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Abstract: Smart agricultural sensing has enabled great advantages in practical applications recently,
making it one of the most important and valuable systems. For outdoor plantation farms, the prediction
of climate data, such as temperature, wind speed, and humidity, enables the planning and control
of agricultural production to improve the yield and quality of crops. However, it is not easy to
accurately predict climate trends because the sensing data are complex, nonlinear, and contain
multiple components. This study proposes a hybrid deep learning predictor, in which an empirical
mode decomposition (EMD) method is used to decompose the climate data into fixed component
groups with different frequency characteristics, then a gated recurrent unit (GRU) network is trained
for each group as the sub-predictor, and finally the results from the GRU are added to obtain the
prediction result. Experiments based on climate data from an agricultural Internet of Things (IoT)
system verify the development of the proposed model. The prediction results show that the proposed
predictor can obtain more accurate predictions of temperature, wind speed, and humidity data to
meet the needs of precision agricultural production.

Keywords: sensing data prediction; EMD; convolution operation; GRU; smart sensing; IoT

1. Introduction

Smart agriculture has been capable of offering many solutions to the modernization of
agriculture [1]. With the development of Internet of Things (IoT) technology, smart agricultural
applications have developed greatly [2–4] in recent years. Thanks to IoT systems, in which a wireless
sensor network collects data from sensors deployed at various nodes and sends data over a wireless
protocol, the massive data from the IoT agriculture system can be collected, such as temperature,
wind speed, and humidity, which can provide information about environmental factors, enabling
climate predictions.

The agricultural industry is susceptible to the climate, and a comprehensive understanding of
future climate information can generate more benefits for smart agricultural development. The climate
prediction has high reference value. Small climate stations in agricultural areas monitoring and
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predicting climate changes in real-time can help farmers quickly adjust a planting plan to minimize
losses. For the prevention of, and resistance to, risks in the agricultural industry, the support of climate
prediction technology is indispensable. The estimation and prediction of climate changes are often
based on mathematical models. Some of the predicted models can be established through certain
parameter estimation methods [5–8], some use input–output representations [9–11], while others use
state–space models [12] or network models [13,14].

To apply the IoT technology to the development of modern agriculture, many researchers have
made many outstanding contributions [15–17]. One example is an agricultural Internet of Things
system that is used to help monitor plant production processes and enable early warning and rapid
diagnosis of major pests and diseases [18]. Hao et al. [19] studied the relationship between farmland
environmental factors and crop growth cycle and crop yield based on agricultural big data. Zou et
al. [20] proposed a new service-based, grid-based approach to building agricultural IoT systems.
Agricultural material information can be used in agricultural engineering and has obvious advantages.

Figure 1 shows a schematic diagram of data collection, communication, prediction, and application
layers in agricultural IoT systems. Because the planting is outdoor, battery-powered wireless sensors
are constructed to collect the data in the IoT system. The sensors are used to measure the temperature,
wind speed, and humidity, then the data is transmitted to the data server for storage by 4G/5G
communication. Furthermore, a large quantity of stored data is used to train the deep learning model
and to then give the predictions of future temperature, wind speed, and humidity. The climate
prediction information is then sent to the manager, and a suggestion for a future planting plan is
also given.

The prediction and evaluation of climate trends can assure the quality of agricultural products;
in addition, the improvement of climate prediction accuracy in agricultural production areas will
help to better protect the development of agriculture. Prediction based on climate data is a difficult
problem because data collected from sensors have complex nonlinear relationships with multiple
components and are polluted by noise. Therefore, it is impossible to make accurate long-term
predictions, but researchers are also convinced that accurate medium-term predictions are possible.

On the other hand, thanks to their high sensing frequency, large-scale data can be collected and
stored by IoT systems, making it possible to analyze sensory data, discover new information, and gain
insights [21] by using artificial intelligence methods such as deep learning.

This study focuses on medium-term prediction in an agricultural IoT system by processing the
collected sensing data with artificial intelligence methods. Medium-term prediction means predicting
20 to 30 steps ahead. As for the climate data collected by the agricultural IoT system shown in Figure 1,
we provide a prediction of the temperature, wind speed, and humidity 24 steps ahead based on
the deep learning method. To overcome the highly complex nonlinearity, the climate data are first
decomposed, and then the deep learning network is used to model component groups. The proposed
method can accurately predict changes in the next 24 hours to meet the needs of precision agricultural
production the next day.

The remainder of this study is organized as follows. Section 2 introduces the current prediction
technology, discusses its advantages and disadvantages, and explains our innovations. Section 3
describes each part of the proposed predictor. Experimental results of the proposed predictor are
shown and evaluated in Section 4, and finally Section 5 presents our conclusion.
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2. Related Work

As a key data processing technology, prediction methods have been widely used in science,
engineering, and other fields. However, since the dynamics of collected sensing data are usually
strongly nonlinear, the prediction methods still face enormous challenges.

Time series prediction methods can be roughly divided into two categories: single methods and
combined methods. We discuss these 2 kinds of prediction methods in the following subsection,
and then based on the current research results, we propose our innovative method.
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2.1. Single Methods

Traditional methods include physical analysis models and prediction models based on statistical
theory. In the physical models, the equations are established based on the physical relationships
between variables, and then the prediction models analyze and predict time series data [22]. Obviously,
a suitable mathematical model should be built to fit the historical curve, and the future trend is predicted
according to the model trend curve. Statistical models used include the autoregressive moving average
(ARMA) [23–25], autoregressive integrated moving average (ARIMA) [26], threshold autoregressive
(TAR) model [27], and the hidden Markov model (HMM) [28]. For example, Kumarmahto et al. [29]
selected the ARIMA (1,1,2) model for the prediction of agriculture commodity prices.

Based on theoretical assumptions and prior knowledge, model parameters have to be set for
these traditional methods. However, due to a lack of background knowledge, this is often difficult.
Therefore, traditional methods are less commonly used in complex agricultural applications. Unlike
traditional prediction methods, machine learning methods do not require prior physical information,
meaning prediction models can be built based on learning algorithms and historical data. Prediction is
obtained based on mathematical models, and some parameter identification methods can be used,
such as iterative algorithms [30–32], particle-based algorithms [33,34], and recursive and learning
algorithms [35–39].

Regression models were initially used for prediction tasks. Bhuriya et al. [40] applied linear
regression methods to predict stock prices. Oteros et al. [41] established a multiple regression model
by using different factors of pollen concentration to take into account extreme climate events in the
Mediterranean climate. Donnelly et al. [42] proposed a method for predicting air quality based on
multiple linear regression. These linear regression models face challenges in prediction tasks with
highly nonlinear time series data.

Artificial neural networks (ANNs) play a key role in solving nonlinear problems. Mao et al. [43]
developed a short-term wind prediction system based on a back-propagation (BP) neural network
for numerical climate prediction data, such as wind speed, wind direction, temperature, relative
humidity, and atmospheric pressure data. Theoretically, the BP neural network has been proven
to enable fit any persistent nonlinear function, however problems exist, such as falling into local
minimum values, over-fitting, and excessive training times. These problems can be corrected by
optimization. For example, in [44], the particle swarm optimization (PSO) algorithm was combined
with the BP network for short-term load prediction of power grids. The study showed that the
prediction performance of the proposed model based on the PSO algorithm was better than that of
a traditional BP neural network. Bai et al. studied the combined prediction method of a shallow
nonlinear autoregressive network (NAR) on the basis of BP [45] and proposed the prediction method
from time and space dimensions by using shallow networks [46].

Later studies compared the optimized results with the results of regression models (e.g., [47,48]),
proving the effectiveness of the optimization algorithm and promoting the combination of optimization
algorithms and neural networks as predictive tools. A recurrent neural network (RNN) [49] for
time series prediction has attracted extensive attention from researchers because it could capture
the high nonlinearity of time series data. Yadav et al. [50] used climate data to predict average
solar radiation through RNN and proposed an adaptive learning rate for RNN. As an improved
version of RNN, long short-term memory (LSTM) replaced it and became a popular time series
data prediction technology [51,52]. A gated recurrent unit (GRU) [53] inherits the advantages of
LSTM, can automatically learn features and model long-term dependent information, and also shows
an improvement in calculation speed.

This intelligent method has been applied to intelligent agriculture. Alreshidi [54] explored
artificial intelligence technologies for smart, sustainable agriculture. Pantazi et al. [55] used machine
learning to predict wheat yield based on online multilayer soil data and satellite imagery crop growth
characteristics, and showed that the supervised Kohonen networks had the best overall performance.
To utilize scalability for yield prediction, Oliveira et al. [56] developed the geographically weighted
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gradient boosting machine (GW-GBM), which was essential to agriculture stakeholders. In [57], authors
studied comparisons of deep learning with other existing popular techniques with respect to differences
in classification or regression performance. The findings indicated that deep learning provided high
accuracy, outperforming commonly used image processing techniques.

Deep learning is used to extract accurate sensor data information from IoT devices deployed in
complex environments [58]. In [59], the performance of IoT deep learning applications was optimized
by edge computing. As a review, [21] provided a thorough overview of the use of a deep learning
method to facilitate analysis and learning in the IoT domain, and pointed out that deep learning models
produce high-level abstraction and insight that is fed into the IoT systems to fine-tune and improve
services. Fast data analysis and medium- or long-term prediction of collected sensing data are still
challenging research aspects.

2.2. Combined Methods

In recent years, combined methods based on machine learning have been proven effective at
improving prediction performance, and various hybrid models have been introduced to predict
nonlinear time series data. Differing from the so-called single methods in Section 2.1, a combined
method here means that several methods are used together in a parallel or serial structure. For example,
Yahata et al. [60] combined machine learning techniques to construct sensing methods in an agricultural
cyber–physical system, in which big data of agricultural plants and environmental information (e.g.,
temperature, humidity, solar radiation, soil condition, etc.) were analyzed to mine useful rules for
appropriate cultivation. Wu et al. [61] proposed a mixed model, which combined the ARIMA model
and regression method based on time and space factors, and produced warnings for daily price changes
using neural networks.

A seasonal trend decomposition procedure based on loess, the sequential two-level method,
was used to model pollen time series in the air, and this was then used to predict the daily pollen
concentration for the next period [62]. The authors explained that analyzing each component of the data
separately can identify the source of change in data more accurately than the original undecomposed
series. Xiong et al. [63] proposed a novel hybrid method combining STL and extreme learning machines
(ELMs) to predict seasonal vegetable prices, which contributed to the development of agriculture.
Liu et al. [64] implemented a hybrid method to predict wind speed, in which the wavelet transform
was used to decompose the wind speed signal into two components and the approximated signal (one
of two components) was modeled by a support vector machine. Zhi et al. [65] selected empirical mode
decomposition (EMD) as the decomposition method for the time series, and components with different
features in the original hydrological time series were decomposed. Yaslan et al. [66] predicted power
load demand using a combined EMD and support vector regression (SVR) model. The decomposition
process of EMD was regarded as a denoising procedure for the training data, and the prediction results
were compared with those of the SVR algorithm based on different feature vectors. The results showed
the superiority of the model in power load prediction.

Through EMD, the mode function (IMF) component is a local characteristic signal. The IMF is
based on different time scales of the original time series itself, representing each frequency component
in the original signal, which are arranged independently from each other in order from high to low.
The EMD decomposition process is a simplification of complex time series. For example, the first
high-frequency IMF sequence is treated as a noise term and discarded [67,68].

Qiu et al. [69] proposed a hybrid method based on EMD and deep learning, in which the load
demand sequence is decomposed into IMF. The extracted IMF is then modeled using a deep belief
network (DBN) to accurately predict the evolution of each IMF. Finally, the predictions of each
model are combined by addition to obtain the total output of the load demand. Wang et al. [70]
introduced a feedforward neural network (FNN) into an EMD-based prediction framework, proposed
a weighted recombination strategy, and performed single-step prediction experiments on four nonlinear,
nonstationary sequences. Bedi et al. [71] combined EMD with LSTM to estimate the power demand over
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a given time interval. The performance of this method was evaluated by comparing it the prediction
results of the EMD of RNN and RMD models. EMD can result in different numbers of trained and
online predicted models, but [69–71] does not explain how to solve this problem. Significantly differing
from previous studies, we will combine IMF components to achieve the unification of the training
model and prediction model in practical applications.

We continue the combination of EMD together with deep learning networks, and our innovative
contributions are highlighted as follows.

(1) The obtained IMF components are analyzed with frequency characteristics, and all the components
are divided into 3 groups using a learning network based on convolution operation. Differing
from [69–71], this method can solve the “different number problem” of IMF components.

(2) We present a general agricultural IoT system framework for predicting climate data and obtain
accurate medium-term predictions that can meet the needs of precision agricultural production.

3. Hybrid Deep Predictor

The proposed predictor has a hybrid structure, for example using EMD decomposition to reduce
the nonlinear complexity and dividing IMFs into 3 groups using Convolution Neural Networks (CNN)
networks. For each group, the deep learning network GRU is used for modeling and prediction,
and finally all the predictions of the GRU are added to obtain the prediction result.

3.1. Decomposition and Analysis for Time Series

The EMD method decomposes complex signals into a finite number of IMFs based on the frequency
characteristics, which should satisfy the following conditions: (1) the absolute value of the difference
between the number of zero crossings and extreme points is equal to 0 or 1; and (2) the mean value of
the envelope constructed by local maxima and minima must be zero at any point. EMD is an adaptive
data processing or mining method and is essentially a smoothing process for time series data.

Assume Dt is the time series to be decomposed and he is the expected decomposition result to be
obtained. The decomposition process is as follows [72]:

(1) Fit the maximum and minimum points of Dt with the cubic spline interpolation function to form
the upper and lower envelope.

(2) Calculate the mean of the upper envelope and the lower envelope, denoted as me.
(3) Subtract the mean of me by Dt to obtain a new data sequence he: he = Dt −me.
(4) Repeat steps 1-4 until one of the following stop criteria is met: (1) the preset maximum number of

iterations is reached; (2) the last separated IMF is small; (3) the maximum or minimum value of
the signal is less than 2; (4) he is a monotonic curve.

(5) Treat he as an IMF, and calculate the remainder Rt = Dt − he.
(6) Use Rt as the new Dt, and repeat steps (1)–(6) until all IMFs are obtained.

We take temperature data as an example to give the results of EMD decomposition. In Figure 2a,
all the obtained IMFs are shown over time (from IMF-0 to IMF-8), and correspondingly each sub-picture
on the right-hand side (b) is the frequency component. It can be found that each IMF has a specific
time and frequency domain, and the frequency components contained in the IMF are reduced from top
to bottom.
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Moreover, we found that the number of IMFs varies for different periods. As shown in Figure 3,
we performed EMD on the three different data intervals [0, 2400), [2400, 4800), and [4800, 7200] of the
temperature data, and the number of IMFs obtained was 9, 7, and 8, respectively.

We can note that the number of trained prediction sub-models will be different from the number
of IMF components in the training prediction interval. Therefore, it is necessary to combine IMFs into
a fixed number according to frequency characteristics.

In this study, according to the frequency characteristics of IMFs, we combined all the IMFs into 3
groups, meaning the decomposition components with similar frequency characteristics will be labeled,
grouped, and added together, then for each group, one model will be trained. Therefore, the number
of models in each prediction interval will be fixed.
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3.2. Classification and Combination for IMFs

Figure 4 shows that a one-dimensional convolution operation is calculated for each IMF in the
frequency domain to illustrate the different frequency components, with the convolution formula
as follows:

f (x) ∗ g(x) =
∫ +∞

−∞

f (τ) ∗ g(x− τ)dτ (1)

where f (x) is the convolved function and g(x) is the convolution kernel function. The result of the
one-dimensional convolution is equal to the integral of the integrand function f (τ) ∗ g(x− τ) on the
interval (−∞,+∞) and the convolution kernel g(x) is selected as a Gaussian kernel function.

The results in Figure 4 show that IMF-0 contains a wider frequency band. In contrast, IMF-1 and
IMF-2 are significantly reduced, but there are still long tails in the cutoff band. Differing from IMF-3 and
IMF-4, the downhill is significantly steeper, indicating that fewer frequency components are included.
Furthermore, for IMF-5–8, the downslope is almost vertical, and we find that the fluctuations of these
components on the time domain map (Figure 2a) are relatively flat.
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Figure 4 has shown that the convolution operation can capture the dynamic change of data, so we
use the CNN neural network to classify and group IMFs. A one-dimensional CNN is used for feature
extraction from IMF sequences. Given an input IMF sequence Xt, t = 1, . . . , n and the convolution
kernel function, the filters sequentially perform a local convolution operation on the input features of
the previous layer. The output of the convolution is as follows:

xt =
m∑

l=1

kl ×Xt−l+1. (2)

The rectified linear unit (ReLU) with fast convergence speed is selected as the activation function
as follows:

f (xt) =

{
0, xt ≤ 0
xt, xt > 0

(3)

Then using flattening and full connection processes [73], a one-dimensional CNN is used to extract
the frequency characteristics of the IMFs, using the Softmax classifier to classify the features, finally
achieving the network output (i.e., the labels for each IMF). The schematic of the one-dimensional
CNN is shown in Figure 5.
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3.3. Deep Prediction Network for Combined IMFs

Using the known input and output data, the GRU is trained by the stochastic gradient descent
algorithm and the optimal weight can be obtained. The GRU network was trained on the sum of IMF
sequences in each group. The GRU network consisted of multiple GRU cells, and here the number of
hidden layers is set as 2. Shown as Figure 6, St, t = 1, 2, . . . , n is the input of the GRU network and Pt,
t = 1, 2, . . . , n is the output.
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The GRU cell uses the update gate to control the degree to which the state information of the
previous moment is brought into the current state. The larger the value of the update gate, the more
the state information is brought in at the previous moment. The reset gate is similar to the forget gate
of LSTM, which is used to control the degree to which the state information of the previous moment is
ignored. The smaller the reset gate value, the more information is neglected.

The forward propagation formulas in each GRU cell are as follows [74]:

zt = σ(atUz + ht−1Wz + bz)

rt = σ(atUr + ht−1Wr + br)

h̃t = tanh(atUh + (ht−1 ◦ rt)Wh + bh)

ht = (1− zt) ◦ h̃t + zt ◦ ht−1

(4)

where at ∈ Rd is the input vector of each GRU cell; zt, rt, h̃t, and ht stand for the update gate, reset gate,
candidate state of the current hidden node, and the active state of the current hidden node output at
time t, respectively; U and W are weight matrices to be learned during model training; b represents bias
vectors; ◦ is an element-wise multiplication; and σ and tanh are activation functions. The GRU is trained
by the gradient descent algorithm and the parameters are continually updated until convergence.
The methods proposed in this paper can be applied to other fields, such as water environment
prediction and management control systems [75], IoT intelligent systems [76–78], and wireless sensor
networks [79–81].

3.4. Model Framework for Smart Agriculture Sensing

In conclusion, based on the discussion in Sections 3.1–3.3, the proposed deep learning predictor
is shown in Figure 7. The number of groups is fixed to 3. The model includes the two processes of
training and prediction. The first process trains the CNN and GRU based on the IMFs decomposed by
EMD. The data is decomposed into IMFs by EMD and the labels are set for each IMF, which are then
separated into 3 groups based on frequency characteristics and assigned as Groups 1-3. Then, the CNN
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is trained by IMFs and labels, and the sequences are added to each group. Finally, GRU models are
trained for each group to obtain three GRU sub-predictors.

The prediction process predicts the future trends of climate data using the trained networks,
and it is implemented by summing all the group predictions of GRU models based on IMF groups.
The details are given in Figure 7.
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4. Experiment Results and Discussion

4.1. Dataset and Experimental Setup

Our experiments are based on the collected sensing data of an agricultural IoT system in Beijing,
which collected hourly climate data, including temperature, wind speed, and humidity. The data was
obtained from 2016 to 2018 and consisted of 20,013 time series data points. This dataset will be used
to train and test the proposed model and other models in Sections 4.2 and 4.3. In the experiments,
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the ratio of training to testing sets was 7:3. We need to predict temperature, wind speed, and humidity
24 h ahead of time.

The open-source deep learning library Keras, based on TensorFlow, was used to build all the
learning models. All the experiments were performed on a PC server with an Intel CORE CPU i5-4200U
at 1.60 GHz, with 4 GB of memory.

To effectively model the deep neural network, hyper-parameters were set based on experience
from experiments. The default parameters in Keras were used for deep neural network initialization
(e.g., weight initialization). The activation function of the CNN models is ReLU. The CNN had 2
convolutional layers, with 32 convolution kernels in each layer and a logistic loss function. The kernel
size was set as 5. The input and output lengths of the CNN were 24. The identification labels were set
by one-hot encoding.

The GRU was designed with two layers and the number of neurons was set at 24. For GRU,
the Adam method is used by optimizing a predetermined objective function and Huber loss is used to
obtain the robust prediction result, because the sensing data always contain noise from the IoT system.
The subsequences were trained using GRU to establish sub-predictive models. Tanh is used as the
activation function of GRU. In the experiments, the prediction was considered 24 steps ahead, in which
we used the climate data during the previous 24 h to predict the next 24 h.

In Case 1 and Case 2, the root mean square error (RMSE) (shown in Equation (5)) was used to
measure the difference between the prediction and the collected data.

RMSE =

√∑N
i=1 (xpre(i) − xobs(i))

2

N
(5)

where N is the number of the predictive datasets; xobs represents the collected data and xpre is
predicted value.

4.2. Case 1: Prediction Performance Analysis of Different Predictors

In this experiment, 6 models are used for comparison with the proposed method, which are
RNN [49], LSTM [51], GRU [53], EMDCNN_RNN [49] and EMDCNN_LSTM [51] (which are obtained
by decomposing the data using EMD and with classification of the CNN) as the sub-predictors,
and finally the sequential two-level method (STL) method from [17]. The temperature, wind speed,
and humidity data introduced in Section 4.1 are used to show the prediction result.

In Table 1, a comparison between the proposed method and RNN [49], LSTM [51], GRU [53],
EMDCNN_RNN [49] (EMD and CNN-based RNN [49]), EMDCNN_LSTM [51] (EMD and CNN-based
LSTM [51]), and STL [17] in terms of RMSE.

Table 1. Comparison of root mean square error (RMSE) of prediction results with the different predictors.

Element RMSE

Data

recurrent
neural

network(RNN)
[40]

long short-term
memory(LSTM)

[42]

gated
recurrent

unit(GRU)
[56]

sequential
two-level
method

(STL) [17]

EMD and CNN-based
RNN(EMDCNN_RNN)

EMD and CNN-based
LSTM(EMDCNN_LSTM)

The
Proposed
Method

Temperature 3.8273 3.8442 3.2939 2.6672 2.5992 2.2688 2.1310
Wind speed 1.3472 1.3499 1.3154 1.3241 1.3249 1.1599 1.1533
Humidity 4.8143 4.8578 4.3844 3.9811 3.9215 3.5128 2.5189

Table 2 gives comparisons the means between the proposed method and RNN [49], LSTM [51],
and GRU [53]; between the proposed method and STL, EMDCNN_RNN, and EMDCNN_LSTM;
and between the proposed method and EMDCNN_RNN and EMDCNN_LSTM. Figures 8 and 9 give
the histogram of RMSEs in Tables 1 and 2.
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Table 2. Comparisons of the means of RMSE.

Element RMSE

Data

Mean of
RNN [40],

LSTM [42], and
GRU [56]

Mean of
STL [17],

EMDCNN_RNN,
EMDCNN_LSTM,

and the proposed method

STL
[17]

Mean of
EMDCNN_RNN,

EMDCNN_LSTM, and
the proposed method

Temperature 3.6551 2.4165 2.6672 2.333
Wind speed 1.3375 1.2405 1.3241 1.2127
Humidity 4.6855 3.4836 3.9811 3.3177

The results show that firstly, the decomposition is necessary as the RMSEs can be significantly
reduced. We obtained the mean RMSEs of the decomposition methods of EMD and STL as 2.4165,
1.24055, and 3.48356 for temperature, wind speed, and humidity, respectively. These values are much
less than those obtained for single models for RNN, LSTM, and GRU, which were 3.6551, 1.3375,
and 4.6855, respectively.

Moreover, EMD outperforms the STL method. The mean RMSEs of all the EMD methods were
2.333, 1.2127, and 3.3177, respectively, which were less than the results of STL. Further, we find that
GRU is the best choice as the sub-predictor in Table 1. The prediction RMSE values of the proposed
method for temperature were approximately 18.01% and 6.07% lower, respectively, than those of
EMDCNN_RNN and EMDCNN_LSTM; for wind speed, the RMSEs were about 12.95% and 0.57%
lower, respectively; and for humidity, the RMSEs were about 35.77% and 28.29% lower, respectively.
This shows that the proposed method, which used GRU as the sub-predictor, gave the best performance.
These improvements are beneficial to agricultural IoT systems. The development of the proposed
method means that the temperature prediction accuracy is increased by about 1 degree, which is
important for agricultural production.
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4.3. Case 2: Prediction Performance Analysis of Different Combinations for IMFs

In this experiment, the collected hourly climate data, including temperature, wind speed,
and humidity, in Beijing from January 2016 to January 2018 are used to show the prediction result.
We conclude that mode no. 5 (which includes 3 groups, namely Group1: {IMF 0-2}, Group2: {IMF 3-4},
and Group3: {IMF 5-8}) is the suitable mode for the proposed system.

The 10 different modes with different groups are shown in Figure 10 using different color blocks.
For example, in mode no. 1, IMF0 is discarded, and the other IMFs are added together as Group 1.
As for mode no. 2, all the IMFs are added together as Group 1. Further, mode no. 3 has two groups
(i.e., Group 1 (with IMF 0) and Group 2 (the sum of IMF 1 to IMF 8)) and we use 2 color blocks in the
third line of Figure 9. Similarly, mode no. 10 has 8 groups, namely Group 1 (with IMF 0), Group 2
(with the sum of IMF 1 and IMF 2), Group 3 (with IMF 3), Group 4 (with IMF 4), Group 5 (with IMF 5),
Group 6 (with IMF 6), Group 7 (with IMF 7), and Group 8 (with IMF 8).

Sensors 2020, 19, x FOR PEER REVIEW 14 of 20 

 

 
Figure 9. The histogram of different RMSE values. 

4.3. Case 2: Prediction Performance Analysis of Different Combinations for IMFs 

In this experiment, the collected hourly climate data, including temperature, wind speed, and 
humidity, in Beijing from January 2016 to January 2018 are used to show the prediction result. We 
conclude that mode no. 5 ( which includes 3 groups, namely Group1: {IMF 0-2}, Group2: {IMF 3-4}, 
and Group3: {IMF 5-8}) is the suitable mode for the proposed system. 

The 10 different modes with different groups are shown in Figure 10 using different color blocks. 
For example, in mode no. 1, IMF0 is discarded, and the other IMFs are added together as Group 1. 
As for mode no. 2, all the IMFs are added together as Group 1. Further, mode no. 3 has two groups 
(i.e., Group 1 (with IMF 0) and Group 2 (the sum of IMF 1 to IMF 8)) and we use 2 color blocks in the 
third line of Figure 9. Similarly, mode no. 10 has 8 groups, namely Group 1 (with IMF 0), Group 2 
(with the sum of IMF 1 and IMF 2), Group 3 (with IMF 3), Group 4 (with IMF 4), Group 5 (with IMF 
5), Group 6 (with IMF 6), Group 7 (with IMF 7), and Group 8 (with IMF 8). 

 
Figure 10. Different modes with different groups shown by different color blocks. 

Table 3. Comparison of RMSEs of prediction results with different groupings. 

0

1

2

3

4

5

temperature wind speed humidity
Mean of RNN,  LSTM, GRU
Mean of STL ,  EMDCNN_RNN, EMDCNN_LSTM, the proposed method
STL
Mean of EMDCNN_RNN, EMDCNN_LSTM, the proposed method

Figure 10. Different modes with different groups shown by different color blocks.



Sensors 2020, 20, 1334 15 of 20

For each mode, we used the different combination modes to train the CNN and obtained different
numbers of groups. Then, GRUs were trained for each group. Table 3 gives the comparison of
RMSEs of prediction results with different groupings, and Figure 11 shows the histogram of numerical
comparisons of RMSEs.

The data in Table 3 and Figure 11 can be interpreted as a large difference in performance across
the different groups. For the temperature data, the RMSE of {IMF 1-8} in mode no. 1 is 6.56% lower
than mode no. 2, which indicates that removing the first component (noise item) decomposed by EMD
is helpful for prediction. The RMSE decreases from mode no. 2 to mode no. 7, but prediction increases
in mode no. 8 and mode no. 10. We can note that the performance will be worse if the number of
groups exceeds 5.

Table 3. Comparison of RMSEs of prediction results with different groupings.

Combination Mode Number of Groups
RMSE

Temperature Wind Speed Humidity

Mode No. 1 1 group 3.2354 2.1989 4.0798

Mode No. 2 1 group 3.4626 2.4560 4.1343

Mode No. 3 2 groups 3.2558 2.3054 3.6562

Mode No. 4 2 groups 2.5474 1.5152 2.9345

Mode No. 5 3 groups 2.1310 1.1533 2.5189

Mode No. 6 4 groups 2.1156 1.1321 2.5166

Mode No. 7 5 groups 2.1093 1.1102 2.5101

Mode No. 8 6 groups 2.9550 1.8350 3.2859

Mode No. 9 7 groups 2.8293 1.7685 3.2855

Mode No. 10 8 groups 3.0985 2.1026 3.5113
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Mode no. 5, mode no. 6, and mode no. 7 have similar prediction performance, with RMSE
reaching 2.1310, 2.1556, and 2.1093, respectively. Compared with mode no. 5, the RMSE of mode no. 6
or mode no. 7 is slightly reduced, but we have to train 4 or 5 GURs, so the training parameters are
increased by one-third and two-thirds, respectively. In addition to the accuracy of the predictions,
we believe that the amount of computation of the IoT system is also important. To reduce the cost of
training, a method that requires less calculation should be selected. Therefore, to ensure prediction
performance and maintain the cost of parameters, mode no. 5 with 3 groups is a good choice for
application of temperature data in agricultural IoT systems.
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For wind speed and humidity data, we obtained similar results, so in this study 3 group modes
are used for the proposed predictor.

5. Conclusions

In recent years, predictions based on collected sensing data have become an important aspect of
IoT applications in many fields, and deep learning has been the most widely used method in many IoT
systems because it has excellent nonlinear modeling capabilities.

Through the establishment of climate monitoring stations in agricultural areas, various climate
data are collected. In actual IoT agricultural systems, IoT technology has been widely used to predict
key climate factors in real time. A three-dimensional network of agro-meteorological data has been
built, which has greatly promoted the development of agriculture.

This study proposes a hybrid deep learning predictor based on a learning EMD and GRU group
model. The proposed method decomposes data by EMD and extracts local feature components using
CNN, then uses a learning network based on convolution operation to classify IMFs based on the
frequency feature and trains the GRU as the sub-predictor. The prediction results of the sub-predictor
are finally added to obtain the final prediction result.

The proposed predictor has been used to predict temperature, wind speed, and humidity data
in an agricultural IoT system. In practical applications, the proposed predictor can obtain accurate
predictions for the following 24 hours, providing sufficient climate information for precision production.

Author Contributions: Conceptualization, X.-B.J. and N.-X.Y.; data curation, Y.-T.B. and T.-L.S.; formal
analysis, J.-L.K.; methodology, X.-B.J. and N.-X.Y.; software, N.-X.Y.; supervision, X.-Y.W., Y.-T.B., T.-L.S.,
and J.-L.K.; validation, X.-Y.W., Y.-T.B., and T.-L.S.; validation, N.-X.Y.; writing—original draft, X.-B.J. and N.-X.Y.;
writing—review and editing, X.-B.J. and N.-X.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China,
grant numbers 61673002, 61903009, and 61903008; National Key Research and Development Program of China,
grant number 2017YFC1600605, Beijing Municipal Education Commission, grant numbers KM201910011010 and
KM201810011005; Young Teacher Research Foundation Project of BTBU, grant number QNJJ2020-26; and Beijing
Excellent Talent Training Support Project for Young Top-Notch Teams (2018000026833TD01).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bu, F.; Wang, X. A smart agriculture IoT system based on deep reinforcement learning. Future Gener. Comput.
Syst. 2019, 99, 500–507. [CrossRef]

2. Hamdan, O.; Shanableh, H.; Zaki, I.; Al-Ali, A.R.; Shanableh, T. IoT-based interactive dual mode smart
home automation. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE),
Las Vegas, NV, USA, 11–13 January 2019; pp. 1–2.

3. Adriano, D.B.; Budi, W.A. Iot-based Integrated Home Security and Monitoring System. J. Phys. Conf. Ser.
2018, 1140. [CrossRef]

4. Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards fog-driven IoT
eHealth: Promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 2018, 78,
659–676. [CrossRef]

5. Zhang, X.; Ding, F.; Yang, E.F. State estimation for bilinear systems through minimizing the covariance matrix
of the state estimation errors. Int. J. Adapt. Control Signal Process. 2019, 33, 1157–1173. [CrossRef]

6. Ma, H.; Pan, J.; Ding, F.; Xu, L.; Ding, W. Partially-coupled least squares based iterative parameter estimation
for multi-variable output-error-like autoregressive moving average systems. IET Control Theory Appl. 2019,
13, 3040–3051. [CrossRef]

7. Li, M.H.; Liu, X.M.; Ding, F. The filtering-based maximum likelihood iterative estimation algorithms
for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical
identification principle. Int. J. Adapt. Control Signal Process. 2019, 33, 1189–1211. [CrossRef]

8. Liu, S.Y.; Ding, F.; Xu, L.; Hayat, T. Hierarchical principle-based iterative parameter estimation algorithm for
dual-frequency signals. Circuits Syst. Signal Process. 2019, 38, 3251–3268. [CrossRef]

http://dx.doi.org/10.1016/j.future.2019.04.041
http://dx.doi.org/10.1088/1742-6596/1140/1/012006
http://dx.doi.org/10.1016/j.future.2017.04.036
http://dx.doi.org/10.1002/acs.3027
http://dx.doi.org/10.1049/iet-cta.2019.0112
http://dx.doi.org/10.1002/acs.3029
http://dx.doi.org/10.1007/s00034-018-1015-1


Sensors 2020, 20, 1334 17 of 20

9. Liu, L.J.; Ding, F.; Xu, L.; Pan, J.; Alsaedi, A.; Hayat, T. Maximum likelihood recursive identification for the
multivariate equation-error autoregressive moving average systems using the data filtering. IEEE Access
2019, 7, 41154–41163. [CrossRef]

10. Ding, F.; Zhang, X.; Xu, L. The innovation algorithms for multivariable state-space models. Int. J. Adapt.
Control Signal Process. 2019, 33, 1601–1608. [CrossRef]

11. Wan, L.J.; Ding, F. Decomposition- and gradient-based iterative identification algorithms for multivariable
systems using the multi-innovation theory. Circuits Syst. Signal Process. 2019, 38, 2971–2991. [CrossRef]

12. Zhang, X.; Ding, F.; Xu, L.; Yang, E.F. State filtering-based least squares parameter estimation for bilinear
systems using the hierarchical identification principle. IET Control Theory Appl. 2018, 12, 1704–1713.
[CrossRef]

13. Bai, Y.; Wang, X.; Jin, X.; Zhao, Z.; Zhang, B. A neuron-based kalman filter with nonlinear autoregressive
model. Sensors 2020, 20, 299. [CrossRef] [PubMed]

14. Wang, L.; Zhang, T.; Wang, X.; Jin, X.; Xu, J.; Yu, J.; Zhang, H.; Zhao, Z. An approach of improved Multivariate
Timing-Random Deep Belief Net modelling for algal bloom prediction. Biosyst. Eng. 2019, 177, 130–138.
[CrossRef]

15. Zheng, Y.Y.; Kong, J.L.; Jin, X.B. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification
and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [CrossRef]

16. Elijah, O.; Rahman, T.A. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits
and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [CrossRef]

17. Jin, X.; Yu, X.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Deep Learning Predictor for Sustainable Precision Agriculture
Based on Internet of Things System. Sustainability 2020, 12, 1433. [CrossRef]

18. Bing, F. The research of IOT of agriculture based on three layers architecture. In Proceedings of the
International Conference on Cloud Computing and Internet of Things (CCIOT), Dalian, China, 22–23 October
2016.

19. Hao, F.; Luo, X.; Mu, C. Research on Key Technologies of Intelligent Agriculture Based on Agricultural Big
Data. In Proceedings of the International Conference on Smart City & Systems Engineering, Hunan, China,
25–26 November 2016.

20. Zou, Y.; Quan, L. A new service-oriented grid-based method for AIoT application and implementation. Mod.
Phys. Lett. B 2017, 31, 1740064. [CrossRef]

21. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming
analytics: A survey. IEEE Commun. Surv. Tut. 2018, 20, 2923–2960. [CrossRef]

22. Vezzani, A.; Barkai, E.; Burioni, R. Single Big Jump Principle in Physical Modelling. Phys. Rev. E 2019, 100,
012108. [CrossRef]

23. Ma, H.; Pan, J.; Lv, L.; Xu, G.; Ding, F.; Alsaedi, A.; Hayat, T. Recursive algorithms for multivariable
output-error-like ARMA systems. Mathematics 2019, 7, 558. [CrossRef]

24. Kocak, C. ARMA (p,q) type high order fuzzy time series forecast method based on fuzzy logic relations.
Appl. Soft Comput. 2017, 58, 92–103. [CrossRef]

25. Perez, E.G.; Ceballos, R.F. Malaria Incidence in the Philippines: Prediction using the Autoregressive Moving
Average Models. Int. J. Eng. Future Tech. 2019, 16, 1–10. [CrossRef]

26. Ruby-Figueroa, R.; Saavedra, J.; Bahamonde, N.; Cassano, A. Permeate flux prediction in the ultrafiltration
of fruit juices by ARIMA models. J. Membr. Sci. 2017, 524, 108–116. [CrossRef]

27. Aero, O.; Ogundipe, A. Fiscal Deficit and Economic Growth in Nigeria: Ascertaining a Feasible Threshold.
Soc. Sci. Elec. Publ. 2018, 8, 296–306. [CrossRef]

28. Guo, H.; Pedrycz, W.; Liu, X. Hidden Markov Models-Based Approaches to Long-term Prediction for
Granular Time Series. IEEE. Trans. Fuzzy Syst. 2018, 26, 2807–2817. [CrossRef]

29. KumarMahto, A.; Biswas, R.; Alam, M.A. Short Term Forecasting of Agriculture Commodity Price by Using
ARIMA: Based on Indian Market. In Advances in Computing and Data Sciences; Singh, M., Gupta, P., Eds.;
Singapore Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany,
2019.

30. Ding, F.; Pan, J.; Alsaedi, A.; Hayat, T. Gradient-based iterative parameter estimation algorithms for dynamical
systems from observation data. Mathematics 2019, 7, 428. [CrossRef]

31. Ding, F.; Lv, L.; Pan, J.; Wan, X.; Jin, X.B. Two-stage gradient-based iterative estimation methods for controlled
autoregressive systems using the measurement data. Int. J. Control Autom. Syst. 2020, 18. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2905576
http://dx.doi.org/10.1002/acs.3053
http://dx.doi.org/10.1007/s00034-018-1014-2
http://dx.doi.org/10.1049/iet-cta.2018.0156
http://dx.doi.org/10.3390/s20010299
http://www.ncbi.nlm.nih.gov/pubmed/31948060
http://dx.doi.org/10.1016/j.biosystemseng.2018.09.005
http://dx.doi.org/10.3390/s19051058
http://dx.doi.org/10.1109/JIOT.2018.2844296
http://dx.doi.org/10.3390/su12041433
http://dx.doi.org/10.1142/S0217984917400644
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1103/PhysRevE.100.012108
http://dx.doi.org/10.3390/math7060558
http://dx.doi.org/10.1016/j.asoc.2017.04.021
http://dx.doi.org/10.2139/ssrn.3339630
http://dx.doi.org/10.1016/j.memsci.2016.11.034
http://dx.doi.org/10.2139/ssrn.2861505
http://dx.doi.org/10.1109/TFUZZ.2018.2802924
http://dx.doi.org/10.3390/math7050428
http://dx.doi.org/10.1007/s12555-019-0140-3


Sensors 2020, 20, 1334 18 of 20

32. Xu, L.; Ding, F. Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal
Process. 2018, 37, 3046–3069. [CrossRef]

33. Ding, J.; Chen, J.; Lin, J.X.; Wan, L.J. Particle filtering based parameter estimation for systems with output-error
type model structures. J. Frankl. Inst. 2019, 356, 5521–5540. [CrossRef]

34. Ding, J.; Chen, J.Z.; Lin, J.X.; Jiang, G.P. Particle filtering-based recursive identification for controlled
auto-regressive systems with quantised output. IET Control Theory Appl. 2019, 13, 2181–2187. [CrossRef]

35. Ding, F.; Xu, L.; Meng, D.D.; Jin, X.B.; Alsaedi, A.; Hayat, T. Gradient estimation algorithms for the parameter
identification of bilinear systems using the auxiliary model. J. Comput. Appl. Math. 2020, 369, 112579.
[CrossRef]

36. Cui, T.; Ding, F.; Jin, X.B.; Alsaedi, A.; Hayat, T. Joint multi-innovation recursive extended least squares
parameter and state estimation for a class of state-space systems. Int. J. Control Autom. Syst. 2020, 18, 1–13.
[CrossRef]

37. Wang, X.; Zhou, Y.; Zhao, Z.; Wang, L.; Xu, J.; Yu, J. A novel water quality mechanism modeling and
eutrophication risk assessment method of lakes and reservoirs. Nonlinear Dyn. 2019, 96, 1037–1053.
[CrossRef]

38. Wang, Z.; Jin, X.; Wang, X.; Xu, J.; Bai, Y. Hard decision-based cooperative localization for wireless sensor
networks. Sensors 2019, 19, 4665. [CrossRef]

39. Wang, L.; Zhang, T.; Jin, X.; Xu, J.; Wang, X.; Zhang, H.; Yu, J.; Sun, Q.; Zhao, Z.; Xie, Y. An approach of
recursive timing deep belief network for algal bloom forecasting. Neural Comput. Appl. 2020, 32, 163–171.
[CrossRef]

40. Bhuriya, D.; Kaushal, G.; Sharma, A.; Singh, U. Stock market predication using a linear regression.
In Proceedings of the International conference of Electronics, Communication and Aerospace Technology
(ICECA), Coimbatore, India, 20–22 April 2017.

41. Oteros, J.; García-Mozo, H.; Hervás, C.; Galán, C. Bioweather and autoregressive indices for predicting olive
pollen intensity. Int. J. Biometeorol. 2013, 57, 307–316. [CrossRef]

42. Donnelly, A.; Misstear, B.; Broderick, B. Real time air quality forecasting using integrated parametric and
non-parametric regression techniques. Atmos. Environ. 2015, 103, 53–65. [CrossRef]

43. Mao, J.D.; Zhang, X.J.; Li, J. Wind Power Forecasting Based on the BP Neural Network. Appl. Mech. Mater.
2013, 341, 1303–1307. [CrossRef]

44. Zhaoyu, P.; Li, S.; Zhang, H.; Zhang, N. The Application of the Pso Based BP Network in Short-Term Load
Forecasting. Phys. Procedia 2012, 24, 626–632. [CrossRef]

45. Bai, Y.; Jin, X.; Wang, X. Compound Autoregressive Network for Prediction of Multivariate Time Series.
Complexity 2019, 2019, 9107167. [CrossRef]

46. Bai, Y.; Wang, X.; Sun, Q. Spatio-Temporal Prediction for the Monitoring-Blind Area of Industrial Atmosphere
Based on the Fusion Network. Int. J. Environ. Res. Public Health 2019, 16, 3788. [CrossRef]

47. Elons, A.S.; Magdi, D.A.; Elgendy, M.Y. A proposed model for predicting the drilling path based on hybrid
Pso-Bp neural network. In Proceedings of the SAI Computing Conference (SAI), London, UK, 13–15 July
2016.

48. Zheng, B.H. Material procedure quality forecast based on genetic BP neural network. Mod. Phys. Lett. B
2017, 31, 19–21. [CrossRef]

49. Wang, Y.; Wang, Y.; Lui, Y.W. Generalized Recurrent Neural Network accommodating Dynamic Causal
Modeling for functional MRI analysis. Neuroimage 2018, 178, 385–402. [CrossRef]

50. Yadav, A.P.; Kumar, A.; Behera, L. RNN based solar radiation forecasting using adaptive learning rate.
In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing, Chennai,
India, 19–21 December 2013.

51. Lin, H.; Shi, C.; Wang, B.; Chan, M.F.; Ji, W. Towards real-time respiratory motion prediction based on long
short-term memory neural networks. Phys. Med. Biol. 2019, 64, 085010. [CrossRef] [PubMed]

52. Zhang, D.; Lindholm, G.; Ratnaweera, H. Use long short-term memory to enhance Internet of Things for
combined sewer overflow monitoring. J. Hydrol. 2018, 556, 409–418. [CrossRef]

53. Rui, Z.; Wang, D.; Yan, R.; Mao, K.; Fei, S.; Wang, J. Machine Health Monitoring Using Local Feature-Based
Gated Recurrent Unit Networks. IEEE T. Ind. Electron. 2017, 65, 1539–1548.

54. Alreshidi, E.A. Smart sustainable agriculture (SSA) solution underpinned by internet of things (IoT) and
artificial intelligence (AI). Int. J. Adv. Comput. Sci. Appl. 2019, 10, 93–102. [CrossRef]

http://dx.doi.org/10.1007/s00034-017-0705-4
http://dx.doi.org/10.1016/j.jfranklin.2019.04.027
http://dx.doi.org/10.1049/iet-cta.2019.0028
http://dx.doi.org/10.1016/j.cam.2019.112575
http://dx.doi.org/10.1007/s12555-019-0053-1
http://dx.doi.org/10.1007/s11071-019-04837-6
http://dx.doi.org/10.3390/s19214665
http://dx.doi.org/10.1007/s00521-018-3790-9
http://dx.doi.org/10.1007/s00484-012-0555-5
http://dx.doi.org/10.1016/j.atmosenv.2014.12.011
http://dx.doi.org/10.4028/www.scientific.net/AMM.341-342.1303
http://dx.doi.org/10.1016/j.phpro.2012.02.092
http://dx.doi.org/10.1155/2019/9107167
http://dx.doi.org/10.3390/ijerph16203788
http://dx.doi.org/10.1142/S0217984917400802
http://dx.doi.org/10.1016/j.neuroimage.2018.05.042
http://dx.doi.org/10.1088/1361-6560/ab13fa
http://www.ncbi.nlm.nih.gov/pubmed/30917344
http://dx.doi.org/10.1016/j.jhydrol.2017.11.018
http://dx.doi.org/10.14569/IJACSA.2019.0100513


Sensors 2020, 20, 1334 19 of 20

55. Pantazia, X.E.; Moshoua, D.; Alexandridisb, T.; Whettonc, R.L.; Mouazenc, A.M. Wheat yield prediction using
machine learning and advanced sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65. [CrossRef]

56. Oliveira, I.; Cunha, R.L.F.; Silva, B.; Netto, M.A.S. A Scalable Machine Learning System for Pre-Season
Agriculture Yield Forecast. arXiv 2018, arXiv:1806.09244.

57. Andreas, K.; Francesc, X.P. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147,
70–90.

58. Zheng, Y.Y.; Kong, J.L.; Jin, X.B. Probability Fusion Decision Framework of Multiple Deep Neural Networks
for Fine-Grained Visual Classification. IEEE Access 2019, 7, 122740–122757. [CrossRef]

59. Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the Internet of Things with edge computing.
IEEE Netw. 2018, 32, 96–101. [CrossRef]

60. Yahata, S.; Onishi, T.; Yamaguchi, K.; Ozawa, S.; Kitazono, J.; Ohkawa, T.; Yoshida, T.; Murakami, N.; Tsuji, H.
A hybrid machine learning approach to automatic plant phenotyping for smart agriculture. In Proceedings
of the International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017.

61. Wu, H.; Wu, H.; Zhu, M.; Chen, W.; Chen, W. A new method of large-scale short-term forecasting of
agricultural commodity prices: Illustrated by the case of agricultural markets in Beijing. J. Big Data 2017, 4, 1.
[CrossRef]

62. Jin, X.B.; Yang, N.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Integrated predictor based on decomposition mechanism
for PM2.5 long-term prediction. Appl. Sci. 2019, 9, 4533. [CrossRef]

63. Xiong, T.; Li, C.; Bao, Y. Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM
method: Evidence from the vegetable market in China. Neurocomputing 2018, 275, 2831–2844. [CrossRef]

64. Liu, D.; Niu, D.; Wang, H.; Fan, L. Short-term wind speed forecasting using wavelet transform and support
vector machines optimized by genetic algorithm. Renew. Energy 2014, 62, 592–597. [CrossRef]

65. Wang, Z.Y.; Qiu, J.; Li, F.F. Hybrid models combining EMD/EEMD and ARIMA for Long-term streamflow
forecasting. Water 2018, 10, 853. [CrossRef]

66. Yaslan, Y.; Bican, B. Empirical mode decomposition based denoising method with support vector regression
for time series prediction: A case study for electricity load forecasting. Measurement 2017, 103, 52–61.
[CrossRef]

67. Kumar, S.; Panigrahy, D.; Sahu, P.K. Denoising of Electrocardiogram (ECG) signal by using empirical mode
decomposition (EMD) with non-local mean (NLM) technique. Biocybern. Biomed. Eng. 2018, 38, 297–312.
[CrossRef]

68. Wang, J.; Wei, Q.; Zhao, L.; Tao, Y.; Rui, H. An improved empirical mode decomposition method using
second generation wavelets interpolation. Digit. Signal Process. 2018, 79, 164–174. [CrossRef]

69. Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A.J. Empirical Mode Decomposition based ensemble deep
learning for load demand time series forecasting. Appl. Soft Comput. 2017, 54, 246–255. [CrossRef]

70. Wang, J.; Tang, L.; Luo, Y.; Peng, G. A weighted EMD-based prediction model based on TOPSIS and feed
forward neural network for noised time series. Knowl. Based Syst. 2017, 132, 167–178.

71. Bedi, J.; Toshniwal, D. Empirical Mode Decomposition Based Deep Learning for Electricity Demand
Forecasting. IEEE Access 2018, 6, 49144–49156. [CrossRef]

72. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Chi, C.T.; Liu, H.H.
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

73. Salamon, J.; Bello, J.P. Deep convolutional neural networks and data augmentation for environmental sound
classification. IEEE Signal Process. Lett. 2017, 24, 279–283. [CrossRef]

74. Yang, W.; Zuo, W.; Cui, B. Detecting malicious urls via a keyword-based convolutional gated-recurrent-unit
neural network. IEEE Access 2019, 7, 29891–29900. [CrossRef]

75. Yu, J.; Deng, W.; Zhao, Z.; Wang, X.; Xu, J.; Wang, L.; Sun, Q.; Shen, Z. A hybrid path planning method for
an unmanned cruise ship in water quality sampling. IEEE Access 2019, 7, 87127–87140. [CrossRef]

76. Yang, Y.; Bai, Y.; Wang, X.; Wang, L.; Jin, X.; Sun, Q. Group Decision-Making Support for Sustainable
Governance of Algal Bloom in Urban Lakes. Sustainability 2020, 12, 1494. [CrossRef]

77. Zhao, Z.; Yao, P.; Wang, X.; Xu, J.; Wang, L.; Yu, J. Reliable flight performance assessment of multirotor
based on interacting multiple model particle filter and health degree. Chin. J. Aeronaut. 2019, 32, 444–453.
[CrossRef]

http://dx.doi.org/10.1016/j.compag.2015.11.018
http://dx.doi.org/10.1109/ACCESS.2019.2933169
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1186/s40537-016-0062-3
http://dx.doi.org/10.3390/app9214533
http://dx.doi.org/10.1016/j.neucom.2017.11.053
http://dx.doi.org/10.1016/j.renene.2013.08.011
http://dx.doi.org/10.3390/w10070853
http://dx.doi.org/10.1016/j.measurement.2017.02.007
http://dx.doi.org/10.1016/j.bbe.2018.01.005
http://dx.doi.org/10.1016/j.dsp.2018.05.009
http://dx.doi.org/10.1016/j.asoc.2017.01.015
http://dx.doi.org/10.1109/ACCESS.2018.2867681
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1109/LSP.2017.2657381
http://dx.doi.org/10.1109/ACCESS.2019.2895751
http://dx.doi.org/10.1109/ACCESS.2019.2925894
http://dx.doi.org/10.3390/su12041494
http://dx.doi.org/10.1016/j.cja.2018.12.006


Sensors 2020, 20, 1334 20 of 20

78. Wang, X.; Zhou, Y.; Zhao, Z.; Wei, W.; Li, W. Time-Delay System Control Based on an Integration of Active
Disturbance Rejection and Modified Twice Optimal Control. IEEE Access 2019, 7, 130734–130744. [CrossRef]

79. Wang, F.; Su, T.; Jin, X.; Zheng, Y.; Kong, J.; Bai, Y. Indoor Tracking by RFID Fusion with IMU Data. Asian J.
Control 2019, 21. [CrossRef]

80. Bai, Y.; Wang, X.; Jin, X.; Su, T.; Kong, J. Adaptive filtering for MEMS gyroscope with dynamic noise model.
ISA Trans. 2020. [CrossRef] [PubMed]

81. Jin, X.; Yang, N.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Deep Hybrid Model Based on EMD with Classification by
Frequency Characteristics for Long-Term Air Quality Prediction. Mathematics 2020, 8, 214. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2939905
http://dx.doi.org/10.1002/asjc.1954
http://dx.doi.org/10.1016/j.isatra.2020.01.030
http://www.ncbi.nlm.nih.gov/pubmed/32033797
http://dx.doi.org/10.3390/math8020214
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Single Methods 
	Combined Methods 

	Hybrid Deep Predictor 
	Decomposition and Analysis for Time Series 
	Classification and Combination for IMFs 
	Deep Prediction Network for Combined IMFs 
	Model Framework for Smart Agriculture Sensing 

	Experiment Results and Discussion 
	Dataset and Experimental Setup 
	Case 1: Prediction Performance Analysis of Different Predictors 
	Case 2: Prediction Performance Analysis of Different Combinations for IMFs 

	Conclusions 
	References

