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Abstract: The complex odor interaction between odorants makes it difficult to predict the odor intensity
of their mixtures. The analysis method is currently one of the factors limiting our understanding of
the odor interaction laws. We used a support vector regression algorithm to establish odor intensity
prediction models for binary esters, aldehydes, and aromatic hydrocarbon mixtures, respectively.
The prediction accuracy to both training samples and test samples demonstrated the high prediction
capacity of the support vector regression model. Then the optimized model was used to generate
extra odor data by predicting the odor intensity of more simulated samples with various mixing ratios
and concentration levels. Based on these olfactory measured and model predicted data, the odor
interaction was analyzed in the form of contour maps. This intuitive method showed more details
about the odor interaction pattern in the binary mixture. We found that that the antagonism effect was
commonly observed in these binary mixtures and the interaction degree was more intense when the
components’ mixing ratio was close. Meanwhile, the odor intensity level of the odor mixture barely
influenced the interaction degree. The machine learning algorithms were considered promising tools
in odor researches.
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1. Introduction

As one of the important environmental pollution problems, odor pollution will cause people
potential health hazards and uncomfortable feelings. Many countries have published related laws
and regulations about the emission limits in conventional pollution sources like chemical industries,
livestock processing industries, and sewage treatment systems [1]. Although, sometimes the exhaust
gas has met the required emission limits but its odor is still very obvious. This phenomenon mainly
comes from the superposition effect and other possible interactions caused by the mixing of multiple
low-concentration odor pollutants [2]. In these cases, the olfactory evaluations by specialized human
assessors are often used [3]. However, the test cost (e.g., a panel of specialized assessors, professional
testing laboratory, long sampling, and testing cycles) of olfactory evaluation is much higher than
regular chemical analysis [4]. Therefore, the relationship between the chemical composition and the
odor intensity of odor mixtures have been widely researched in related fields [5]. The odor intensity
prediction models and electronic nose are also urgently needed for both research and application
purposes [6].

For individual odorants, the Weber–Fechner law and Power Law model have been widely used for
the conversion of chemical concentration and odor intensity [7]. The linear relationship between odor
activity value (ratio of chemical concentration to its odor threshold) and odor intensity is also proposed
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for odor intensity prediction [8]. For odor mixtures, many models like the ERM model, Vector model,
U model, Additivity model, and their extended versions are reported [9–11]. These models provide
valuable ideas and guidance for our understanding of the odor interaction. Sometimes, they also
can be used in odor intensity prediction. In general, their prediction accuracy and applicable scope
are often limited [12]. Even though some models have achieved accurate odor intensity prediction,
the key parameters in the model must need to be experimentally measured for target substances [13].
It severely limits the convenience and practical application of these methods. Besides, these empirical
models mainly focus on the mathematical associations among the target variables. The display of odor
interaction law is abstract, and its feasibility to simulate and analyze influencing factors is weak [14].
Therefore, researchers are always trying to find more effective methods to investigate odor interaction.
For instance, Teixeira et al. applied the perfumery ternary diagram (PTD) and perfumery quaternary
diagram (PQD) methodologies to map the predicted odor intensities of fragrance mixtures [15].

In recent years, machine learning methods have developed rapidly in their algorithms and
implementation techniques. Beyond traditional computer science, machine learning methods are
increasingly being used for scientific researches in fields like chemistry, materials, and biology [16].
There are two important advantages of machine learning: excellent data analysis and processing
capabilities to both the big data (a large amount of data and variables) and the small sample dataset
(which is also a typical feature of odor data) and functional generalization capacity to new samples [17].
For example, Arabgol et al. used the support vector machine and 160 water samples data to build a
nitrate concentration prediction model, and it successfully predicted the map of nitrate concentration for
all four seasons [18]. Besides, machine learning also provides rich visual data analysis and utilization
techniques [19]. These advantages are precisely the functions that we want in the odor interaction
research. Machine learning methods have also attracted the attention of odor researchers and have been
applied in various forms [20]. Szulczynski et al. proposed an electronic nose and the odor intensity was
directly linked to the results of analytical air monitoring with a fuzzy logic algorithm [21]. Zhu et al.
made an accurate prediction of soil organic matter contents by employing back-propagation neural
network, support vector regression, and partial least squares regression methods [22]. Thus, we think
that machine learning methods can also provide more useful tools in the study of odor interaction.

In this paper, odor data of binary esters, aldehydes, and aromatic hydrocarbons mixtures were
collected from our previous studies. The support vector regression algorithm was employed to establish
the odor intensity prediction model which achieved the direct conversion from the mixture’s chemical
composition to its odor intensity. The optimized model was used to produce more olfactory evaluation
data of similar odor mixtures. Based on these odor data, we proposed a visual analysis method of odor
interaction. The influences of the components’ mixing ratio and the sample concentration level on
odor interaction were investigated intuitively. With the help of machine learning methods, we hope to
find more effective and intuitive analysis methods of odor interaction.

2. Materials and Methods

2.1. Stimuli and Odor Data

As typical odor pollutants in odor sources like landfills and sewage treatment plants, odor data
(i.e., odor threshold, Table 1; olfactory measured odor intensity and chemical concentration) of ethyl
acetate (EA), butyl acetate (BA), ethyl butyrate (EB), propionaldehyde (PA), n-valeraldehyde (VA),
n-heptaldehyde (HEP), benzene (B), toluene (T), ethylbenzene (E), and some of their binary mixtures
were collected from our previous studies [23–25]. In these experiments, the odor samples were prepared
through transferring a certain amount of standard gas to an odor-free plastic bag (3 L volume; Sinodour,
Tianjin, China) and diluted with purified air. A sensory panel (8–14 human assessors) was employed
to measure the odor threshold of each stimulus and the odor intensity of odor samples. The ASTM
odor intensity referencing scale (OIRS, water solutions of 1-butanol from level 1 (aqueous solution
of 12 ppm) to level 8 (1550 ppm) with a geometric progression of two at 27 ± 1 ◦C) was used as the
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standard in odor intensity evaluation [26]. More details about the testing procedure and environmental
requirements were described in these references. In this study, the collected dataset contains 31 samples
of binary mixture EA+BA, 21 samples of EA+EB, 22 samples of BA+EB, 24 samples of PA+VA, 24
samples of PA+HEP, 24 samples of VA+HEP, 34 samples of B+T, 31 samples of B+E, and 24 samples
of T+E.

Table 1. List of odorants and their odor thresholds.

Order Odorant
(Abbreviation) CAS# Chemical Structure Odor

Threshold/mg/m3

1 ethyl acetate (EA) 141-78-6
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0.085 I
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2.2. Support Vector Regression Methodology

Rooted in statistical learning or Vapnik-Chervonenkis (VC) theory, support vector machines
(SVMs) are well positioned to generalize on yet-to-be-seen data [27]. The SVMs are very popular and
effective in solving classification problems. The SVMs algorithm aims at establishing a clear gap (in the
form of a line/hyperplane) that is as wide as possible to divide the sample points in a certain space.
For non-linear separable data, a kernel trick is employed to map these data into high-dimensional
feature spaces where the data can be successfully separated by a hyperplane. The parameters of
the SVMs model will be optimized to find an optimal hyperplane that maximizes the margin of
the decision boundary. The Support Vector Regression (SVR) uses the same principles as the SVMs,
except that the hyperplane optimization focuses on covering as many data points as possible within a
fixed-width boundary [28]. In the SVR model, the radial basis function (RBF) is mostly chosen as the
kernel function, which is demonstrated quite effective in transforming non-linear data [29]. As two key
parameters influencing the RBF kernel, C is to control the punishment degree of sample error, and γ is
whether the accuracy is allowed to be greater than or equal to 1 for the samples of misclassification [30].
The working mechanism, mathematical formulas and optimization strategies of the SVR model have
been abundantly reported in the literature [31]. Generally, the SVR model has high accuracy and
excellent generalization capacity for small sample data. These advantages perfectly match the data
characteristics and analysis requirements of common odor data.

In this study, the collected dataset of each binary mixture was randomly divided into two parts:
the training set (70% amount) and the test set (30% amount). The training set was used in the model
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training and optimization steps. The chemical concentration value of each substance was used as the
input variables of the SVR model, and their mixture’s olfactory measured odor intensity value was the
model’s target output variable. The grid search scheme was used to search the model’s hyperparameters
(the RBF kernel was used, hyperparameters C and γ were optimized), and the 10-fold cross-validation
was used to evaluate the prediction ability of a model with certain hyperparameters [32,33]. Based on
an optimized SVR model, the odor intensity value of a mixture can be directly predicted after inputting
its corresponding chemical composition to the model. Finally, the model’s predictive capacity to
new data would be verified by the test set. All of the above statistical analysis and data mining
work was conducted using Python software and scikit-learn toolkit. For the main modeling and
simulation content in this study, we uploaded the corresponding Python code in ipynb file format as
the Supplementary Materials.

2.3. Experimental Procedure

This study firstly established SVR models for the odor intensity prediction of binary mixtures
of esters, aldehydes and aromatic hydrocarbons. After the SVR model parameters were optimized,
its predictive performance was verified by comparing the olfactory measured odor intensity with
the SVR predicted odor intensity values. To evaluate the accuracy and precision of the SVR model,
the coefficient of determination (R2) and the mean absolute error (MAE) were individually calculated
for training samples and test samples. The optimized SVR models were then used to predict the
odor intensity for other similar odor mixtures, and then more odor data was produced. Based on the
accumulated odor data, the following strategy was used to explore the odor interaction in a more
intuitive way. Here, the odor intensity value of individual substance (OI) was calculated on the basis
of our previous obtained OI-lnOAV (natural logarithm of odor activity value) equations [24–26] and
odor threshold values (Cthr.) in Table 1:

ln OAV = ln
(

C
Cthr.

)
(1)

For esters:

OI = 1.40· ln OAV − 2.70
(2)

For aldehydes:

OI = 1.76· ln OAV − 1.82
(3)

For aromatichydrocarbon:

OI = 1.07· ln OAV
(4)

For binary mixtures without odor interaction, its ideal odor intensity was defined as OIsum.:

OIsum. = OIa + OIb (5)

where, the value of OIa/OIb was calculated on the basis of its chemical concentration in the mixture
(Equations (1)–(4)). Both the olfactory measured odor intensity and the SVR predicted odor intensity
of binary odor mixture were all marked as OImix., and we defined the odor interaction degree in the
mixture as OI reduction and OI reduction ratio:

OI reduction = OIsum. −OImix. (6)

OI reduction ratio =
OIsum. −OImix.

OIsum.
(7)
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Both OI reduction and OI reduction ratio were considered as indicators of interaction degree in the
binary mixture. Based on these two variables, their relationships with the component’s concentration
and components’ mixing ratio were carefully investigated. The contour maps and scatters plots were
employed to display the odor interaction pattern of binary mixtures intuitively.

3. Results and Discussion

3.1. Odor Intensity Predictive Performance of the SVR Model

As shown in Figure 1, the olfactory measured odor intensity and the SVR predicted odor intensity
were compared in the form of scatter plots. When the sample point was close to the diagonal (red line),
it meant that the SVR model made an accurate prediction. For most of the training samples and test
samples, the SVR models successfully made perfect predictions. It demonstrated the feasibility and
good fitting ability of the SVR algorithm in regular odor data analysis. Besides, the similar predictive
accuracy between training samples and test samples proved that these SVR models were not overfitted.
The overfitted model usually will correspond exactly to the training set, and may, therefore, fail to
predict future observations reliably (like the test sample). This phenomenon is usually caused by the
strong fitting ability of machine learning algorithms and its improper parameter settings, which is one
of the key issues that should be avoided in the application of machine learning methods [34]. Table 2
listed the coefficient of determination (R2) and mean absolute error (MAE) between olfactory measured
odor intensity and SVR predicted odor intensity of each odor mixture individually. From the R2 values
of training samples and test samples, it also confirmed that the SVR models had good predictive
accuracy and it was not over-fitted. Different from the other mixtures, the R2 values of mixture T+E
was lower. It probably was caused by a relatively poor accuracy of the olfactory measured results.
Because the SVR algorithm is very sensitive to the noise in the training data [35]. Therefore, the noise
(arising from the error of olfactory evaluation) in the training samples can easily affect the fitting effect
of the SVR model. Nevertheless, the MAE results still showed that the prediction error of the SVR
models was very limited. In the regular olfactory evaluation tests, the 0.4 OIRS level of error was
usually observed and widely accepted [25]. Thus, the optimized SVR models were considered to be
useful and accurate in the odor intensity prediction of these binary odor mixtures.

Table 2. The prediction accuracy of SVR models. The coefficient of determination (R2) and mean
absolute error (MAE) were individually calculated for each kind of binary mixture.

Mixture
R2 MAE

Training Set Test Set Training Set Test Set

EA+BA 0.97 0.95 0.15 0.26
BA+EB 0.96 0.85 0.15 0.33
EA+EB 0.87 0.87 0.17 0.25
PA+VA 0.95 0.78 0.14 0.25

PA+HEP 0.96 0.94 0.17 0.23
VA+HEP 0.97 0.87 0.15 0.31

B+T 0.87 0.81 0.33 0.43
T+E 0.78 0.68 0.31 0.40
B+E 0.98 0.94 0.09 0.27

The odor intensity prediction models were considered promising techniques in the field of odor
evaluation. First, the prediction models could directly perform the odor intensity evaluation (basing
on the composition and concentration information measured by analytical equipment) instead of
human assessors. The influences of assessor quantity, age, gender, and testing environments could be
avoided [36]. On the other hand, it has been reported that the e-nose can directly perform odor intensity
evaluation [21,37]. However, it directly correlates the sensor signal and odor intensity, and does
not fully consider the gas mixture’s composition. Therefore, the device is more focused to specific
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target gases. In contrast, e-noses and online monitoring devices capable of gas identification and
concentration detection are more common and more mature [38,39]. If combining the odor intensity
prediction model with these e-noses and online monitoring devices, it will significantly improve their
olfactory assessment capacity and extend the applicable scope.
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Figure 1. The comparison between olfactory measured odor intensity and Support Vector Regression
(SVR) predicted the odor intensity of nine different binary mixtures.

3.2. SVR-Assisted Visual Analysis of Odor Interaction

In comparison with traditional odor intensity prediction models, some machine learning methods
like SVR have a significant advantage and also one of its disadvantages. The mechanism like a black
box severely limited its function in explaining related mechanisms and laws. Although many studies
have established empirical models to explain the odor interaction phenomenon and made conclusions,
we still hope to develop more analytical methods through the reasonable use of machine learning
methods. Since it has been proved that there is a simple linear relationship between OI and lnOAV of
an individual substance, we think that using the lnOAV value to represent the content of a component
is also helpful in odor interaction studies [23,24]. As illustrated in Figure 2a, c, and d, scatter plots of the
relationship between each component’s content (in the form of lnOAV) and the odor interaction degree
(in the form of OI reduction values; i.e., the color of each dot) was plotted. Based on the definition of
OI reduction in Equation (6), the larger OI reduction value meant the stronger degree of antagonism
effect [40]. It could be seen that when the content of both components was high, the antagonism effect
would be more intense. Because the amount of actual olfactory measured odor data was limited,
this scatters plot only provided little information and the results were not intuitive enough.
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Figure 2. The scatter plot of the relationship between olfactory measured odor intensity reduction
degree (OI reduction) and components’ lnOAV (natural logarithm of odor activity value) values,
and corresponding contour map after adding SVR model predicted data (in the contour map, red dots:
olfactory measured data; black dots: SVR predicted data) for binary mixture (a,b) EA+BA, (c,d) BA+EB,
and (e,f) EA+EB.

In order to obtain more odor evaluation results, we used the SVR model instead of olfactory
measurement which saved much time and economic costs. Since the core idea of machine learning was
to find out the mathematical relationship between the chemical composition and the corresponding
mixture’s odor intensity, a certain amount of training samples usually could guarantee the modeling
effect. After that, the optimized model would also be valid for other similar samples. This strategy and
function have been fully demonstrated and widely applied in many research [41]. As shown in the
above R2 and MAE analysis results of the training and test samples, the SVR model had obtained the
correct mapping relationship. In this case, the optimized model also will be valid for other samples of
the corresponding mixture with different chemical concentrations. As shown by the black dots plotted
in Figure 2b,d,f, we predicted the odor intensity of many binary mixtures with different chemical
contents. Results from actual olfactory measurements in our previous studies were plotted with
red dots. In order to distinguish the data source here, the color of the dots no longer indicates the
OI reduction value like Figure 2a,c,e. Based on these olfactory measured and SVR predicted results,
the contour maps about the OI reduction degree and mixtures’ composition were plotted. Through these
diagrams, the interaction of odor substances became more intuitive. It could be concluded that the
degree of antagonism effect was usually weak if the lnOAV value of any component is low. When the
content of one component was constant, the antagonism degree would increase as the content of the
other component enhancing. Besides, the antagonism degree would become more intense when the
lnOAV values of the two components were approaching close.

In the same way, the odor interaction of binary aldehydes mixtures was also analyzed (Figure 3).
The interaction pattern of binary aldehydes mixtures was almost the same with esters mixtures.
However, we could still see that there were some differences in the details of their contour maps.
For instance, the antagonism degree of mixture BA+EB (Figure 2d) was weaker when the lnOAVBA and
lnOAVEB values were close to 2–3. So did the mixture EA+BA when the lnOAVEA and lnOAVBA values
were close to 4.5–5.5 (Figure 2b). A very obvious difference was that there were almost no olfactory
measured sample data in the areas mentioned above. Because there were not enough samples to reflect
the real odor interaction in these areas, the performance of the SVR model to the corresponding area
was easily affected by other samples. In machine learning, this phenomenon is generally observed
because of insufficient sample amount and lacking data representativeness [42]. The samples in the
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aldehyde mixtures were more evenly dispersed, so the odor interaction in each area was fully reflected.
Therefore, reasonable sampling also should be concerned when using machine learning methods in
odor researches.
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degree (OI reduction) and components’ lnOAV values, and corresponding contour map after adding
SVR model predicted data (in the contour map, red dots: olfactory measured data; black dots: SVR
predicted data) for binary mixture (a,b) PA+VA, (c,d) PA+HEP, and (e,f) VA+HEP.

The contour maps of binary aromatic hydrocarbon mixtures were plotted in Figure 4. Unlike binary
mixtures of esters and aldehydes, the overall antagonism degree of binary aromatic hydrocarbon
mixtures was at a relatively low level. When the lnOAV value of both components was higher than
2.5, a similar antagonism degree-mixing ratio relationship like esters and aldehydes was observed
(Figure 4b,d,f). When their lnOAV values were smaller than this critical value, we observed a
synergism effect (i.e., the negative OI reduction value which meant that the OImix. was higher than the
OIsum.). Because there was no actual olfactory measured sample data in this area, the reliability of
this phenomenon should be verified by further olfactory evaluation tests. In all these contour maps,
the odor interaction of odor samples with too small lnOAV values (i.e., the lower left blank corner of
the contour plot) was not considered. Because odor samples belonging to this area usually had the
odor intensity value lower than 2.0 of the OIRS (it could be demonstrated from Figure 1). For those
odor samples, the error of olfactory evaluation was usually higher [25]. Meanwhile, it also was more
meaningful to analyze the odor interaction of odor mixtures with distinct olfactory stimulation.

3.3. Similarity of Binary Odor Interaction Pattern

In order to further verify the above-observed odor interaction pattern, we also analyzed the
influence of the sample’s odor intensity level. As depicted in Figure 5, all the olfactory measured data
and SVR predicted data were employed and colors represented the odor intensity of each sample.
We defined the OI reduction ratio (Equation (7)) and mixing ratio of the binary mixture (i.e., xa =

lnOAVa/(lnOAVa + lnOAVb)). Firstly, we observed the same conclusion as the above contour maps.
When the lnOAV mixing ratio of the two components was close, the antagonism degree was the
most obvious (i.e., higher OI reduction ratio). Secondly, most of the odor samples followed the same
odor interaction pattern regardless of its specific odor intensity level. No significant correlation was
observed between the OI reduction ratio and the sample’s odor intensity value. It was consistent with
the phenomenon observed in our previous PDE (partial differential equation) model researches [25].
Compared with the influence of the sample’s odor intensity value, the odor interaction degree was
mainly affected by the components’ mixing ratio.
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In this study, we mainly employed the SVR algorithm as a useful tool for data analysis. Based on its
strong regression ability, more reliable data was collected and it helped to explore the odor interaction
more intuitively. Although the odor interaction has been widely studied by many empirical models
who have made very accurate explanations [5,6,11,43], the machine learning method still has distinct
advantages like visual analysis and low time/economic cost. As we found in this study, enough olfactory
measured data was an essential guarantee to the accuracy of machine learning models. When applying
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the machine learning methods, we also should pay attention to the sample representativeness and
the objective analysis of simulation results. On the other hand, the observed odor interaction pattern
was only verified by several substances from the esters, aldehydes, and aromatic hydrocarbon groups.
In order to further prove the reliability and applicable scope of currently observed odor interaction
pattern, it is necessary to test more odor substances.

4. Conclusions

In this study, a support vector regression algorithm was employed to train an odor intensity
prediction model of binary esters, aldehydes, and aromatic hydrocarbon mixtures individually.
The chemical concentrations of each component were directly transformed into the odor intensity
of the mixture, and it successfully avoided the interference from odor threshold measurement and
individual components’ odor intensities evaluation which was usually performed by human assessors.
The optimized model showed high accuracy for both the training samples and test samples. It was
also considered adequate for other odor mixtures with different mixing ratios and concentration levels.
Based on the support vector regression model, more odor data were collected and these data supported
the visual analysis of odor interaction. Compared with traditional empirical models, the visual analysis
method was more intuitive and provided more information. A similar odor interaction pattern was
observed among these binary odor mixtures. Meanwhile, the importance of original olfactory measured
data and data representativeness was also proved in the results. As a fast-growing technology, we
have demonstrated its potential in the odor interaction analysis.
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Author Contributions: Conceptualization, L.Y. and J.L.; methodology, C.W.; visualization, software and writing,
L.Y.; supervision, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (No. 2016YFC0700600; No.
2017YFB0702100), and the National Natural Science Foundation of China (No. 51601014).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, G.M.; Melder, D.; Keller, J.; Yuan, Z.G. Odor emissions from domestic wastewater: A review. Crit. Rev.
Environ. Sci. Technol. 2017, 47, 1581–1611. [CrossRef]

2. Le Berre, E.; Beno, N.; Ishii, A.; Chabanet, C.; Etievant, P.; Thomas-Danguin, T. Just noticeable differences in
component concentrations modify the odor quality of a blending mixture. Chem. Senses 2008, 33, 389–395.
[CrossRef] [PubMed]

3. Lewkowska, P.; Dymerski, T.; Gebicki, J.; Namiesnik, J. The use of sensory analysis techniques to assess the
quality of indoor air. Crit. Rev. Anal. Chem. 2017, 47, 37–50. [CrossRef] [PubMed]

4. Atanasova, B.; Langlois, D.; Nicklaus, S.; Chabanet, C.; Etievant, P. Evaluation of olfactory intensity:
Comparative study of two methods. J. Sens. Stud. 2004, 19, 307–326. [CrossRef]

5. Wu, C.D.; Liu, J.M.; Zhao, P.; Piringer, M.; Schauberger, G. Conversion of the chemical concentration of
odorous mixtures into odour concentration and odour intensity: A comparison of methods. Atmos. Environ.
2016, 127, 283–292. [CrossRef]

6. Wakayama, H.; Sakasai, M.; Yoshikawa, K.; Inoue, M. Method for predicting odor intensity of perfumery
raw materials using dse-response curve database. Ind. Eng. Chem. Res. 2019, 58, 15036–15044. [CrossRef]

7. Sarkar, U.; Hobbs, S.E. Odour from municipal solid waste (MSW) landfills: A study on the analysis of
perception. Environ. Int. 2002, 27, 655–662. [CrossRef]

8. Yan, L.C.; Liu, J.M.; Wang, G.H.; Wu, C.D. An odor interaction model of binary odorant mixtures by a partial
differential equation method. Sensors 2014, 14, 12256–12270. [CrossRef]

9. Cain, W.S.; Schiet, F.T.; Olsson, M.J.; deWijk, R.A. Comparison of models of odor interaction. Chem. Senses
1995, 20, 625–637. [CrossRef]

http://www.mdpi.com/1424-8220/20/6/1707/s1
http://dx.doi.org/10.1080/10643389.2017.1386952
http://dx.doi.org/10.1093/chemse/bjn006
http://www.ncbi.nlm.nih.gov/pubmed/18304991
http://dx.doi.org/10.1080/10408347.2016.1176888
http://www.ncbi.nlm.nih.gov/pubmed/27105173
http://dx.doi.org/10.1111/j.1745-459X.2004.tb00150.x
http://dx.doi.org/10.1016/j.atmosenv.2015.12.051
http://dx.doi.org/10.1021/acs.iecr.9b01225
http://dx.doi.org/10.1016/S0160-4120(01)00125-8
http://dx.doi.org/10.3390/s140712256
http://dx.doi.org/10.1093/chemse/20.6.625


Sensors 2020, 20, 1707 11 of 12

10. Olsson, M.J. An integrated model of intensity and quality of odor mixtures. Ann. N. Y. Acad. Sci. 1998, 855,
837–840. [CrossRef]

11. Teixeira, M.A.; Rodriguez, O.; Rodrigues, A.E. The perception of fragrance mixtures: A comparison of odor
intensity models. AIChE J. 2010, 56, 1090–1106. [CrossRef]

12. Yu, Z.M.; Guo, H.Q.; Lague, C. Development of a livestock odor dispersion model: Part II. Evaluation and
validation. J. Air Waste Manag. 2011, 61, 277–284. [CrossRef] [PubMed]

13. Schiffman, S.S.; McLaughlin, B.; Katul, G.G.; Nagle, H.T. Eulerian-Lagrangian model for predicting odor
dispersion using instrumental and human measurements. Sens. Actuat. B Chem. 2005, 106, 122–127.
[CrossRef]

14. Olsson, M.J. An interaction-model for odor quality and intensity. Percept. Psychophys. 1994, 55, 363–372.
[CrossRef] [PubMed]

15. Teixeira, M.A.; Rodriguez, O.; Rodrigues, A.E. Prediction model for the odor intensity of fragrance mixtures:
A valuable tool for perfumed product design. Ind. Eng. Chem. Res. 2013, 52, 963–971. [CrossRef]

16. Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials
science. Nature 2018, 559, 547–555. [CrossRef]

17. Vu, T.V.; Shi, Z.B.; Cheng, J.; Zhang, Q.; He, K.B.; Wang, S.X.; Harrison, R.M. Assessing the impact of clean air
action on air quality trends in Beijing using a machine learning technique. Atmos. Chem. Phys. 2019, 19,
11303–11314. [CrossRef]

18. Arabgol, R.; Sartaj, M.; Asghari, K. Predicting nitrate concentration and its spatial distribution in groundwater
resources using support vector machines (SVMs) model. Environ. Model. Assess. 2016, 21, 71–82. [CrossRef]

19. Vega García, M.; Aznarte, J.L. Shapley additive explanations for NO2 forecasting. Ecol. Inform. 2020, 56,
101039. [CrossRef]

20. Vanarse, A.; Osseiran, A.; Rassau, A. Real-time classification of multivariate olfaction data using spiking
neural networks. Sensors 2019, 19, 1841. [CrossRef]

21. Szulczynski, B.; Gebicki, J. Determination of odor intensity of binary gas mixtures using perceptual models
and an electronic nose combined with fuzzy logic. Sensors 2019, 19, 3473. [CrossRef]

22. Zhu, L.T.; Jia, H.L.; Chen, Y.B.; Wang, Q.; Li, M.W.; Huang, D.Y.; Bai, Y.L. A novel method for soil organic
matter determination by using an artificial olfactory system. Sensors 2019, 19, 3417. [CrossRef] [PubMed]

23. Yan, L.C.; Liu, J.M.; Jiang, S.; Wu, C.D.; Gao, K.W. The regular interaction pattern among odorants of the
same type and its application in odor intensity assessment. Sensors 2017, 17, 1624. [CrossRef]

24. Yan, L.C.; Liu, J.M.; Fang, D. Use of a modified vector model for odor intensity prediction of odorant mixtures.
Sensors 2015, 15, 5697–5709. [CrossRef]

25. Yan, L.C.; Liu, J.M.; Qu, C.; Gu, X.Y.; Zhao, X. Research on odor interaction between aldehyde compounds
via a partial differential equation (PDE) model. Sensors 2015, 15, 2888–2901.

26. Krajewski, S.; Nowacki, J. Dual-phase steels microstructure and properties consideration based on artificial
intelligence techniques. Arch. Civ. Mech. Eng. 2014, 14, 278–286. [CrossRef]

27. Mariette, A.; Rahul, K. Efficient Learning Machines, 1st ed.; Apress: New York, NY, USA, 2015; p. 67.
28. Wen, Y.F.; Cai, C.Z.; Liu, X.H.; Pei, J.F.; Zhu, X.J.; Xiao, T.T. Corrosion rate prediction of 3C steel under

different seawater environment by using support vector regression. Corros. Sci. 2009, 51, 349–355. [CrossRef]
29. Azimi, H.; Bonakdari, H.; Ebtehaj, I. Design of radial basis function-based support vector regression in

predicting the discharge coefficient of a side weir in a trapezoidal channel. Appl. Water Sci. 2019, 9, 78.
[CrossRef]

30. Shi, H.; Xiao, H.; Zhou, J.; Li, N.; Zhou, H. Radial basis function kernel parameter optimization algorithm in
support vector machine based on segmented dichotomy. In Proceedings of the 5th International Conference
on Systems and Informatics (ICSAI), Nanjing, China, 10–12 November 2018; pp. 383–388.

31. Laref, R.; Losson, E.; Sava, A.; Siadat, M. Support vector machine regression for calibration transfer between
electronic noses dedicated to air pollution monitoring. Sensors 2018, 18, 3716. [CrossRef] [PubMed]

32. Shin, D.; Yamamoto, Y.; Brady, M.P.; Lee, S.; Haynes, J.A. Modern data analytics approach to predict creep of
high-temperature alloys. Acta Mater. 2019, 168, 321–330. [CrossRef]

33. Sun, Y.T.; Bai, H.Y.; Li, M.Z.; Wang, W.H. Machine learning approach for prediction and understanding of
glass-forming ability. J. Phys. Chem. Lett. 2017, 8, 3434–3439. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1749-6632.1998.tb10672.x
http://dx.doi.org/10.1002/aic.12043
http://dx.doi.org/10.3155/1047-3289.61.3.277
http://www.ncbi.nlm.nih.gov/pubmed/21416754
http://dx.doi.org/10.1016/j.snb.2004.05.067
http://dx.doi.org/10.3758/BF03205294
http://www.ncbi.nlm.nih.gov/pubmed/8036116
http://dx.doi.org/10.1021/ie302538c
http://dx.doi.org/10.1038/s41586-018-0337-2
http://dx.doi.org/10.5194/acp-19-11303-2019
http://dx.doi.org/10.1007/s10666-015-9468-0
http://dx.doi.org/10.1016/j.ecoinf.2019.101039
http://dx.doi.org/10.3390/s19081841
http://dx.doi.org/10.3390/s19163473
http://dx.doi.org/10.3390/s19153417
http://www.ncbi.nlm.nih.gov/pubmed/31382683
http://dx.doi.org/10.3390/s17071624
http://dx.doi.org/10.3390/s150305697
http://dx.doi.org/10.1016/j.acme.2013.10.002
http://dx.doi.org/10.1016/j.corsci.2008.10.038
http://dx.doi.org/10.1007/s13201-019-0961-5
http://dx.doi.org/10.3390/s18113716
http://www.ncbi.nlm.nih.gov/pubmed/30388748
http://dx.doi.org/10.1016/j.actamat.2019.02.017
http://dx.doi.org/10.1021/acs.jpclett.7b01046
http://www.ncbi.nlm.nih.gov/pubmed/28697303


Sensors 2020, 20, 1707 12 of 12

34. Kerckhoffs, J.; Hoek, G.; Portengen, L.; Brunekreef, B.; Vermeulen, R.C.H. Performance of prediction
algorithms for modeling outdoor air pollution spatial surfaces. Environ. Sci. Technol. 2019, 53, 1413–1421.
[CrossRef] [PubMed]

35. Tsirikoglou, P.; Abraham, S.; Contino, F.; Lacor, C.; Ghorbaniasl, G. A hyperparameters selection technique
for support vector regression models. Appl. Soft. Comput. 2017, 61, 139–148. [CrossRef]

36. Brattoli, M.; de Gennaro, G.; de Pinto, V.; Loiotile, A.D.; Lovascio, S.; Penza, M. Odour detection methods:
Olfactometry and chemical sensors. Sensors 2011, 11, 5290–5322. [CrossRef] [PubMed]

37. Deshmukh, S.; Jana, A.; Bhattacharyya, N.; Bandyopadhyay, R.; Pandey, R.A. Quantitative determination of
pulp and paper industry emissions and associated odor intensity in methyl mercaptan equivalent using
electronic nose. Atmos. Environ. 2014, 82, 401–409. [CrossRef]

38. Liu, T.P.; Zhang, W.T.; McLean, P.; Ueland, M.; Forbes, S.L.; Su, S.W. Electronic nose-based odor classification
using genetic algorithms and fuzzy support vector machines. Int. J. Fuzzy Syst. 2018, 20, 1309–1320.
[CrossRef]

39. Pan, L.; Yang, S.X. An electronic nose network system for online monitoring of livestock farm odors.
IEEE/ASME Trans. Mechatron. 2009, 14, 371–376. [CrossRef]

40. Niu, Y.; Wang, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the perceptual interaction among ester
aroma compounds in cherry wines by GC–MS, GC–O, odor threshold and sensory analysis: An insight at
the molecular level. Food Chem. 2019, 275, 143–153. [CrossRef]

41. Wu, Q.; Wang, Z.; Hu, X.; Zheng, T.; Yang, Z.; He, F.; Li, J.; Wang, J. Uncovering the eutectics design by
machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Mater. 2020, 182, 278–286. [CrossRef]

42. Chen, Z.Y.; Zhang, R.; Zhang, T.H.; Ou, C.Q.; Guo, Y. A kriging-calibrated machine learning method for
estimating daily ground-level NO2 in mainland China. Sci. Total Environ. 2019, 690, 556–564. [CrossRef]

43. Kim, K.H. Experimental demonstration of masking phenomena between competing odorants via an air
dilution sensory test. Sensors 2010, 10, 7287–7302. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.est.8b06038
http://www.ncbi.nlm.nih.gov/pubmed/30609353
http://dx.doi.org/10.1016/j.asoc.2017.07.017
http://dx.doi.org/10.3390/s110505290
http://www.ncbi.nlm.nih.gov/pubmed/22163901
http://dx.doi.org/10.1016/j.atmosenv.2013.10.041
http://dx.doi.org/10.1007/s40815-018-0449-8
http://dx.doi.org/10.1109/TMECH.2009.2012850
http://dx.doi.org/10.1016/j.foodchem.2018.09.102
http://dx.doi.org/10.1016/j.actamat.2019.10.043
http://dx.doi.org/10.1016/j.scitotenv.2019.06.349
http://dx.doi.org/10.3390/s100807287
http://www.ncbi.nlm.nih.gov/pubmed/22163603
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Stimuli and Odor Data 
	Support Vector Regression Methodology 
	Experimental Procedure 

	Results and Discussion 
	Odor Intensity Predictive Performance of the SVR Model 
	SVR-Assisted Visual Analysis of Odor Interaction 
	Similarity of Binary Odor Interaction Pattern 

	Conclusions 
	References

