures employed in this study.

1.1. Similarities and Differences between FW and BW

As an option for physical exercise and clinical rehabilitation, preliminary results have suggested
that backward walking (BW) can offer additional advantages over forward walking (FW). However,
as indicated by several review papers, current evidence regarding the benefits of BW over FW is
inconclusive [1–4].

Fundamentally, BW is merely a temporal reversal of FW [5,6], kinematically, the joint angle
waveforms in BW gait are essentially time-reversed, relative to the corresponding waveforms in FW
gait [7]. In addition, kinetically, BW has similar muscle activation patterns as FW but with the temporal
cycling of muscle contraction reversed [8].

BW and FW also have many physiological and biomechanical differences. Specifically, compared
to FW, BW elicits greater cardiorespiratory, metabolic, and perceptual responses [9,10], has higher
mean electromyogram activity [7], reduces the angular dispersion of the spine segments around
the roll axis and the lateral oscillations [11], has stronger cortical response [12], elicits greater activation
within medial sensorimotor cortices [13], demands additional attentional resources [14], and requires
significantly lower ankle power [15].

Previous studies have also demonstrated the potential of BW for rehabilitation. For example,
a comparison of FW and BW training results suggested that static balance and muscle strength,
particularly in the quadriceps and ankle plantar flexor, improved with BW. BW was also considered a
safe training method for hamstring strain rehabilitation because it involves relatively low eccentric
loading on the hamstring muscle group [16]. Treadmill training results revealed that BW was more
effective than FW for improving anaerobic and balance performances [17,18].

In summary, compared with FW, studies have demonstrated the potential of BW for physical
training and rehabilitation. However, to the best of our knowledge, no previous study has attempted
to use EEG to compare the effects of FW and BW. Although we still don’t know which is the cause
and which is the effect, a clear association between walking and the µ-rhythm suppression effects
has been reported in the literature. By comparing the µ-rhythm suppression effects of FW and BW,
and by validating these comparative results with previous µ-rhythm suppression effect studies, it is
hoped that this work can shed some light on the interactions between the µ-rhythm suppression effects,
walking directions, and rehabilitation outcome.

1.2. Assessing Cortical Activation by Using EEG Measurements

The planning and execution of walking involves several cortical and subcortical areas [19,20].
The activation of the brain areas, due to motor planning and execution, can be measured using
several image and signal acquisition methods, including magnetoencephalography [21,22], functional
magnetic resonance imaging [23,24], functional near-infrared spectroscopy [25,26], and EEG [27,28].
Among these modalities, EEG has several distinct advantages in assessing brain responses to locomotion.
Firstly, EEG sensors are sufficiently lightweight to wear during locomotion. Secondly, considering
the time scale of natural gait, EEG has a sufficient time resolution for measuring gait-related responses.
However, measuring cognitive brain dynamics with EEG during real-world behaviors has been
historically challenging because EEG measurements are prone to artifacts arising from confounding
electrophysiological signals (e.g., signals from the eyes, muscles, and heart), electrode and cable
motions, and environmental electrical noise [29,30]. Nevertheless, when artifacts can be effectively
suppressed, the genesis of motor planning and execution can be assessed by EEG, and provide insights
into brain dynamics [31,32].
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A straightforward solution for avoiding these motion artifacts is to only compare the EEG
recordings before and after gait experiments [33]. However, this strategy eliminates the possibility
of studying brain responses during walking and running periods. Blind source separation
techniques, such as independent component analysis (ICA), have also been used to eliminate eye,
muscle, and motion artifacts from EEG data [34–38]. However, blind-source-separation-based artifact
removal was reported to be inadequate because gait-related movement artifacts remained in many,
if not most, of the independent components [39]. Consequently, a stride-order-based moving average
artifact template was used to eliminate gate-locked artifacts in a previous study [39]. However,
this moving average technique is unsuitable for this study because it also eliminates gait-related
brain activities.

Dual-layer EEG hardware, that simultaneously records electrocortical signals and isolated noise
from secondary sensors, represents a novel artifact removal approach for EEG recording during
locomotion [40–42]. A dual-EEG array enables the application of ICA to EEG data obtained from
primary scalp electrodes, and noise recordings obtained from noise electrodes, which then enables
the recovery of artifact-free ground truth EEG signals. When implementing the aforementioned
method, the number of noise electrodes should be ideally equal to the number of primary electrodes.
The addition of the noise electrodes inevitably increases the complexity and cost of the measurement
system. This problem can be partially mitigated using relatively few noise electrodes. However, such a
simplification compromises the efficacy of the approach because movement artifacts vary considerably
with electrode location [43].

Instead of using one noise electrode for each EEG channel, this study developed an adaptive
filter for each EEG channel. By using a force-platform-instrumented treadmill to measure the ground
reaction force (GRF) during gait and by using the GRF as the input, the adaptive filters can be trained to
eliminate artifacts from the EEG data. Details of the force-treadmill-based adaptive filtering approach
are provided in Section 2.

1.3. Mu Rhythm

To differentiate the oscillatory activities of the brain’s neural networks, EEG signal components
have been divided into different frequency bands corresponding to distinct oscillatory coupling patterns
of neuronal assemblies [44]. In the case of EEG signal components with a frequency of 8–12 Hz,
alpha rhythm is considered the fundamental functional operator of the brain for signal processing
and communication in sensory or cognitive processes [45,46].

Notably, several variants of alpha rhythm exist. One such variant is the sensorimotor alpha
rhythm, which is most apparent in the sensorimotor cortex area and includes the primary motor
and primary somatosensory cortices [45,47–50]. The sensorimotor alpha rhythm has also been referred
to as mu rhythm because of its arch-shaped wave morphology that resembles the Greek letter µ.
The sensorimotor cortex, which includes the primary motor cortex (Brodmann area 4) and the primary
somatic sensory cortex (Brodmann area 3). These areas, whose activities can be assessed by C3
and C4 electrodes of the international 10–20 system for EEG electrode placement, are very important
for rehabilitation. it was shown that the motor learning process and associated variability promote
plasticity in the sensorimotor networks and adjust both motor and perceptual skills [51–53] and walking
can activate the sensorimotor area [36,42,54–57].

Although many questions regarding the functionalities and influences of mu rhythm remain
unanswered, three mu-rhythm properties are widely supported by the literature and thus deserve
special attention. Firstly, mu rhythm has been reported to decrease in amplitude (desynchronize)
during cognition and motor tasks. In particular, consistent with its characterization as an idling
rhythm, mu rhythm is typically maximal over the sensorimotor cortex when the individual is at
rest and is suppressed (desynchronized) during motor-related tasks, including actual and imagery
movements [48,58].
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Secondly, mu rhythm’s lower (8–10 Hz) and upper (10–12 Hz) frequency components are
functionally different from each other with the lower and upper components being non-task-specific
and task-specific, respectively [47,59–61]. In specific, the lower frequency component reflects
a widespread, movement-type, non-specific suppression pattern, whereas the upper frequency
component shows a more focused and movement-type specific pattern [48]. These results suggest
that µ1 rhythm and µ2 rhythm should be independently studied when needed. To independently
study these frequency components, the mu-rhythm components in the 8–12-, 8–10-, and 10–12-Hz
frequency sub-bands are referred to as µ0 rhythm, µ1 rhythm, and µ2 rhythm, respectively [62,63].
In other words, µ0, µ1, and µ2 rhythms represent the sensorimotor alpha, lower alpha, and upper alpha
rhythms, respectively. Moreover, the term µ-rhythm represents the union of µ0 rhythm, µ1 rhythm,
and µ2 rhythm.

During the execution of different movement types, µ1 rhythm exhibits a widespread
movement-type, nonspecific activity pattern, and is thus relatively insensitive to the movement
pattern. As a result, µ1 rhythm is suggested to be related to general attentional processes [64].
By contrast, µ2 rhythm demonstrates a movement-type specific pattern, which suggests its responses
are movement-type dependent [59,64]. Based on these observations, it is believed that µ1 rhythm
probably reflects general task demands and attentional processes and is non-task-specific whereas µ2

rhythm is task-specific [50].
Thirdly, the degree of µ-rhythm suppression is task- and complexity-dependent. For example,

µ-rhythm suppression effects were found to differ between finger and foot movements [47]. Similarly,
the µ-rhythm desynchronization effects of an active motor task are larger than those of a passive motor
task [65]. Moreover, studies have revealed that increasing task complexity results in a high level of
suppression [45,48].

To investigate the potential of BW for gait rehabilitation, the electroencephalogram (EEG) signal
responses, induced by FW and BW, were compared by performing treadmill walking experiments.
Considering the association between sensorimotor area activation and µ-rhythm desynchronization,
we evaluated and compared the effects of FW and BW on µ-rhythm suppression. The hypotheses
of this study are that the µ-rhythm (sensorimotor alpha rhythm) suppression effects associated with
BW are different from those associated with FW. Since walking can activate the sensorimotor cortex
which is an important area for rehabilitation, understanding the differences between the µ-rhythm
suppression effects of FW and BW may enable the effective planning and implementation of BW
training programs for better rehabilitation outcomes. To achieve this goal, we verified the validity
of our FW and BW experimental results by considering whether our EEG measurement data agreed
with the three aforementioned major µ-rhythm properties. Next, we quantitatively and qualitatively
compared the effects of FW and BW on µ-rhythm suppression.

2. Methods

2.1. Participants

Nineteen healthy participants (18 men and 1 woman) aged between 22 and 31 years were
recruited. None of them had pathological conditions that would compromise their postural or
walking ability. All experimental procedures were approved by the Institutional Review Board of
the Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan. Approved
number KMUHIRB-E(I)-20170033

2.2. Experimental Setup and Protocol

This study employed a force-platform-instrumented treadmill (commonly called a force treadmill)
for experimental data collection (Figure 1). Constructed by installing force transducers underneath
a standard exercise treadmill, this force treadmill can measure the GRF generated during walking
and standing. To measure the GRF, analog voltage signals obtained by the four load cells were first
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amplified and converted to digital signals by using a 24-bit data acquisition card (NI9234, National
Instrument, Austin, TX, USA). With a sampling frequency of 1024 Hz, the digitized force signals were
transmitted to a computer by using a universal serial bus chassis (NI cDAQ-9174, National Instrument,
Austin, TX, USA) and then low-pass filtered by a 20th-order phase distortionless Butterworth filter
with a cutoff frequency of 150 Hz. The accuracy and repeatability of the setup employed in this force
treadmill were rigorously tested [66].
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Figure 1. Illustration of the experimental system.

During the experiment, in addition to the GRF signal, we also simultaneously recorded the EEG
and electrocardiogram (ECG) signals. We used the Texas Instruments ADS1299 EEG Front-End
Performance Demonstration Kit (TI-ADS1299EEG-FE) to measure EEG signals. With low power
consumption and low input referred noise, ADS1299 is a low-cost EEG measurement device.
Its measurement accuracy has been shown to be comparable to that of a laboratory-based EEG
system [67]. Eight Ag/AgCl wet electrodes were attached at F3, F4, C3, C4, P3, P4, O1, and O2,
as specified by the International 10–20 system [68]. Cz was selected as the reference electrode. The ECG
measurement device was an in-house-developed system. The sampling rate was defined as 250 Hz
for both EEG and ECG signals. To limit motion artifacts, the EEG wires were enclosed in a flexible
protection tube and fastened to the participant’s waist. A custom program, which was written using
LabVIEW (National Instruments, Texas, USA), was used for data acquisition. In preparing this program,
special attention was given to synchronize the clocks for EEG, ECG, and GRF signals.

At the front and rear ends of the treadmill, two tennis balls were suspended from the ceiling.
The height of these balls was adjusted to the height of the participant’s eyes. Participants were instructed
to adhere to the following requirements during the experiment: minimize chewing and blinking
movements, look straight ahead at the tennis ball, and maintain a constant distance between the body
and the tennis ball.

As illustrated in Figure 2, each experimental trial comprised three phases: FW, resting, and BW.
In the FW phase, the participants stood on the treadmill, faced the treadmill’s control panel for 3 min,
and then walked at a constant speed of 3 km/h for 4 min. Subsequently, they stood on the treadmill
again for the final 3 min of the FW phase. Next, before proceeding to the BW phase, participants rested
for approximately 10 min. Finally, by following the same procedure as the FW phase, participants
were asked to turn around to face the rear end tennis ball, and thus reverse their walking direction
for the BW phase of the experiment. Considering the potential danger of BW [69], by incrementally
increasing the walking speed, the participants practiced BW prior to the actual experiments so that
they could comfortably and gradually adapted to BW.
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We compared the EEG signals measured before, during, and after walking. For both the FW
and BW phases, signals from the middle 120 s (0.5 to 2.5 min) of the period before walking, the entire
240 sec of the walking period, and the initial 5–60 s of the period after walking were used in this study
(Figure 3). The measurement period before walking (120 s) was considerably longer than that after
walking (55 s) because our study focused on the effect of walking. Therefore, only the first minute of
the period after walking was considered. Furthermore, the signals of the first 5 s of the period after
walking were not used because the treadmill required a few seconds to completely stop.
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2.3. EEG Signal Processing

A fundamental challenge of this study was the sensitivity of the EEG signals to environmental noise
and motion artifacts. Therefore, we developed a systematic procedure to safeguard EEG signal fidelity.
This subsection describes the adopted EEG signal processing procedure in a step-by-step manner.

2.3.1. Preprocessing

During the preprocessing stage, the EEG signals were first subjected to bandpass filtering between
1 and 50 Hz.

2.3.2. Least-Mean-Square Filter

Figure 4 depicts the basic structure of the least-mean-square (LMS) algorithm proposed by Widrow
and Hoff [70], which has been extensively used in many signal processing applications because of its
robustness and simplicity [71]. As illustrated in Figure 4, with the noise source u(n) as the input of an
adaptive filter, the aforementioned algorithm attempts to develop a linear filter to simulate the dynamics
of the noise path. In particular, by specifying error as the difference between the contaminated signal
d(n) and the filter output y(n), the adaptive filter can be trained to minimize the sum of the mean
square error. Because the noise source u(n) is independent of the signal source s(n), the filter output
y(n) can only approximate the noise signal v(n). Consequently, the original signal can then be restored
by subtracting the filter output y(n) from the contaminated signal d(n).
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As illustrated in Figure 5, when implementing the LMS algorithm to eliminate gait-related motion
artifacts, the GRF signal acquired from the force treadmill was selected as the noise source because
the GRF is the only variable external force applied to the human body during walking. To determine
the operating frequency of the adaptive filter, we first experimentally identified the bandwidth of
the GRF signal. Analysis of the amplitude spectrum of the GRF signal acquired from the force treadmill
revealed that the bandwidth of the GRF signal was marginally larger than 6 Hz. Therefore, the GRF
and EEG signals were low-pass-filtered at 8.5 Hz and then down-sampled to 50 Hz. The down-sampling
operation was introduced to reduce the computational cost.
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As depicted in Figure 5, the output error e(n) of the adaptive filter was obtained as the difference
between the low-passed, down-sampled, and contaminated EEG signal d(n) and the adaptive filter
output yd(n). Next, by up-sampling the adaptive filter output to 250 Hz and subtracting the resulting
signal yu(n) from the measured EEG signal d(n), we obtained the restored signal r(n). The restored
signal r(n) was then visually inspected to remove apparently distorted signal segments. In specific,
a signal segment was considered distorted and thus rejected if the amplitude or waveform of any signal
channel looked different from those of the remaining signals. For example, the highlighted segment
of Figure 6 was considered as an abnormal interval since the signal waveform of the P3 channel is
different from the waveforms of the other channels. Apparently, visual inspection is a subjective
process. Therefore, to safeguard the quality of the experimental data, our guideline was to sacrifice
the false rejection error so that the false acceptance error can be minimized.
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2.3.3. ICA

ICA is a well-known, blind source, separation method and has been extensively used for EEG
signal processing. By linearly decomposing the multichannel EEG data into a sum of maximally
temporally independent statistical source signals through an unmixing matrix, ICA is used to
identify independent components of artifacts and physiological signals. By using the ICA function of
EEGLAB [72], we decomposed the nine-channel physiological signals (eight channels of EEG signals
and one channel of ECG signals) into nine independent components to eliminate the influences of ECG,
electrooculography, electromyography, and motion artifacts that had not been completely removed by
the LMS filter. Specifically and similar to previous work (e.g., [73,74]), this study removed artifacts
by visual inspection of the topography and time course of the ICA components. The EEG signals of
the C3 and C4 channels were then reconstructed using retained ICA components.

2.3.4. Statistical Outlier Removal

Figure 7 depicts the statistical outlier removal procedure employed in this study. The procedure
involved dividing each channel of the EEG signals into multiple intervals, which are hereafter referred
to as epochs. For the walking periods, an epoch was defined as the time interval required for two
consecutive strides. These epochs were overlapped with a time interval of one stride. For the periods
before and after walking, epochs were defined as 1-s sliding windows with a 0.5-s overlap.Sensors 2020, 20, x FOR PEER REVIEW 9 of 18 
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In the time domain, the proposed statistical outlier removal procedure first involved determining
the extreme value and kurtosis for each epoch. The extreme value of an epoch was defined as
the maximum value of the absolute EEG signal value of that epoch. After calculating the mean
and standard deviation of the extreme values of all epochs of an experimental trial, we could readily
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determine the Z-score for every epoch’s extreme value. As illustrated in Figure 7, an epoch was
removed if the absolute value of the Z-score of its extreme value was larger than 3. In addition to
the extreme value, an identical epoch removal rule was also implemented by comparing the kurtosis
of the EEG signal amplitudes for every epoch.

In addition to the time domain features of extreme value and kurtosis, the aforementioned epoch
removal rule was also applied to the 1–3 and 20–50 Hz spectral bands. In specific, an epoch was removed
if the absolute value of the Z-score of the 1–3 Hz frequency band power spectral density curve’s extreme
value was larger than 3. An identical epoch removal rule was also used for the 20–50 Hz frequency
band. These two frequency bands were selected because the noise induced by electrooculography
and electromyography mainly reside in these two frequency bands [75].

3. Results

Based on the data from C3 and C4 channels of the processed EEG signals, the results reported
in this section are divided into three parts. The first part (Table 1) and second part (Table 2) indicate
the effects of FW and BW on µ-rhythm suppression (desynchronization), respectively. The third part
(Table 3) compares the effects of FW and BW on µ-rhythm suppression. For the statistical analyses
performed in this study, all the data were log-transformed. All the hypotheses were one-directional,
and their significance level was set as 0.05. Paired Student’s t-tests were used to detect statistically
significant differences. Note that, based on the following two reasons, results associated with the other
EEG channels are not reported in this work. Firstly, most comparative results of these channels were
insignificant. Secondly, the focus of this work is on the mu rhythm which can only be assessed by C3
and C4 channels.

Table 1. Summary of the p-values when comparing the µ-rhythms in different FW periods.

Walking Periods Channels
Frequency Bands

µ0 µ1 µ2

During vs. Before C3 0.006 0.136 0.003
C4 * 0.016 *

After vs. Before
C3 0.040 0.020 0.123
C4 0.076 0.006 0.310

* p-value < 0.001.

Table 2. Summary of the p-values when comparing the µ-rhythms in different BW periods.

Walking Periods Channels
Frequency Bands

µ0 µ1 µ2

During vs. Before C3 * 0.032 *
C4 * 0.063 *

After vs. Before
C3 0.003 0.005 0.006
C4 * 0.001 0.003

* p-value < 0.001.

Table 3. Summary of the p-values when comparing the µ-rhythms suppression effects of FW and BW.

Walking Periods Channels
Frequency Bands

µ0 µ1 µ2

During C3 0.052 0.117 0.022
C4 0.089 0.370 0.012

After
C3 0.016 0.218 0.013
C4 0.009 0.471 0.004
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The symbols BP0, DP0, and AP0 are used to represent the mean µ0 rhythm’s relative energy for
the periods before, during, and after the walking, respectively. Note that the relative energy is defined
as the ratio of the energy of the frequency band of interest to the total energy of a signal. Similarly,
BP1, DP1, and AP1 denote the mean relative energies of µ1 rhythm for the periods before, during,
and after walking, respectively. Moreover, BP2, DP2, and AP2 denote the mean relative energies of
µ2 rhythm for the periods before, during, and after walking, respectively. Note that the first letter of
the above symbols is associated with walking periods (B for before, D for during, and A for after),
and the subscript is used to represent rhythms (0 for µ0, 1 for µ1, and 2 for µ2).

To graphically demonstrate the overall µ-rhythm suppression effects of FW, Figure 8 depicts
the average EEG signal amplitude spectra of the participants during the FW walking period (red lines)
and before the FW walking period (green lines). Similarly, Figure 9 depicts the average EEG signal
amplitude spectra of the participants after the FW walking period and before the FW walking period.
Comparing these two figures, two interesting results were identified. First, as shown in Figure 8,
walking apparently elevated the power of the EEG signals. This is also the reason why this study
compared the relative energies of theµ0, µ1, andµ2 rhythms to try to identify the differences between BW
and FW. Second, the overall µ-rhythm suppression effects were more pronounced during the walking
period than after the walking period.Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 
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To quantitatively study whether the relative energies of µ0 rhythm, µ1 rhythm, and µ2 rhythm
were significantly suppressed by FW during the walking period, the first set of alternative hypotheses
tested was DP0 < BP0, DP1 < BP1, and DP2 < BP2. To study the desynchronization effects of the period
after walking, the second set of alternative hypotheses tested was AP0 < BP0, AP1 < BP1, and AP2 < BP2.
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Table 1 summarizes the resulting p-values of the hypothesis testing results. When comparing their
relative energies, the µ1 rhythm suppression effects were more pronounced in the period after walking
than in the other periods, whereas the µ2 rhythm desynchronization effects were more prominent
during the walking period than in the other periods (Table 1).

To graphically demonstrate the overall µ-rhythm suppression effects of BW, Figure 10 depicts
the average EEG signal amplitude spectra of the participants during the BW walking period (red lines)
and before the BW walking period (green lines). Similarly, Figure 11 depicts the average EEG signal
amplitude spectra of the participants after the BW walking period and before the BW walking period.
Similar to Figures 8 and 9 of FW, it was found that BW elevated the EEG signal power and the overall
mu-rhythm was more prominent during the walking period than after the walking period.Sensors 2020, 20, x FOR PEER REVIEW 11 of 18 
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To quantitatively study the effects of BW on µ-rhythm desynchronization, the hypotheses tested
in Table 1 for FW were repeated for BW. Only the walking period µ1 rhythm of the C4 channel was
not significantly suppressed. By comparing the results in Tables 1 and 2, we found that FW and BW
shared two similar suppression patterns: (1) the µ1 rhythm suppression effects were more prominent
in the period after walking than during walking and (2) the µ2 rhythm suppression effects were
more pronounced during walking than in the period thereafter. A distinct difference between FW
and BW was that in the period after walking, the µ2 rhythm suppression effects were significant for
BW and nonsignificant for FW.

With Tables 1 and 2 demonstrating the impacts of FW and BW, respectively, the next step is to
directly compare the impacts of FW and BW. To more rigorously compare the suppression effects of
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FW and BW on µ-rhythm, µ1 rhythm, and µ2 rhythm with the baseline of the period before walking,
we performed two sets of hypothesis tests. By assuming that BW had larger µ-rhythm suppression
effects than FW, the first set of alternative hypotheses was that the BP0 −DP0, BP1 – DP1, and BP2 – DP2

values for BW were larger than those for FW. Similarly, for the period after walking, the second set
of hypotheses was that the BP0 − AP0, BP1 – AP1, and BP2 – AP2 values for BW were larger than
those of FW.

Table 3 summarizes the p-values obtained in the aforementioned hypothesis tests. All the
differences between the µ1 rhythm suppression effects of FW and BW were nonsignificant. However,
Table 2. rhythm hypothesis test results in Table 3 indicated that the µ2 rhythm suppression effects of
BW were significantly larger than those of FW. The results of Table 3 show that µ1 rhythm is relatively
insensitive to walking direction. By contrast, the µ2 rhythm suppression effect changes significantly
with the walking direction. As a result, the relative energy of the µ2 rhythm can represent a distinct
measure that can be used to differentiate the impacts of FW and BW. These results suggest that µ1

rhythm and µ2 rhythm are functionally different.

4. Discussions

Before further exploring the implications of the summarized results, we first examined whether
our results were consistent with the three major µ-rhythm properties mentioned in Section 1.3. The first
property is that cognition and motor tasks can lead to µ-rhythm desynchronization. Our results
were clearly consistent with this property because most of the results for µ-rhythm suppression tests,
summarized in Tables 1 and 2, were statistically significant.

The second µ-rhythm property is that µ1 rhythm and µ2 rhythm are functionally different.
This property is also supported by the results presented in Tables 1–3 because the three tables
list fundamentally different statistical test results for µ1 rhythm and µ2 rhythm. For example,
after comparing the suppression effects of FW and BW, the four µ1 rhythm statistical tests failed to
provide significant results, whereas the four µ2 rhythm statistical tests yielded significant results
(Table 3, final two columns). Similar disparate significance results for µ1 rhythm and µ2 rhythm
have also been observed in related studies. For instance, [47] found that only µ2 rhythm was
significantly suppressed during preparation for finger movement. Moreover, [76] found that 30 min
of passive high-frequency repetitive sensory stimulation led to significant µ2 rhythm suppression.
The data obtained from observation and anticipation experiments regarding the tennis-related actions
of experienced and inexperienced players indicated that the experienced players exhibited earlier
and greater µ2 rhythm desynchronization than the inexperienced players did [61]. Notably, in all
the aforementioned studies, µ1 rhythm has not been found to be significantly desynchronized.
Consequently, our experimental results clearly support the notion that µ-rhythm desynchronization
is not a unitary phenomenon and that µ1 rhythm and µ2 rhythm are functionally different. As a
result, compared to studying only the µ0 rhythm, more information can be gained by studying both µ1

and µ2 rhythms. At the same time, the µ0 rhythm can be used to characterize the overall response of
the sensorimotor alpha rhythm.

The third most observed µ-rhythm property is that the degree of µ-rhythm suppression is
task-dependent. For example, [47] revealed that finger movement resulted in larger µ-rhythm
suppression effects than foot movements, and [48] suggested that increasing task complexity
resulted in a high level of suppression. Relative to passive motor tasks, active motor tasks
cause larger µ-rhythm desynchronization effects [36,65]. When providing an engaging feedback
environment, the three-dimensional visualization of movements resulted in larger µ2 rhythm
suppression effects than two-dimensional visualization did [77]. Observation and anticipation
experiments regarding tennis-related actions indicated that experienced players had earlier and greater
µ2 rhythm desynchronization effects than inexperienced players did [61]. This result was explained
by the observation that the motor expertise of the experienced players helped them understand their
opponent’s intention; therefore, they were cognitively more engaged than the inexperienced players.
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Similarly, a simulated aircraft landing study revealed that µ-rhythm was significantly more suppressed
in pilots than in novices because the strength of µ-rhythm suppression increased with the sense of
presence experienced by the experienced pilots [78]. These results suggest that higher levels of human
engagement can result in a larger µ-rhythm response. These results have critical implications for
rehabilitations because favorable rehabilitation outcomes appear to be strongly associated with high
patient engagement [79,80].

By identifying the differences between FW and BW, our results successfully indicated thatµ-rhythm
suppression effects are task-dependent. Specifically, our experimental results demonstrate that BW
induced larger µ-rhythm suppression effects than FW. Consequently, our results appear to provide
support for the notion that BW can provide potential benefits over FW in gait rehabilitation. However,
a fundamental limitation of the current study is that the results still did not provide direct evidence
to establish a causal link between µ-rhythm suppression and a rehabilitation outcome. However,
several results have emerged to support the existence of such a cause-effect relationship. For example,
a 30-min µ-rhythm neurofeedback training session could directly affect motor-cortical plasticity [81]
and facilitate the early acquisition of a procedural motor task [82]. When reinforcing successful
µ-rhythm desynchronization with robotically assisted hand manipulation, patients with chronic stroke
exhibited an improvement of 3.4 points on the upper-limb Fugl–Meyer scale [83]. Another study
revealed that µ2 rhythm-based neurofeedback training had positive effects on memory functions
and led to neuronal plasticity processes in chronic stroke victims [84].

To further clarify the associations between µ-rhythm, neuroplasticity, and rehabilitation,
future studies should perform a sufficient number of longitudinal rehabilitation experiments to
completely verify this cause–effect relationship between the intensity of µ-rhythm suppression and a
rehabilitation outcome. Specifically, to more comprehensively compare the effects of FW and BW
on the brain, future studies should increase the number of EEG channels to cover additional brain
regions. Moreover, the potential suppression effects associated with other frequency bands, such as beta
and gamma rhythms, can also be investigated. Considering the benefits of neurofeedback, future studies
could develop a µ-rhythm-based BW training neurofeedback system for gait rehabilitation. If patients
can observe the pattern and intensity of their own µ-rhythm response in real time, they might become
more engaged in the rehabilitation process, which could result in improved rehabilitation outcomes.

In summary, this work demonstrates that walking leads to µ-rhythm suppression but the degree
of µ-rhythm suppression is task-dependent. In addition, by showing that µ1 rhythm and µ2 rhythm are
functionally different, a primary finding of this study is that the µ2 rhythm suppression effects of BW
are significantly larger than those of FW. Since a larger µ2 rhythm response is associated with higher
levels of human engagement and favorable rehabilitation outcomes appear to be strongly associated
with high patient engagement, our results appear to provide support for the notion that BW can
provide potential benefits over FW in gait rehabilitation. The fundamental limitation of this work is
that the results of this study are still not able to prove the causal link between µ-rhythm suppression
effects and rehabilitation outcome. Finally, it should be noted that the impacts of locomotion on EEG
signals are not limited to the 8–12 Hz frequency bands [42,55–57]. Extending this work by studying
the associations between treadmill locomotion and other frequency bands of the EEG signals is a
possible and valuable future work.

5. Conclusions

Although the differences and similarities between FW and BW have been comprehensively studied,
current evidence for the rehabilitation benefits of BW over FW remains inconclusive. To explore
the potential of BW for the treatment of people with gait impairments, we differentiated the brain
responses induced by FW and BW by comparing their µ-rhythm suppression effects. Toward this
goal, the 8–12-Hz frequency band of µ-rhythm was divided into the 8–10-Hz sub-band of µ1 rhythm
and the 10–12-Hz sub-band of µ2 rhythm.



Sensors 2020, 20, 7250 14 of 17

In agreement with previous results, our experimental results indicated that µ-rhythm can be
suppressed by FW and BW. A primary finding of this study is that the µ2 rhythm suppression effects of
BW are significantly larger than those of FW. By contrast, the µ1 rhythm suppression effects of FW
and BW were not significantly different. According to the aforementioned results, future research
could involve a longitudinal walking rehabilitation study to investigate the causal link between µ2

rhythm response and rehabilitation outcomes. Another area for future research is the development
a neurofeedback system that monitors the pattern and intensity of µ2 rhythm responses to improve
the effectiveness of walking rehabilitation.
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