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Abstract: Electromyography (EMG) is commonly used to measure electrical activity of the skeletal
muscles. As exoskeleton technology advances, these signals may be used to predict human intent for
control purposes. This study used an artificial neural network trained and tested with knee flexion
angles and knee muscle EMG signals to predict knee flexion angles during gait at 50, 100, 150, and
200 ms into the future. The hypothesis of this study was that the algorithm’s prediction accuracy
would only be affected by time into the future, not subject, gender or side, and that as time into the
future increased, the prediction accuracy would decrease. A secondary hypothesis was that as the
number of algorithm training trials increased, the prediction accuracy of the artificial neural network
(ANN) would increase. The results of this study indicate that only time into the future affected
the accuracy of knee flexion angle prediction (p < 0.001), whereby greater time resulted in reduced
accuracy (0.68 to 4.62 degrees root mean square error (RMSE) from 50 to 200 ms). Additionally,
increased number of training trials resulted in increased angle prediction accuracy.

Keywords: EMG; prediction; machine learning; joint angle

1. Introduction

Active exoskeletons are devices that augment the performance of the wearer by pro-
viding mechanical assistance using powered actuators [1]. These devices are useful for
rehabilitation as well as for pushing able-bodied individuals beyond their natural abil-
ities [2]. Metabolic cost is often considered the gold standard for assessing lower-limb
exoskeleton performance, given that the overall goal is to improve walking and running
economy [3]. The first exoskeleton known to break the metabolic cost barrier was reported
by Malcolm et al. (2013), which improved walking economy by 6% by using a tethered
pneumatically-actuated ankle exoskeleton on a treadmill [4]. Mooney et al. (2014) then
reported a 10% metabolic cost reduction with walking using an untethered electrically-
actuated ankle exoskeleton on a treadmill [5]. To date, over 20 studies have demonstrated
exoskeleton designs that have improved human walking and running economy through
reductions in metabolic costs [3]. It is without doubt that these studies have thoroughly
advanced the development of exoskeletons. However, continued development into ex-
oskeleton technologies is necessary to reach practicality.

Exoskeleton control is an area of considerable research, given its importance for
metabolic cost reductions and naturalistic operation. In general, an exoskeleton uses
various controllers to map the user’s intent to signals that subsequently drive the actuators
on the exoskeleton. A hierarchical control strategy consisting of high-level, mid-level, and
low-level controllers is often used [6]. The high-level controller is used to perceive the
environment and the user’s locomotive intent, such as standing/walking [7,8], estimation
of incline slopes [9–13], and stair ascent/descent [10,13,14]. Information inferred by the
high-level controller is used to by the mid-level controller, which subsequently translates
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the user’s motion intentions to desired device states (i.e., joint positions, velocities, torque).
Various mid-level controllers determine device states based on gait phases. The simplest
mid-level controllers that consider gait phase would time the actuators based on heel
strike [4,5,15] or toe-off [16] determined using a footswitch. Recent approaches can estimate
gait phase percentages from sensor data in a variety of environments [13,17], which can
subsequently be used to help to optimize exoskeleton actuation to minimize metabolic rate
for a given subject [18]. In lieu of leveraging gait phase information, actuation information
may be inferred based on movements of other body segments [19].

High- and mid-level controllers can infer user intent and track device states using
various sensors including inertial measurement units [20–23], rotary encoders [24], and
electromyography (EMG) [9,25]. EMG measures electrical activity produced by muscle
cells during muscle activation [26], and is commonly used in various biomedical applica-
tions [27] such as occupational ergonomics [28], rehabilitation [29,30], and nutrition [31].
This measurement modality is of particular interest towards naturalistic exoskeleton control
since muscle activation is visible about 100 ms before muscle movement occurs, thereby
able to ‘predict’ human motion [26], which can potentially further reduce metabolic costs.
High-level controllers have inferred discrete actions using EMG measurements, with classi-
fication algorithms [10,32] that often require features [6], or alternative, wavelets [33] to be
pre-computed. Mid-level controllers map EMG measurements into a continuous signal
that is subsequently executed by the low-level controller using regression algorithms. This
can be accomplished using proportional control [25], which multiplies the smoothed and
rectified EMG signal by a constant gain factor as the desired velocity or torque [26]. Alter-
natively, biomechanical models can be used [34–36] to achieve higher fidelity. However,
given the myriad parameters that must be determined, many researchers prefer using a
model-free approach by leverage machining learning.

Mapping EMG measurements to joint positions is a common approach for a regression-
based EMG control scheme for exoskeleton control [37–41]. Lee and Lee (2005) estimated
knee angles from EMG measurements using a combination of a radial basis function neural
network and a multilayer neural network [41]. Aung et al. (2012) estimated shoulder
flexion/extension and abduction/adduction angles from EMG measurements using a
backpropagation neural network [37] Zhang et al. (2012) estimated knee, hip, and knee
joint angles using a back-propagation neural network [40]. Chen et al. (2018) used a deep
belief network that consists of restricted Boltzmann machines to estimate flexion/extension
angles of the hip, knee, and ankle [38]. More recently, deep recurrent neural network [42],
transfer learning [43], random forest [44], and genetic algorithms [45] have been proposed
to estimate joint kinematics of the knee using EMG.

Few studies, however, have leveraged the time shift between the registration of muscle
activity to when movement occurs. Ma et al. (2020) considered time advancing the EMG
signal to increase estimation accuracy [46]. To our knowledge, no studies have investigated
the relationship between estimation accuracy and prediction horizon of EMG signals (e.g.,
the extent to which EMG signals can be time advanced). Understanding this relationship
may enable the use of more accurate but computationally expensive joint estimation and/or
low-level control methods (e.g., model predictive control) to be effectively used to control
exoskeletons in real time.

Therefore, the purpose of this study was to assess the performance of a supervised
learning artificial neural network (ANN) algorithm trained with both knee flexion angle
and knee muscle EMG signals during walking to predict knee flexion angle during walking
at various amounts of time into the future. The primary hypothesis of this study was that
the algorithm’s knee flexion angle prediction accuracy would only be affected by time
into the future and that as time into the future increased, the prediction accuracy would
decrease. A secondary hypothesis was that as the number of algorithm training trials
increased, the prediction accuracy of the ANN would increase.
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2. Materials and Methods

Ten subjects participated in this study (5 males and 5 females, age = 21.5 ± 2.0 yrs,
weight = 64.5 ± 9.8 kg, and height = 166.9 ± 14.5 cm). Subjects reported no history of
chronic pain in the spine or lower extremities in the six months prior to participating in
this study. All study procedures were approved by the Auburn University Institutional
Review Board (IRB), and subjects provided informed written consent before participating.
The experiment took place at the Auburn University Biomechanical Engineering (AUBE)
Laboratory.

Twelve surface EMG electrodes (Delsys Trigno IM, Delsys Inc., Boston, MA, USA) were
placed bilaterally on six thigh muscles. These muscles were the right and left tensor fasciae
latae, rectus femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus
(Figure 1). The placement of these electrodes was consistent with Seniam guidelines [47].
Before placing the electrodes, excessive hair was removed with a small electric hair trimmer
and the skin was cleansed of oils and debris with an alcohol swab to improve the quality of
the recorded signals. A double-sided adhesive was used to secure the sensors and sports
wrap was added over the electrode to help prevent loss of signal connection. Before testing,
the subjects were allowed time to acclimate to the equipment. Raw EMG signals were
collected at 1111 Hz (the maximum capacity of the Delsys Trigno IM sensor) for each of the
twelve channels and fed through a Butterworth filter to remove motion artifacts (<20 Hz)
and high frequency aliasing effects (>500 Hz). These signals were then detrended and
rectified so that the RMS for each muscle could be calculated.
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A ten-camera Vicon motion capture system was used to track a 79 retroreflective
marker set consistent with the work of Andriacchi et al. [48]. The cameras were equally
spaced on the walls around the circumference of the AUBE Lab and at varying heights
and directed such that the capture volume was located at the center of the room. A
Vicon Lock+ box was used to ensure synchronicity between the Vicon motion capture
and the Delsys Trigno sensor signals. Nexus software was used to collect the marker
position at 120 Hz (Version 2.6.1; Vicon Motion Systems Ltd., Oxford Industrial Park,
Oxford, UK). Marker positional data were transferred to Visual3D, where they were filtered
with the default 15 Hz low-pass Butterworth filter to remove noise. Body segments were
created using the marker positions following the International Society of Biomechanics
recommendations [49]. Grood and Stunay’s joint coordinate system was used to calculate
knee flexion [50]. The Visual 3D model of the knee provided all six degrees of freedom, but
knee flexion angle was the only parameter utilized for this study.

Subjects performed 15 walking trials over a distance of approximately twenty feet at a
self-selected pace. Minimal feedback was given in order to capture naturalistic movements.
Collected trials were split into training and testing categories and these categories were
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chosen to counter learning effects. Ten trials were chosen to be treated only as training trials.
The ten training trials were trials one, two, four, five, seven, eight, ten, eleven, thirteen,
and fourteen. The five remaining trials were used to only to test the algorithm accuracy.
This study used the time domain feature for analysis, which is the least computationally
expensive feature in order to decrease the signal analysis time. MATLAB was used to create
Nonlinear Input-Output Time Series Neural Network algorithms trained using Bayesian
Regularization with a single hidden layer of ten nodes and a feedback delay set to two. The
seven input variables for the algorithms were the six EMG signals on a single leg and the
knee flexion angle calculated post hoc with Visual 3D. The algorithms output predictions
of that same knee’s flexion angle estimated at 50, 100, 150, and 200 ms into the future.

Ten algorithms were trained with between 1 and 10 trials for all four prediction times.
The specific trials used for each number of training trials (1–10) was randomized (i.e.,
one trial may have used Trial 8, two trials may have used Trials 1 and 4, etc., Figure 2)
as to prevent any learning effects. This was conducted for both right and left legs for
all ten subjects. This resulted in a total of 800 trained algorithms (10 subjects × 2 legs ×
10 trials × 4 times). Root mean square error (RMSE) was calculated by comparing the
algorithms’ output angle against the motion capture-based calculation of the knee flexion
angle for each data point of that subject’s five testing trials. The averages and standard
deviations of RMSE for a subject’s five testing trials were calculated for each algorithm
for each prediction time and each number of training trials. This resulted in a total of 80
average RMSE values (average of 5 testing trials for 10 subjects × 2 legs × 4 times).
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Figure 2. Example of how four algorithms (algorithm 2–50/100/150/200 ms) were trained for one
side (right or left) for one subject with two randomly selected training trials (Trial 1 and Trial 4 in this
example) out of ten training trials total. This was conducted for both right and left legs for all ten
subjects.

Analysis of variance (ANOVA) of average RMSE values was used to test for the
significance of each prediction variable (subject, gender, leg, and time) and their interactions.
Time was treated as a repeated measures variable. The unadjusted algorithm error data
were found to have fan-shaped residuals (indicating unequal variances by time), thus a
log transformation of the algorithm predictions was used for the ANOVA. This resolved
the equal variance assumption violation. Tukey Honestly Significant Difference (HSD)
post hoc tests were used to evaluate significant differences between conditions for main
effects or interactions that were significant. A logarithmic regression was used to develop
a prediction model for error based on variables identified as significant in the ANOVA
model. The type I error rate (alpha) was set at 0.05 for all tests.

3. Results

ANOVA results demonstrated that the main effect of time was statistically significant
with respect to algorithm predictions (F3,48 = 307.07, p < 0.001). Table 1 provides the results
of the Tukey HSD post hoc tests with a calculated Standard Error for Comparison of 0.07,
Critical Q Value of 3.76, and Critical Value for Comparison of 0.18. Tukey HSD results
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demonstrated that algorithm predictions for each time period were significantly different
from one another (Table 2).

Table 1. Analysis of variance results for subject, gender, leg, and prediction time on logarithmically transformed RMSE data.

Source DF SS MS F p

Sub 4 2.78 0.7

Gender 1 0.25 0.25 0.46 0.53

Error Sub * Gender 4 2.19 0.55

Leg 1 0.1 0.1 1.22 0.3

Gender * Leg 1 0.09 0.09 1.08 0.33

Error Sub * Gender * Leg 8 0.67 0.08

Times 3 42.29 14.1 307.07 <0.001

Gender * Times 3 0.01 0 0.05 0.98

Leg * Times 3 0.03 0.01 0.19 0.9

Gender * Leg * Times 3 0.02 0.01 0.14 0.94

Error Sub * Gender * Leg * Times 48 2.2 0.05

Total 79

Note: SS are marginal (type III) sums of squares. “*” represents interaction between variables.

Table 2. Tukey HSD pairwise comparisons for times showing significance between each time.

Times Mean RMSE (◦) Tukey HSD Grouping

50 ms 0.68 A
100 ms 2.04 B
150 ms 3.38 C
200 ms 4.61 D

Error term used: Sub * Gender * Leg * Times, 48 DF. All four means are significantly different from one another.

ANOVA results revealed that subject, leg, and gender differences were not statisti-
cally significant in terms of the algorithm predictions, nor were any interactions among
these variables. Thus, the final model indicates that the only significant factor relating to
algorithm predictions was time into the future.

Figure 3 shows the regression model with a slope = 5.43 log(RMSE)/s, p < 0.001 and
y-intercept = −0.344 log(RMSE), p < 0.001. The adjusted R2 fit was 0.77. Figure 4 shows the
same data without logarithmic transformation, and Equation (1) shows the corresponding
equation and how to estimate RMSE for with prediction time as the variable.

Figures 5 and 6 show the average RMSE of all the subjects at various prediction times
and the various number of training trials separated by the right and left leg. Both legs
saw a decrease in the prediction error as the number of training trials increased and as the
prediction times were decreased. The reduction in RMSE from a single training trial to ten
training trials for all times and for both legs was fairly consistent with a mean reduction of
52.9 ± 4.0%. Figures 7 and 8 show the standard deviation of the RMSE generally decreased
with an increase in the number of training trials, although some exceptions can be seen
such as the left leg at both 150 and 200 ms.

RMSE = 10(5.43 * time − 0.344) (1)
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Figure 8. Number of training trials effects on average standard deviation of degrees of RMSE in right knee flexion prediction.

Figure 9 shows a box and whisker plot of the RMSE for each of the subjects’ algorithms
trained with one (top) as well as all ten (bottom) available training trials. A similar trend is
seen in both the right and the left leg, with the error and variation of predictions increasing
the further into the future the algorithm attempted to predict. The median errors for both
the right and left leg were reduced 83.7% (4.34 to 0.71 degrees RMSE) and 83.1% (3.82 to
0.64 degrees RMSE), respectively, when comparing 200 to 50 ms at ten training trials.
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4. Discussion

This study investigated the accuracy of an ANN designed to predict future flexion
angles of the knee using EMG measurements and past measurements of knee flexion. Our
root mean square (RMS) errors ranged from <1◦ to >4◦, depending on prediction horizon.
To our knowledge, there are no studies that are directly comparable, given our use of
past measurements of knee flexion angles in addition to EMG measurements. However,
the results of our study are consistent with recent studies that used EMG to predict joint
kinematics of the knee. Li et al. (2019) reported root mean square RMS errors around 5◦

using random forest with principal component analysis. Chen et al. (2018) reported RMS
errors <4◦ using a deep belief network [38]. Ma et al. (2020) reported RMS errors <3.5◦

using a long short-term network with time-advanced features [46]. It is expected that our
prediction is more accurate, given that we leveraged previous measurement of knee flexion
angles as an additional source of information.

The primary hypothesis was supported—the algorithm’s knee flexion angle prediction
accuracy was only affected by time into the future and as time into the future increased, the
prediction accuracy decreased (Table 1, Figures 3 and 4). The secondary hypothesis was
also supported in that as the number of algorithm training trials increased, the prediction
accuracy of the ANN increased (Figures 5 and 6).

Previously reported delays of approximately 100 ms between EMG signal readability
and ensuing motion (Novak and Reiner) provide useful context for the results of this
study [26]. The logarithmic equation derived from Equation (1) indicates that at 100 ms,
approximately 1.58 degrees of RMSE is to be expected. Moreover, all values of average
RMSE in this study at 100 ms into the future have a RMSE less than 5◦ (2.12 ± 0.69 degrees,
minimum: 1.27◦, maximum: 4.00◦). Although these values seem small, the acceptable
amount of error of an actively driven lower-limb exoskeleton while being worn by a user
remains unknown and should be tested empirically. Equation (1) predicts an RMSE of 0.85◦

at 50 ms into the future, which is an improvement from 100 ms; however, computational
speed limitations will undoubtedly determine the utility of values predicted a mere 50 ms
into the future for actively controlled lower-limb exoskeletons.
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The results of this study also demonstrate the benefit of increased training trials on
the predictive algorithm accuracy. Figures 3 and 4 indicate diminishing returns from
added training trials. The greatest benefit is evidently between one and six training trials.
Conversely, there is not a substantial change in prediction accuracy for all times into the
future and for both legs between six and ten training trials. This information will be helpful
in future studies by allowing researchers to focus less on large numbers of training trials
for improved accuracy and instead on other potential areas of improvement such as the
parameters and type of predictive algorithm used and EMG sensor signal quality.

Future work beyond the scope of the current study may include introducing tran-
sitional movements into the training sets, or using techniques such as hyper-parameter
tuning in order to design the optimal machine learning algorithm parameters for the de-
sired prediction time. Further work should also explore whether a single algorithm can be
utilized across an independent population. With the inclusion of multiple subjects or both
of an individual’s legs into a single algorithm, various patterns can be learned in hopes of
making predictions on a subject without the need for their specific individual training data.
Moreover, the finding that time is the only significant factor affecting prediction accuracy
opens the possibility to explore opportunities of using independent sets of data for training
and testing such as inter-subject and inter-leg training and testing.

There are several limitations in this study. We used a relatively benign machine
learning approach to reduce computation expense, given that our primary object was
not necessarily to produce the highest prediction accuracy, but rather to understand the
capability of machine learning algorithms to predict knee joint angles into the future. We
hypothesize that using state-of-the-art techniques such as deep learning approaches will
increase our prediction accuracy. The small sample size and narrow demographics of the
subjects present another limitation. Age, percentage body fat, and activity level could im-
pact the quality of predictions due to their impact on EMG signal quality. Additionally, the
subjects engaged in an established gait cycle. Expanding the predictions to less repeatable
actions will most likely cause the accuracies to decrease if using the same machine learning
method. Further testing should be conducted to determine whether a single walking-based
regression algorithm is sufficient for multiple actions. Furthermore, an area for debate is
whether EMG signals should be mapped to joint angles, joint moments, joint velocities, or
some other control signal for exoskeleton control [6].

5. Conclusions

This study successfully demonstrated the feasibility of employing an ANN to predict
knee flexion angle within a reasonable degree of accuracy. The results of this study show
that only time into the future, not subject, gender, or side, affects algorithm prediction
accuracy. The results also provide the basis for understanding the amount of data needed
to train an angle-predicting algorithm for a given subject as greater than six training
trials added no apparent benefit to predictive accuracy. Although, it remains to be seen
how acceptable these amounts of error are for active lower-limb exoskeleton control and
operator use, the results from predictive algorithms such as what is presented in this
study will benefit powered exoskeleton control design and potentially ultimately result in
improved user–machine interaction.
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