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Abstract: In this article, we propose a new mobility model, called Attractor Based Inter-Swarm
collaborationS (ABISS), for improving the surveillance of restricted areas performed by unmanned
autonomous vehicles. This approach uses different types of vehicles which explore an area of interest
following unpredictable trajectories based on chaotic solutions of dynamic systems. Collaborations
between vehicles are meant to cover some regions of the area which are unreachable by members
of one swarm, e.g., unmanned ground vehicles on water surface, by using members of another
swarm, e.g., unmanned aerial vehicles. Experimental results demonstrate that collaboration is not
only possible but also emerges as part of the configurations calculated by a specially designed and
parameterised evolutionary algorithm. Experiments were conducted on 12 different case studies
including 30 scenarios each, observing an improvement in the total covered area up to 11%, when
comparing ABISS with a non-collaborative approach.

Keywords: swarm robotics; mobility model; inter-swarm collaboration; unmanned aerial vehicle;
unmanned ground vehicle; evolutionary algorithm; pheromones; bio-inspiration

1. Introduction

Unmanned Aerial Vehicles (UAV), also known as “drones”, have become commonplace devices
in the 21st century. Their use ranges from toys to military devices, while their cost can vary from tens
to millions of dollars. For example, the word drones appeared in more than 500 articles in the New
York Times from January 2012 to May 2016 [1] and the number of published papers has increased from
544 in 2013 to more than 1593 in 2017 [2]. Nowadays, these vehicles present several advantages for the
society even though there are many concerns about privacy and civil liberties [3].

Although drones are frequently related with defence activities and projects [4], unarmed drones
may also be strategically relevant due to their great surveillance capabilities [5]. In fact, they are also
used in many other activities such as cargo delivery [6], road traffic surveillance [7], fire fighting [8],
and to herd a flock of birds away from an airport [9].

Besides UAVs (fixed wing or multi-rotors), there exists other types of unmanned autonomous
vehicles, such as Unmanned Ground Vehicles (UGV). Each vehicle type has its own characteristics,
e.g., the type of areas they are able to explore. For instance, UAVs are able to move freely in the air and
fly over water surfaces, while UGVs can explore dense forest areas where UAVs are unable to adventure.
Using one single device in such scenarios is not an option. Where the collective intelligence emerges
is in homogeneous swarms composed of several unmanned vehicles moving in an autonomous and
coordinated manner in the air, on the ground and in the sea, following a bio-inspired approach.

Animal collective motion can be observed in a wide range of biological systems, such as bacteria
colonies, fish schools and bird flocks [10]. In many cases, a swarm of individuals is able to solve a
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complex problem which is intractable for a single individual. This swarm intelligence is frequently
seen in research works involving robots as it increases the robustness of a system and facilitates the
cooperation among individuals in the swarm [11].

One well-known way of collaboration is found in evolutionary game theory (EGT) where
individuals compete and sometimes collaborate with each other following evolutionary strategies [12].
This behaviour, consisting in achieving a common good while seeking a personal reward,
has been applied to solve several problems such as predicting infectious diseases with vaccination
strategies [13], making military decisions [14], optimising packet relaying in wireless networks based
on reciprocity [15] and, now, improving surveillance missions sharing pheromone trails.

Our proposal consists of a new mobility model, called ABISS, for homogeneous multi-swarms of
autonomous unmanned vehicles of different types. By using ABISS, collaborations between swarms
emerge after applying evolutionary bio-inspired techniques, with the common objective of improving
area coverage while performing surveillance. This is a distributed intelligence system, in which, if some
members fail, the rest of the swarm still carries on their surveillance task, increasing the robustness of
the proposal.

The main contributions of this paper are:

1. A new mobility model (ABISS) is designed to be used by unmanned vehicle swarms as a
cooperation strategy for mutual inter-swarm collaboration.

2. An Evolutionary Algorithm (EA) is specially designed and tuned for optimising the ABISS’
parameters to maximise the coverage of the area under surveillance.

The rest of this paper is organised as follows. In the next section, we review the state of the art
related to our work. In Section 3, our proposal is discussed. The problem definition and its instances are
described in Section 4. Section 5 presents our optimisation algorithm and its hyper-parameterisation.
The discussion of the results is in Section 6. Finally, in Section 7, conclusions and future work are given.

2. Related Work

Several articles focus on swarm robotic problems [16,17]; we review some of them related to
our bio-inspired approach. Some articles use pheromone-based models to control the movement
of robots and vehicles. In [18], the authors introduced a collective autonomous system inspired by
the thermotactic aggregation behaviour of honeybees. They studied this probabilistic system at a
mesoscopic scale by limiting the sensing of their robots and observed a collective decision-making
behaviour when locating energy sources. A coordination model using indirect communication
performed by repulsive pheromone interactions is proposed in [19]. In that article, five strategies
related to the next-cell selection are evaluated according to the performance of surveillance tasks. The
proposed model is based on a two-dimensional Cellular Automata and the two testing environments
are composed by seven and ten rooms, respectively. In [20], the authors proposed a bio-inspired
algorithm which allows communication between robots using pheromones as collective memory. They
tested their proposal in square scenarios made of 25 × 25 and 50 × 50 cells and reported it to be better
than the other algorithms included in the comparison. A surveillance system using an environment
virtually partitioned into balanced disjoint areas is presented in [21]. One robot capable of releasing
and distinguishing its own pheromones from that of others is assigned to each area and restricted to
it. The authors tested their proposal in two scenarios divided into rooms and identified two phases:
dispersion and navigation confinement.

Other articles use evolutionary techniques and swarm intelligence algorithms applied to robots to
achieve their goals. In [22], the authors used evolutionary robotics to synthesise a collegial decision
making behaviour similar to the one displayed by cockroaches when selecting a resting shelter. They
experimented using ARGoS [23], a simulator of swarm robotics systems, using an Artificial Neural
Network (ANN) as controller and an EA for setting up its parameters. In [24], a combination of
novelty search (an evolutionary process based on the promotion of phenotypic diversity) and NEAT
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(NeuroEvolution of Augmenting Topologies) is used to evolve neural controllers for homogeneous
swarms of robots. The authors conducted their study in a simulator where the robots performed tasks
of aggregation and sharing a recharging station.

A Self-aware Communication Strategy (SCS) for controlling the heading direction of a swarm of
robots is proposed in [25]. The authors implemented a small group of informed agents which have to
guide a large swarm in a stationary environment having different number of goals. They experimented
with simulated and real robots to evaluate the ability of the swarm to follow the leaders when changing
direction as well as the swarm’s cohesion. In [26], a Genetic Algorithm (GA) is proposed to optimise
the parameters of a swarm of robots in order to improve the foraging of dispersed resources and
mapping the environment. Those parameters define how ants, simulated by Agent-Based Models
(ABM), travel from their nest, search and use site fidelity and pheromone communication. Then,
the ABM was modified to model the swarm of robots, which was used in the simulations performed
to show that pheromone-like communication improved foraging success.

In [27], a realistic simulation framework is presented and two decentralised control algorithms
are applied to a group of autonomous quadcopters in a three-dimensional space. One is based on a
simple self-propelled flocking and the other is a collective target tracking algorithm. By conducting a
series of experiments, the authors showed the applicability of their proposal and its stability when
using a repulsion force to avoid collisions and an alignment force to align the heading directions of
neighbours. In [28], the authors studied two informative path planning problems motivated by the
use of robots in precision agriculture. They introduced a new planning problem, which penalises the
time spent in travelling and the time spent for obtaining measurements. UAVs were used to maximise
the number of visited points, and, since they had limited autonomy, they could land on the only UGV
in the system, to be carried between different points without expending battery.

These studies propose mobility strategies which do not include collaborations between swarms
of different types of unmanned autonomous vehicles. Some of them use evolutionary robotics or
communication using pheromones as we do. However, these articles use a different mobility model
and the surveillance scenarios are different from the ones proposed in this paper. Our proposal focuses
on the communication and collaboration between different swarms of vehicles using pheromones and
attractors. It relies on a distributed intra-swarm mobility model [29], which generates unpredictable
trajectories using a chaotic solution of a dynamical system [30], combined with pheromone repel
mobility [31]. The new model we propose is fully parameterised to achieve better coverage results
and these new parameters are calculated by using an EA, specially adapted to optimise the covered
area and foster inter-swarm collaboration. This approach plus the combination of inter-swarm and
intra-swarm mobility, to the best of our knowledge, has not been used before.

3. Attractor Based Inter-Swarm CollaborationS (ABISS)

In this article, we present a new mobility model called ABISS (Attractor Based Inter-Swarm
collaborationS), to be used by swarms of unmanned vehicles, e.g., Unmanned Aerial Vehicles (UAV)
and Unmanned Ground Vehicles (UGV). Having different swarms of robots allows exploring all the
area under surveillance taking advantage of each swarm’s characteristics. For example, UAVs are able
to watch lakes and ponds while UGVs can do it efficiently in dense forests (Figure 1). On the contrary,
UGVs cannot access water surfaces and UAVs have many troubles flying among trees. We call these
areas unreachable zones (UZ) by a given type of vehicle.

Our proposal aims to compensate the limitations of each swarm complementing the unpredictable
trajectories generated at intra-swarm level with inter-swarm collaboration strategies using evolutionary
techniques. These two main components of ABISS are used to efficiently cover all the area
under surveillance.
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Figure 1. Attractor Based Inter-Swarm collaborationS (ABISS). In this example, a UAV swarm explores
a water surface that UGVs cannot access.

3.1. Intra-Swarm Mobility

Each swarm is homogeneous, consisting of the same type of vehicles, which explore the area
under surveillance following unpredictable trajectories. Since unpredictability is needed for avoiding
interception, the CACOC (Chaotic Ant Colony Optimisation for Coverage) algorithm [29] is the
foundation of our intra-swarm mobility model.

CACOC combines a Chaotic Rössler Mobility Model (CROMM) with pheromone repel
mobility [31] to obtain an intra-swarm mobility model in which each vehicle chooses a direction
depending on the pheromone trail that surrounds it. Chaotic mobility generates routes that are
unpredictable for an external observer although the vehicles’ trajectories are still deterministic since
they depend on the initial conditions of the chaotic system. This is extremely valuable in case there are
telemetry issues, allowing the Ground Control Station (GCS) to predict where the vehicles are until
communications are re-established. This is possible since the GCS (and only the GCS) knows the initial
conditions currently selected for the mobility model. Different trajectories can be obtained by selecting
other different initial conditions for the chaotic attractor (we called them scenarios of a case study, see
Section 4.2). Those trajectories are still predictable for the GCS.

Algorithm 1 shows the pseudocode of CACOC where after setting the default current state the
main loop begins. In this loop, the first return map ρ describing a chaotic system (chaotic attractor
obtained by solving a system of differential equations, see [32,33]) is used to replace the random part
of the mobility model, as it was proven to perform better [29]. If there are no pheromones in the
neighbourhood, CROMM is used. CROMM is a purely chaotic model which decides the next move
using an equally divided partition, so that if the first returned map value ρ is less than 1

3 , the vehicle
will move to the right; if ρ is between 1

3 and 2
3 , the vehicle will move to the left; and it will move ahead

otherwise [29].
If pheromones are detected, the amount of them on the right (PR) and left (PL) are calculated and

used to decide the next movement direction, as shown in Table 1. The idea is moving away from
the higher amount of pheromones detected [29], taking into account the value of ρ as a probability.
By doing so, the vehicles tend to avoid revisiting the same area in a short period of time, exploring
more interesting regions until it is time to come back (when the pheromones have evaporated) and
recheck the places already visited. We improved CACOC as intra-swarm mobility model [34,35] and
integrated it into ABISS by optimising its parameters to work with the inter-swarm mobility model.
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Algorithm 1 Pseudocode of CACOC.

procedure CACOC
currentstate←“ahead”
loop

ρ← next value in first return map
if no pheromone sensed in the neighbourhood then

currentstate← CROMM
else

if ρ < PR then
currentstate←“right”

else if ρ < PR + PL then
currentstate←“left”

else
currentstate←“ahead”

end if
move according to the currentstate

end if
end loop

end procedure

Table 1. Pheromone action table.

Probability of Action: Left Ahead Right

PL =
total−le f t

2×total PA = total−ahead
2×total PR =

total−right
2×total

3.2. Inter-Swarm Mobility

In our proposal, vehicles of different types evolve in homogeneous swarms which interact with
each other having a common objective of maximising the covered area (Figure 1). In scenarios where
every vehicle can perform its duty without finding unreachable areas, the collaboration is given by the
pheromone repel model (CACOC). However, when there are unreachable areas, a new extra virtual
element is used to foster the collaboration between swarms. We called it attractor.

Attractors are specific for a given type of vehicles and are left behind when a vehicle finds an
unreachable area, i.e., a UGV finds a water surface and leaves an attractor for UAVs. Following this
example, when a UAV detects this attractor, it might decide to ignore it or, in turn, ignore the possible
pheromone trails and head to the attractor. This decision also depends on the probabilistic model
based on chaotic dynamic systems and the collaboration probability of the model. Since collaboration
implies changing the vehicle’s original trajectory, which might sacrifice the global coverage, improving
the local exploration of unreachable zones is seen by each vehicle as a reward. The collaboration
willingness as well as the rest of parameters of the model are calculated and optimised by the proposed
EA, described in Section 5.1.

The flow diagram of ABISS is shown in Figure 2. It is executed by each vehicle being part of
this distributed system. At each step, a vehicle scans the environment in front of it looking for an
attractor for its own type. If it finds one, a possible collaboration is taken into account according to the
vehicle’s collaboration probability and the next value in the sequence of chaotic solutions, previously
calculated (offline). If the vehicle decides to collaborate, it will move toward the attractor. If not, any
pheromone trail found during the scanning will be taken into account to decide the next moving
direction (intra-swarm). Attractors work as the opposite to pheromones which are repellents. While
pheromones evaporate over time, attractors only disappear when a vehicle reaches them. The new
parameter set used to modify the vehicles’ behaviour and efficiency is described in the next section.
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Figure 2. Flow diagram of ABISS using attractors, chaotic solutions and pheromones. The parameters
affecting each operation are listed next to them.

3.3. Model Parameters

We have defined a set of parameters to control how the vehicles move and how they react and
collaborate. Since pheromones modify the vehicles’ movement, we have parameterised the percentage
of pheromone evaporation (τd) at each step (one second in our study) and the amount of pheromones
left by each vehicle (τr), as depicted in Figure 3a). Since vehicles are able to detect pheromones by
scanning the area they have ahead, we have set two other parameters, namely scanning angle (τa) and
maximum detection distance (τm), as shown in Figure 3b.

(a) Pheromone left by a vehicle. (b) Pheromone scan.

(c) Collaboration between vehicles of different swarms using attractors.

Figure 3. Parameters of ABISS. The UAV has to decide whether to go to explore the water surface
where the UGV has left an attractor because it could not enter.
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Additionally, four other parameters are used when there exist UZs in the area and the inter-swarm
collaboration is possible. Concretely, when a vehicle is diverted because it was unable to enter a zone,
e.g., a water surface, it leaves an attractor to require collaboration to members of other swarms. Then,
when a vehicle in another swarm detects the attractor by scanning the area with an angle (αa) and
depth (αm), it has to decide whether it is willing to collaborate or not, according to the collaboration
probability (πc), as shown in Figure 3c. The pheromones left in UZs (when a vehicle is exploring them)
are also subject to a decay rate (τd), and the initial amount left by a vehicle is controlled by τu.

Table 2 shows the parameters of our mobility model to be optimised by the proposed EA, in order
to maximise the covered area. If we look at the third column, we can see that there are different types
of parameters, which implies having a heterogeneous solution vector. When there are no unreachable
zones, the solution vector consists of the first four parameters in Table 2, i.e., ~x = (τd, τr, τa, τm). These
are the new parameters we have defined for the intra-swarm model. When we optimise the more
complex scenarios having unreachable zones, the solution vector contains all the parameters, including
now the inter-swarm model, i.e., ~x = (τd, τr, τa, τm, πc, αa, αm, τu).

Table 2. Parameters of ABISS to be optimised.

Parameter Symbol Type Units Range

Intra-Swarm

Pheromone decay τd real % [0.01–0.20]
Pheromone radius τr integer cells [0–2]
Pheromone scan angle τa real radians [0.00– π

4 ]
Pheromone scan depth τm integer cells [1–10]

Inter-Swarm

Collaboration probability πc real – [0.00–1.00]
Attractor scan angle αa real radians [0.00– π

4 ]
Attractor scan depth αm integer cells [1–20]
Pheromone in unreachable area τu real % [0.00–1.00]

4. Problem Description

The problem we are addressing in this paper is the intelligent surveillance of a geographical
area to detect possible intruders by maximising the area covered by a multi-swarm of vehicles. The
next sections describe the objective function to be maximised, the problem instances used to test our
proposal and the parameter sensitivity analysis.

4.1. Objective

In our model, the vehicles move by an environment composed by a lattice of 1 × 1-m2 cells,
following the rules of ABISS. Previous studies [36] have validated this cellular approach as a good
representation of real scenarios involving actual drones. Since each vehicle has its own camera, we
calculate the number of cells explored according to the detection zone of each vehicle (a 3× 3-cell square
centred on the vehicle). Having this in mind, the objective function consists in the maximisation of the
number of explored cells with respect to the total amount of cells in the scenario. After configuring the
vehicles, we evaluate each configuration as the percentage of the area visited during the simulation
time (600 s). Concretely, for each case study (see Section 4.2), we calculate its fitness value (phenotype)
for a vehicle configuration (genotype) given, as shown in Equation (1).

F(~x) =
1
η

η

∑
i=1

#o f exploredcells(~x)i
#o f cellsinthescenarioi

, η = #o f scenarios (1)

The fitness function F is calculated for the solution vector ~x, by simulating η scenarios (30 in our
case) to obtain the number of explored cells to be divided by the total number of cells in the scenario
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(it calculates the proportion of explored cells in each scenario i). We evaluate 30 different scenarios
of each case study using the Monte Carlo method [37] to increase the robustness of the configuration
found after the optimisation process. As we are maximising the explored area, the higher is the value
of F(~x), the better.

4.2. Instances

We generated four map layouts to evaluate ABISS and compare it with the parameterised CACOC
(our approach using inter-swarm collaborations vs. inter-swarm only mobility). The first layout does
not include unreachable zones (UZ) and the other three have one zone of dense forest unreachable by
UAVs and another zone consisting of a water surface unreachable by UGVs. These UZ areas represent
18% of the total area available in the maps. Furthermore, we wanted to test our proposal on two
different map sizes, as well as use different numbers of vehicles to address several possible swarm
configurations. Hence, we defined the 12 case studies shown in Table 3. The nomenclature used
consists of the map dimensions and the number of vehicles, followed by the letter z if there are UZs in
the map. Finally, the number next to z corresponds to the map’s layout.

Table 3. Characteristics of the 12 case studies (four without UZs and eight having two UZs).

Case Study Size # UZ # UAV # UGV

50x50.2 50 × 50 0 1 1
50x50.4 50 × 50 0 2 2
100x100.4 100 × 100 0 2 2
100x100.6 100 × 100 0 4 2

50x50.2z1 50 × 50 2 (15 × 15) 1 1
50x50.4z1 50 × 50 2 (15 × 15) 2 2
100x100.4z1 100 × 100 2 (30 × 30) 2 2
100x100.4z2 100 × 100 2 (30 × 30) 2 2
100x100.4z3 100 × 100 2 (30 × 30) 2 2
100x100.6z1 100 × 100 2 (30 × 30) 4 2
100x100.6z2 100 × 100 2 (30 × 30) 4 2
100x100.6z3 100 × 100 2 (30 × 30) 4 2

As explained above, the trajectories followed by the vehicles depend on the chaotic solutions
of a dynamical system. Consequently, these solutions are sensitive to the initial conditions. To take
advantage of this characteristic, we defined 30 different scenarios (instances) of each case study (using
30 different initial conditions for the chaotic attractor), in which the vehicles will move using different
trajectories. As a result, the covered area in each scenario is expected to be also different.

Figure 4a shows a full accessible map (100x100.4), while Figure 4b (100x100.4z1), Figure 4c
(100x100.4z2), and Figure 4d (100x100.4z3) are maps having two unreachable zones, one by UAVs
(green) and the other by UGVs (cyan).
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(a) No UZs. (b) Two UZs, z1 layout.

(c) Two UZs, z2 layout. (d) Two UZs, z3 layout.

Figure 4. Case studies without (a) and with square unreachable zones (b–d). In these examples, there
are four vehicles placed at their starting position in the centre of the map.

4.3. Parameter Sensitivity Analysis

We performed a sensitivity analysis to identify which parameters (factors) are the most important
in our novel model of intra-swarm mobility and inter-swarm collaboration when we measure the total
area covered by vehicles.

We used the method proposed by Morris [38] which is based on computing incremental ratios for
each system’s parameter that are then averaged to determine its importance. This method analyses
the distribution of values by using trajectories of measurement points in the parameters’ space. As a
result, the mean and standard deviation σ of the factor distribution are given. In our study, we used
the revised mean called µ? (the estimate of the mean of the distribution of the absolute values of the
elementary effects), which can be used by itself to provide a reliable ranking [39]. Morris’ method
presents low computation cost compared to others, especially in systems having high number of
parameters as the one analysed here.

After the evaluation of 100 configurations of the model having four parameters (intra-swarm)
and 180 of the one having eight parameters (intra-swarm plus inter-swarm), we obtained the values
of σ and µ? for each parameter, shown in Figure 5a,b, respectively. Note that each evaluation was
performed on the 30 existing instances of 100x100.6z1, which amounts to 8400 evaluations in total.

It can be seen that the pheromone scan angle (τa) and its evaporation rate (τd) have the biggest
influence over the system. Then, when collaborations are possible, its probability (πc) is also reported
as an important parameter, as expected. Surprisingly, the scan depth and angle (τm and αm) are less
decisive, and the pheromone radius (τr) turned out to have the least effect over our mobility model.
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(a) Four parameters model. (b) Eight parameters model.

Figure 5. Parameter sensitivity study (σ and µ?) for the model using four and eight parameters to
modify the behaviour and performance of ABISS.

5. Optimisation Approach

In this section, we propose an Evolutionary Algorithm (EA) to optimise the parameters of ABISS
to maximise the area explored by vehicles. After that, we address the parameterisation of our EA using
an automatic method for algorithm configuration (irace).

5.1. Evolutionary Algorithm (EA)

Our EA is based on a Genetic Algorithm (GA) [40,41], which is an efficient method for solving
combinatorial optimisation problems. Genetic Algorithms simulate processes present in evolution such
as natural selection, gene recombination after reproduction, gene mutation and the dominance of the
fittest individuals over the weaker ones. A typical GA consists of a population of µ individuals from
which a subset is selected using a selection operator. Then, these individuals are recombined using a
crossover operator to obtain a new set of λ individuals based on the original population. After that,
a probabilistic mutation is applied introducing little modifications to the individuals’ chromosome.
Finally, after evaluating the new offspring, the replacement operator selects the fittest to replace the
former population. We have chosen an evolutionary bio-inspired approach for solving this difficult
real problem which requires high evaluation times and has a huge search space that is very difficult
to explore using exhaustive methods. Additionally, there is no analytic equation, thus traditional
methods are not viable. Moreover, since we work with a population of individuals (instead of one
solution at a time), the evaluation of each generation can be easily parallelised, noticeably reducing
execution times. All these reasons as well as its low complexity operations make EA one of the best
options for exploring the search space and solving our optimisation problem [42].

The pseudocode of our EA is shown in Algorithm 2. We designed a generational EA where λ = µ,
i.e., the auxiliary population Q contains the same number of individuals as the population P. The
parameters of EA (to be optimised in Section 5.2) are the number of individuals Ni, the crossover
probability Pc and the mutation probability Pm.

First, after initialising t and Q(0), P(0) is generated by the Initialisation function. To increase the
diversity of P(0), we generated 100µ individuals and selected the µ most different ones according
to their entropy. Then, the main loop is executed while the TerminationCondition is not fulfilled (in
our case, we stop after 100,000 evaluations). Inside the main loop, the Selection operator is applied
to fill the working population Q(t) using Binary Tournament [43]. Next, the Crossover operator is
applied and, after that, the Mutation operator modifies the new offspring slightly. These two operators,
based on the Continuous Genetic Algorithm (CGA) presented in [44], are discussed below. Finally,
after the Evaluation of Q(t) using the evaluation function (Equation (1)), the new population P(t + 1)
is obtained by applying the Replacement operator. To avoid population stagnation and preserve its
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diversity, instead of using elitism [40], we selected the best individual in Q(t) to replace the worst one
in P(t) if it is better (it covers a bigger area), as proposed in [44].

Algorithm 2 Pseudocode of the Evolutionary Algorithm (EA).

procedure EA(Ni, Pc, Pm)
t← ∅
Q(0)← ∅ . Q=auxiliary population
P(0)← Initialisation(Ni) . P=population
while notTerminationCondition() do

Q(t)← Selection(P(t))
Q(t)← Crossover(Q(t), Pc)
Q(t)← Mutation(Q(t), Pm)
Evaluation(Q(t))
P(t + 1)← Replacement(Q(t), P(t))
t← t + 1

end while
end procedure

5.1.1. Crossover Operator

The pseudocode of the crossover operator is shown in Algorithm 3. It is based on the one
presented in [44]. However, we adapted it to our heterogeneous solution vector so that it can work not
only with real values but also with integer ones.

Algorithm 3 Pseudocode of the crossover operator.

function CROSSOVER(Q, Pc)
Q′ ← ∅
for all {~x,~y} ∈ Q do . all the individuals in Q, taken in pairs

~x′ = ~x
~y′ = ~y
if rnd() < Pc then . crossover probability

p← randInt(1, L) . crossing point p, L is the length of the solution vector
for i← p, L do . i goes from p to L

if is_an_int_parameter(i) then . type of the i-th parameter
~x′[i] = ~y[i]
~y′[i] = ~x[i]

else
M← randInt(1, 10)
∆x ← ~x[i]/M
∆y ← ~y[i]/M
~x′[i] = ~x[i] + ∆y − ∆x
~y′[i] = ~y[i]− ∆y + ∆x

end if
end for

end if
Q′ ← Q′ ∪ {~x′,~y′}

end for
return Q′

end function

First, two individuals~x and~y are taken from the population Q and copied to the destination~x′ and
~y′. If a generated random number is less than the crossover probability Pc, the recombination process



Sensors 2020, 20, 2566 12 of 21

begins by selecting the crossing point using another random integer value (p), generated between one
and the length of the solution vector L (four or eight). If the current position (i) corresponds to an
integer parameter (it only takes integer values), the vectors’ values in position i are swapped. On the
contrary, if it is a real-value parameter, the vectors’ values are modified according to another random
integer value (M) by calculating ∆x and ∆y, as shown in Algorithm 3. This process is repeated for the
rest of the individuals in the working population Q (taken in pairs) to obtain the new population Q′.

5.1.2. Mutation Operator

The pseudocode of the mutation operator is shown in Algorithm 4. It is also based on the idea
presented in [44] but in our implementation it has been adapted to our problem characteristics.

Algorithm 4 Pseudocode of the mutation operator.

function MUTATION(Q, Pm)
Q′ ← ∅
for all {~x} ∈ Q do . all the individuals in Q

~x′ ← ~x
for i← 1, L do . i goes from 1 to L (the length of the solution vector)

if rnd() < Pm then . mutation probability
M← randInt(1, 10)
∆← getDelta(~x[i], M)
if rnd() < 0.5 then . increment/decrement

∆ = −1 ∗ ∆
end if
~x′[i]← ~x[i] + ∆

end if
end for
Q′ ← Q′ ∪ {~x′}

end for
return Q′

end function

First, each value of the individual ~x in Q is exposed to mutation according to the mutation
probability Pm. If a component of ~x is selected for mutation, a new M value is randomly calculated
according to a uniform probability distribution. Then, the value of ∆ is obtained according to
Equation (2) taking into account the upper and lower bounds of the parameter associated to each
component of ~x. Note that if the parameter being modified in ~x corresponds to an integer value, ∆ is
rounded before being added to the value of ~x′[i] to preserve the correct parameter type. There also
exists a reduction factor k (Equation (3)) which decreases exponentially the magnitude of the mutation
(Figure 6), using the constant term γ (Equation (4)) so that, at the end of the optimisation process, k is
equal to kmin (0.10 in our study). This allows an initial exploration in the early stages of the algorithm
and a later exploitation of the more promising areas of the search space. Finally, it is randomly decided
(equally probable) to increase or decrease the current value of the parameter being mutated, and the
new individual (now ~x′) is added to the new working population Q′.

∆ =
UpBd(x[i])− LowBd(x[i])

M
× k (2)

k = e
1−t

γ (3)

γ =
1− tmax

ln kmin
(4)
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Figure 6. Evolution of the values of k during the execution of the EA.

5.2. EA Parameter Optimisation

Usually, studies using optimisation algorithms include a parameter tuning stage with the objective
of improving their performance and accuracy over the use of the default values. A manual tuning
approach is frequently found in the literature but it depends on the previous experience of the
researchers and their available resources. Consequently, it is frequently biased and incomplete.

In the present study, we opted to use the package irace [45] as an automatic method for
algorithm configuration. Irace is an implementation of iterated racing procedure which uses Friedman’s
non-parametric two-way analysis of variance by ranks [46]. We defined as the irace’s variables the
parameters of the EA, i.e., the number of individuals (Ni), crossover probability (Pc), and mutation probability
(Pm). Then, we set the number of experiments (irace’s budget) to 500 and the confidence interval for the
elimination test to 0.95. The best configurations obtained after the execution of irace are shown in Table 4
while Figure 7 shows the frequency in which each configuration of parameters was tested.

Table 4. The three best parameter configurations of EA. The configuration chosen is in bold.

Ranking # Individuals Pc Pm Mean Fitness

1st 20 0.92 0.22 0.8020
2nd 10 0.10 0.37 0.7994
3rd 10 0.11 0.36 0.7984

(a) Number of individuals. (b) Crossover probability. (c) Mutation probability.

Figure 7. Frequency of the tests performed during the irace run for: the number of individuals (a);
crossover probability (b); and mutation probability (c).

Besides the best configuration (20 individuals, Pc = 0.92 and Pm = 0.22), a reduced number of
individuals (10), lower crossover probability and higher mutation rate were included in the top three
best-rated candidates shown in Table 4. We believe that the best configuration performed better due to
the fact that 20 individuals improved the sampling of the search space while avoiding a premature
convergence of the EA. We also believe that 50 and 100 individuals required so many evaluations per
generation (fixed number for all the configurations) that the EA was unable to progress in the search of
solutions. Hence, the best configuration seems to be the most balanced solution between execution
time and number of evaluations per generation.
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The rest of parameters of EA are the maximum number of evaluations (100,000) and the analysis
time (600 s). The former was restricted by the long evaluation times and the parallel simulation of 30
scenarios and the latter to take into account the average autonomy of UAVs.

The whole parameterisation was performed in parallel using 28 computing cores. The whole
process took about 5.8 days of computing time. Note that, since the EA is a stochastic algorithm,
irace had to perform several runs to evaluate each configuration with statistical confidence. The total
number of performed runs was 500 and 76 different configurations were tested.

6. Experimental Results

Having performed the parameterisation of our EA, we used this algorithm to optimise ABISS to
maximise area coverage and foster inter-swarm collaborations. We conducted a sanity check comparing
our optimisation results against random search and, after that, an analysis of the results achieved were
carried out taking into account other mobility models.

6.1. Random Search (RS)

We present in this section the Random Search (RS) algorithm to be compared with our EA as the
chosen optimisation algorithm in terms of precision and efficiency.

We can see in Algorithm 5 the pseudocode of RS. This algorithm generates new configurations to
be simulated and evaluated and keeps the best one found along the iterations. Depending on the case
study, the solution vector would be composed of four or eight parameters.

Algorithm 5 Pseudocode of Random Search (RS).

procedure RS
best← Initialisation()
while notTerminationCondition() do

next← getRandomCon f iguration() . 4 or 8 parameters depending on the case study
if F(next) > F(best) then

best← next . The best configuration found so far, is updated
end if

end while
end procedure

First, an initial configuration is calculated and stored as the best configuration found. Then, using
the same TerminationCondition as in EA (100,000 evaluations), new random configurations are generated,
evaluated and compared against the best one found at that moment. If the new configuration happens
to be better (greater fitness), it replaces the current best one (is assigned to best). This process continues
until reaching the maximum number of evaluations (TerminationCondition). The results obtained using
RS are discussed in the next section where they are also compared with EA.

6.2. Coverage Optimisation

The optimisation process consisted of 30 runs of the EA and RS on each case study (720 runs and
100,000 evaluations per run evaluating 30 scenarios simultaneously). The experiments were run in our
simulation environment, and, at the end of the simulation, the fitness value for the configuration being
evaluated was calculated, as explained in Section 4.1.

The results obtained are shown in Table 5 where it can be seen that EA has achieved the best coverage
values in all the case studies and also presented the highest accuracy. RS has found the same maximum
coverage value as EA in 50x50.4. However, this RS’s result is one outlier in the distribution of results that
has been found by chance. This is also supported by the last column of Table 5, which contains the results
of the Wilcoxon’s tests. It shows that the comparison’s results are statistically significant (p-value below
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0.001). Moreover, in Figure 8, the distribution of the results of RS and our EA are shown. They visually
confirm that the range of the values of EA corresponds to a higher area coverage than RS.

It may seem that the improvement of EA against RS (2.8% maximum) does not justify using a
complex evolutionary algorithm for addressing our problem. However, we believe that, if we take into
account that 2.8% represents 280 1 × 1-m2 cells, the extra area covered justifies the effort. Additionally,
EA turn out to be more precise than RS (smaller StDev), having converged to the same minimal value
(probably the minimum) in the three first case studies.

(a) 50x50.2. (b) 50x50.4. (c) 100x100.4.

(d) 100x100.6. (e) 50x50.2z1. (f) 50x50.4z1.

(g) 100x100.4z1. (h) 100x100.4z2. (i) 100x100.4z3.

(j) 100x100.6z1. (k) 100x100.6z2. (l) 100x100.6z3.

Figure 8. Box plots showing the distribution of values (30 runs) of EA and RS after optimising the
proposed 12 case studies. As we are maximising area coverage, the higher the better.
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Table 5. Results of the optimisation process performed by EA and RS and the Wilcoxon p-value of each
statistical test. We report the fitness values obtained from 30 runs of each algorithm on the 12 case
studies (four without UZs and eight having two UZs) comprising 30 instances (scenarios) each (720
optimisation runs in total). Best fitness values are in bold.

Case Study

Fitness Values (30 runs)
Wilcoxon
p-ValueRS EA

Mean StDev Max Mean StDev Max

50x50.2 0.844 2.80 × 10−3 0.847 0.851 0.00 × 100 0.851 0.000
50x50.4 0.944 1.43 × 10−3 0.947 0.947 0.00 × 100 0.947 0.000
100x100.4 0.607 5.24 × 10−3 0.613 0.635 0.00 × 100 0.635 0.000
100x100.6 0.755 7.08 × 10−3 0.766 0.775 2.64 × 10−4 0.775 0.000

50x50.2z1 0.822 5.01 × 10−3 0.829 0.840 2.80 × 10−3 0.846 0.000
50x50.4z1 0.931 2.41 × 10−3 0.936 0.941 1.14 × 10−3 0.944 0.000
100x100.4z1 0.607 3.65 × 10−3 0.619 0.622 3.12 × 10−3 0.629 0.000
100x100.4z2 0.599 3.69 × 10−3 0.606 0.619 3.54 × 10−3 0.629 0.000
100x100.4z3 0.596 4.09 × 10−3 0.605 0.612 2.22 × 10−3 0.618 0.000
100x100.6z1 0.742 4.43 × 10−3 0.756 0.757 2.55 × 10−3 0.761 0.000
100x100.6z2 0.739 5.87 × 10−3 0.750 0.758 2.95 × 10−3 0.764 0.000
100x100.6z3 0.732 5.41 × 10−3 0.745 0.748 3.40 × 10−3 0.754 0.000

All the experiments were performed doing parallel runs in the HPC facilities of the University of
Luxembourg [47]. The total experimentation time was equivalent to 15,709 h (about 655 days).

6.3. Testing the Best Configuration

Having calculated the best combination of parameters for each case study, we tested it individually
on each one of the 30 scenarios to obtain the results shown in Table 6. In addition to the parameter
values, the total coverage obtained is also reported (mean, standard deviation and the best scenario).
Note that the first four scenarios do not have unreachable zones. Consequently, no collaborations are
required and the four last parameters are not needed by the mobility model.

We can observe that the average coverage is always above 60% (we analysed only the first 600 s)
and that the more vehicles, the better, as expected. The small scenario (50 × 50) was explored up to
95.7%, while the big one (100 × 100) obtained a maximum 83.1% of coverage when using six vehicles
(four UAVs and two UGVs).

Table 6. Best configuration for each case study (parameters) followed by the mean, standard deviation
and best coverage obtained when testing them in the 30 corresponding scenarios.

Case Study τd τr τa τm πc αa αm τu
Coverage (%)

Mean StDev Best

50x50.2 0.01 2 0.26 5 – – – – 85.1 2.8 90.3
50x50.4 0.01 2 0.23 4 – – – – 94.7 0.8 95.7
100x100.4 0.01 2 0.22 8 – – – – 63.5 3.1 69.2
100x100.6 0.01 2 0.38 7 – – – – 77.5 2.9 82.0

50x50.2z1 0.01 2 0.36 4 0.21 0.08 18 0.59 84.6 4.2 89.8
50x50.4z1 0.01 2 0.15 4 0.35 0.06 18 0.67 94.4 1.0 95.6
100x100.4z1 0.01 2 0.15 10 0.22 0.19 7 0.88 62.9 2.6 67.8
100x100.4z2 0.01 2 0.34 8 0.24 0.03 7 0.76 62.9 2.7 67.1
100x100.4z3 0.01 2 0.32 6 0.55 0.17 11 0.75 61.8 3.4 67.4
100x100.6z1 0.01 2 0.35 6 0.35 0.28 7 0.26 76.1 3.2 80.7
100x100.6z2 0.01 2 0.35 7 0.33 0.36 3 0.79 76.4 2.7 83.1
100x100.6z3 0.01 1 0.37 7 0.00 0.06 16 0.82 75.4 2.6 80.6
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Regarding the value of the parameters, pheromone decay (τd) has always been equal to the
minimum value (0.01, i.e., one unit per second) which shows the importance of the pheromone
trails, and also the fact that we are not using recent coverage information in the fitness function.
The pheromone radius (τr) has taken always the maximum value (2) except for the last case study,
confirming the importance of the vehicles’ trails, while the scan angle (τa) and depth (τm) have not
shown a clear pattern of behaviour.

When collaboration was possible, its probability (πc) has usually been kept low, except in
100x100.4z3 where it is 0.55. This is an interesting result showing that this strategy was not always
preferred every time an attractor was detected. Another evidence of that is the number of collaborations
which has been also regulated by the attractor scan angle (αa) and depth (αm), although these do not
have a big influence in the system, as shown by the parameter sensitivity study,

Evidence shows that vehicles decided to assist each other just what was strictly necessary to cover
the corresponding UZs, since collaborating implies changing their original trajectory and heading to a
detected attractor. In fact, in 100x100.6z3, despite having the same layout as 100x100.4z3, inter-swarm
collaboration was not chosen as a good strategy by vehicles (πc = 0.0).

6.4. ABISS vs. CACOC

Finally, we present in Table 7 a comparison between the system using only CACOC and when
using ABISS, in the eight case studies having UZs. We report the total coverage and also the specific
coverage of the UZs for each model. The UZ coverage was calculated taking into account only the
cells included in the UZ, while for the total coverage, all the cells were used. Additionally, we include
the coverage values for CACOC0, which is the initial mobility model presented in [29], not using the
parameterisation proposed in our study. CACOC0 uses fixed parameters by design, i.e., τd = 1.0,
τr = 0, τa = 0 and τm = 2.

Table 7. Comparison between the coverage values obtained by the non-collaborative approaches
(CACOC0 and CACOC) and ABISS in case studies having unreachable zones (mean of 30 scenarios).
The improvements achieved by ABISS with respect to CACOC0 and CACOC are also reported. The
second best configuration values are indicated by asterisks. The best results are in bold.

Case Study

Coverages (%)

CACOC0 CACOC ABISS

Total UZ Total UZ Total
Improvement vs.

UZ
Improvement vs.

CACOC0 CACOC CACOC0 CACOC

50x50.2z1 76.4 50.5 80.4 58.1 84.6 +10.7% + 5.2% 70.1 +38.8% + 20.7%
50x50.4z1 89.9 70.9 93.0 83.9 94.4 + 5.0% + 1.5% 88.8 +25.2% +5.8%
100x100.4z1 51.2 12.9 59.8 36.6 62.9 + 22.9% + 5.2% 39.6 + 207.0% + 8.2%
100x100.4z2 47.8 38.3 56.6 57.2 62.9 + 31.6% + 11.1% 67.1 + 75.2% + 17.3%
100x100.4z3 50.4 24.6 57.2 36.7 61.8 + 22.6% + 8.0% 51.5 + 109.3% + 40.3%
100x100.6z1 64.0 25.7 71.9 41.0 76.1 + 18.9% + 5.8% 55.4 + 115.6% + 35.1%
100x100.6z2 62.2 48.5 70.1 71.8 76.4 + 22.8% + 9.0% 77.3 + 59.4% + 7.7%
100x100.6z3 63.7 39.6 75.4 67.4 * 75.3 + 18.2% −0.1% * 65.8 + 66.2% −2.4%

Mean: 63.2 38.9 70.6 56.6 74.3 17.6% 5.3% 64.5 65.8% 13.9%

It can be seen that the parameterised CACOC always outperformed CACOC0 since in the former
the vehicles were customised to each case study. Moreover, ABISS improved both coverage metrics
(Total area and UZ) for almost all case studies. In 100x100.6z3, as mentioned above, the best result is
achieved when not using collaboration between vehicles. We include the second best configuration,
marked by asterisks, to show that the total coverage is only 0.1% lower when using collaborations.
Note that this is not the best solution found by EA, hence the asterisks.
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We have to remember here that the evaluation function takes into account only the total
covered area without including the percentage of the UZs covered during the optimisation process.
Consequently, our results show that the evolving configurations (population of individuals in the
EA) have converged to solutions in which collaboration emerged as an extra reward for the swarm
members trying to cover as much of the area as possible.

7. Conclusions

In this article, we propose a new mobility system for inter-swarm collaboration, called Attractor
Based Inter-Swarm collaborationS (ABISS), to maximise the area covered by unmanned autonomous
vehicles improving the surveillance of restricted zones. Vehicles in our system follow unpredictable
trajectories based on chaotic solutions of dynamic systems, pheromone trails, and use attractors to
request for collaborations where they have found an unreachable zone. We propose an evolutionary
algorithm adapted to this problem and used it to optimise the ABISS’ parameters in 12 case studies (30
scenarios each) comprising different map sizes, number and type of unmanned vehicles, and layouts.
As a result, we obtained different configurations, which improved the coverage of the surveillance
area, promoting collaboration between swarms.

We observed in most of our scenarios an emerging collaboration between vehicles, e.g., UAVs
exploring water surface where a UGV was unable to access. The evolution of the parameters of the
system promoted this altruistic collaboration, in which a vehicle abandons its original trajectory to
explore such an unreachable area. ABISS improved the coverage of entire areas by 5.3% on average (up
to 11.1%), and the exploration of unreachable zones by 13.9% (up to 40.3%), with respect to CACOC
(Chaotic Ant Colony Optimisation for Coverage). In one case study, the strategy chosen by vehicles
did not lead to collaborations, showing that our algorithm is able to find the best solution even in these
rare scenarios. This negligible difference in the total coverage of this case study (0.1%) is related to the
location of the unreachable zones and the initial trajectories of the vehicles. If we compare ABISS with
the basic CACOC0, which cannot be parameterised, the improvements in the coverage are even higher
(17.6% on average and 65.8% in UZs).

Using ABISS as a real world application for surveillance will include an offline setup stage of
about 48 h. It will consist of the optimisation of the vehicles’ parameters according to the characteristics
of the surveillance area and the composition of the swarms, performed by EA. After this, further EA
runs will not be necessary provided the area and the swarms’ components do not change. The use of
different initial conditions for the chaotic attractor will provide diverse vehicles’ trajectories which are
unpredictable for intruders but deterministic for the Ground Control Station.

As a matter of future work, we plan to evaluate our proposal on other scenarios, including also
other types of vehicles such as Unmanned Maritime Vehicles (UMV), and also increase the realism
of our approach adding a realistic communication layer to exchange data related to pheromones and
attractors. Finally, we are also interested in testing this mobility system using real autonomous vehicles
(quadcopters and rovers) having already taken some steps in that direction testing the proposed
trajectories using actual UAVs as well as collaborating with the SIMMS project (SIMMS: Swarm
Intelligent Mission systeMS—https://simms.gforge.uni.lu/).
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