

A FRET Based Two-Photon Fluorescent Probe for Visualizing Mitochondrial Thiols of Living Cells and Tissues

Zhengkun Liu¹, Qianqian Wang¹, Hao Wang¹, Wenting Su¹ and Shouliang Dong^{1,2,*}

- ¹ Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; <u>liuzhk14@lzu.edu.cn</u> (Z.L.); <u>wangqq16@lzu.edu.cn</u> (Q.W.); <u>wangh2017@lzu.edu.cn</u> (H.W.); <u>suwt18@lzu.edu.cn</u> (W.S.)
- ² Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- * Correspondence: dongsl@lzu.edu.cn; Tel: +869318912428

Table of contents

- 1. Reported probes for mitochondria thiols detection Table 1
- 2. Absorption spectra of MT-1 Figure S1
- 3. Fluorescence intensity and the linear relationship of MT-1 with different concentrations of GSH and Hcy Figure S2

Figure S7

- 4. ESI-MS spectrometry of MT-1 upon addition of Cys Figure S3
- 5. ESI-MS of 2
 Figure S4

 6. ESI-MS of MT-1
 Figure S5

 7. ¹H NMR of MT-1
 Figure S6
- 8. ¹³C NMR of MT-1

Table 1. Probes for mitochondria thiols detection.

Numbers	Probes for mitochond	ria thiols detection	Journals	Strategies	Mechanism for selectivity mitochondrial thiol detection
1	HyN SS- N SSH-Mito GSH K, rds K(GSH)		J. Am. Chem. Soc 2011.[1]	Two photon $\lambda_{ex} = 740$ nm $\lambda_{em} = 545$ nm	not mentioned
2	Br⊖ Ph ₃ P → N ↓ N O Me	SO ₂ N ₃ Probe 2	Dyes and Pigments 2013.[2]	Two photon λ _{ex} = 750 nm λ _{em} = 442 nm	not mentioned
3			Anal. Chem 2018[3]	λ _{ex} = 550 nm λ _{em} = 580 nm	different pH between mitochondria and cytoplasm
4	Responsive site NO ₂ Bite NO ₂ Bite		Sensors and Actuators B	Two photon λ _{ex} = 730 nm	not mentioned
	R-Mitochodria target 1-3	R-N 1a-3a			

Sensors 2020, 20, X; UOI. FOR I EEN NEVIEV

www.mdpi.com/journal/sensors

Figure S1. Absorption spectra of MT-1 before and after treatments with three biothiols (100 μ M, respectively) in 10% (V/V) DMSO/PBS buffer (50 mM, pH = 7.4) at 37 °C.

Wavelength (nm)

Figure S2. Fluorescence intensity and the linear relationship of MT-1 (10 μ M) with different concentrations of GSH (**a**) and Hcy (**b**) for 1 hour in 10% (V/V) DMSO/PBS buffer (50 mM, pH = 7.4) at 37 °C. λ_{ex} = 395 nm, λ_{em} = 589 nm, slits (10, 10).

Figure S3. ESI-MS spectrometry of MT-1 upon addition of Cys in 10% DMSO/PBS (V/V) buffer (50 mM, pH = 7.4) at 37 °C.

Figure S4. ESI-MS of 2.

Figure S5. ESI-MS of MT-1.

Figure S6. ¹H NMR of MT-1.

Figure S7. ¹³C NMR of MT-1.

References

- 1. Su, L.C., et al., *Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe.* Journal of the American Chemical Society, 2011. **133**(29): p. 11132-5.
- 2. Singha, S., et al., *Two-photon probes based on arylsulfonyl azides: Fluorescence detection and imaging of biothiols.* Dyes & Pigments, 2013. **99**(2): p. 308-315.
- 3. Wang, S., et al., *Thiol Specific and Mitochondria Selective Fluorogenic Benzofurazan Sulfide for Live Cell Nonprotein Thiol Imaging and Quantification in Mitochondria*. Analytical Chemistry, 2018: p. acs.analchem.8b01469-.
- 4. Li, Y., et al., *Mitochondria-targeted two-photon fluorescent probe for the detection of biothiols in living cells.* Sensors & Actuators B Chemical, 2017. **255**: p. S0925400517314636.
- 5. Wang, F.-F., et al., A BODIPY-based mitochondria-targeted turn-on fluorescent probe with dual response units for the rapid detection of intracellular biothiols. Dyes and Pigments, 2018. **152**: p. 29-35.