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Abstract: This paper presents a novel approach to the assessment of decision confidence when
multi-class recognition is concerned. When many classification problems are considered, while
eliminating human interaction with the system might be one goal, it is not the only possible option—
lessening the workload of human experts can also bring huge improvement to the production process.
The presented approach focuses on providing a tool that will significantly decrease the amount of
work that the human expert needs to conduct while evaluating different samples. Instead of hard
classification, which assigns a single label to each class, the described solution focuses on evaluating
each case in terms of decision confidence—checking how sure the classifier is in the case of the
currently processed example, and deciding if the final classification should be performed, or if the
sample should instead be manually evaluated by a human expert. The method can be easily adjusted
to any number of classes. It can also focus either on the classification accuracy or coverage of the
used dataset, depending on user preferences. Different confidence functions are evaluated in that
aspect. The results obtained during experiments meet the initial criteria, providing an acceptable
quality for the final solution.

Keywords: confidence classification; confidence functions; multi-class classification; tool condition
monitoring; laminated chipboard

1. Introduction

Ensuring an efficient and smooth flow of production processes can be challenging,
time-consuming, and, at times, also problematic. For example, in the wood industry, from
the many tasks that need to be monitored, some of them will require specialized knowledge
and precision, while others will use up a significant amount of time, and there are quite a
lot of activities that combine all of those features. One of such tasks concerns evaluating the
state of drills in the manufacturing process, which is a subset of problems widely known as
tool condition monitoring. Usually, when manually performed, this task requires stopping
the production process in order to evaluate individual tools. At the same time, a human
expert is required to check used elements, without any indication to its actual state. Due
to that, unnecessary downtime may occur, when it could have been avoided if the entire
process had been, at least partially, automated.

When it comes to tool evaluation, many different approaches have been considered
to either speed up the process, or avoid human intervention in general. For example, the
main focus may include evaluating the state of elements without interrupting the actual
manufacturing process, as presented in [1]. Most basic and commonly used approaches,
such as the one presented in [2], measure different signals, such as vibration, noise, acoustic
emission, cutting torque, feed force, and others, in order to evaluate the tool state. Similar
approaches were used in [3], where data were extracted both from signal and frequency
domains, along with wavelet coefficients, all in order to evaluate the obtained elements
automatically, checking how relevant each item was to the selected problem. Further,
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in [4], the authors used different signals, over a wide range of cutting conditions, using a
back-propagation neural network to predict the flank wear of a drill bit. Another approach
which relies heavily on different sensors is presented in [5]. In this case, various sensors
were used to collect data, which were later integrated using a fuzzy logic model.

While sensor-based approaches are quite widely used, they are not always the best
solutions. First of all, the equipment required to even start taking different measurements
tends to be quite expensive and would also require lengthy calibration, which, if conducted
incorrectly, can affect the resulting accuracy. Furthermore, a setup which contains multiple
sensors might be difficult to integrate into an actual work environment without affecting the
production process. With all those problems, as well as some additional requirements that
might appear in different industries, regarding the desired accuracy or some additional
properties of the final solution, such as limiting the number of critical errors (which
corresponds to any mistakes between border classes of tool wear), a simpler input might
be required.

In some previous works, images were used as a base for drill state evaluation, using
various machine learning algorithms. Such solution was considered in [6,7]. In those
cases, the specialized sensors were dropped entirely, and instead of signals, images of
drilled holes were used for evaluation purposes, requiring only a simple camera to obtain
them. The presented solutions are based mainly on convolutional neural networks (CNNs,
which have the additional advantage of not requiring any specialized, diagnostic features;
those networks are also considered top solutions in the case of image recognition, as
mentioned in [8]). The first of the two approaches uses the data augmentation technique
to achieve dataset expansion without the need for additional samples, combined with a
transferred learning methodology. Accuracy of 93% was achieved here, without the need
for a complicated sensor setup. In the case of the second solution, a classifier ensemble was
used to further increase the overall classification rate, exceeding a 95% accuracy rate. There
are also some recent approaches that incorporate similar methodologies. In [9], various
CNN networks were tested and evaluated to prepare an improved approach that focused
more on limiting critical errors that the classifier makes. In another solution, presented
in [10], a Siamese network was applied to the same problem, which is a new, CNN-based
methodology. In both approaches, the window parameter, which included consecutive
images of holes drilled in sequence, was used to further increase the achieved results.
Finally, in [11], a more time-efficient approach was presented, this time using image color
distribution, with an assumption that, after converting the image to gray-scale, there will
be more pixels with mid-range values within images representing holes drilled by more
used tools. All those solutions achieve high accuracy results and a relatively low amount
of critical errors.

What can be noted is that while most of the presented solutions take into account the
manufacturer requirements, they also have some drawbacks. First of all, in the case of more
difficult examples, the solutions tend to make different errors in the final classification
(some more severe than others). Second of all, the manufacturer cannot easily switch
between different metrics used to evaluate the final solution. Those drawbacks led to
the current approach, in which images are still used as input data, but instead of using
a hard classification model, which assigns classes to each presented example, a more
elastic approach is incorporated. Instead of classifying each sample as belonging to one
of the classes (green for a tool which is new, red for a tool that should be discarded, and
yellow for one that requires further evaluation), a confidence metric is incorporated to
inform the user how exact the current classification is. Samples can then either be further
classified or discarded and assigned to the human expert for that purpose. Furthermore,
the solution can be adjusted to focus either on accuracy or the dataset coverage—since
different industries might have varying requirements in regard to those aspects, such
approach provides the user with more control over how the presented solution works. It
will also allow for easier adaptation to chosen problems.
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The novelty of this work is that it provides a robust way to quantify the uncertainty of
any multi-class classification into a confidence parameter that allows us to discriminate
some observations with low confidence in order to increase performance metrics for the
rest of the observations. This approach allows easily combining human expert knowledge
and algorithm ways of classification and can be added on top of the multi-class classifier.

2. Methodology

In previous work (see [11]), it was noted that while using a set of images converted to
gray-scale, the amount of pixels placed in the mid ranges can be used to evaluate the state
of the drill that was used to prepare the hole shown on each image. The research presented
in this article continues on this assumption, but instead of hard classification, where each
image is assigned a single class, the samples are evaluated in terms of decision confidence.

The presented confidence evaluation process consists of a few steps, involving initial
data processing, model preparation, and the confidence function itself.

2.1. Dataset

The dataset used in the current experiments contained a total of 8526 images showing
holes drilled by steadily declining tools. For the initial class evaluations, the resulting
sample set was manually labeled. In the case of the presented dataset, external corner
wear—W (mm) was used as a decisive factor for assigning a class to each image. This
parameter was measured using a workshop microscope, TM-505 Multitoyo, Kawasaki,
Japan. According to experts in this field, the parameter ranges were established as follows:

• W < 0.2 mm—drill classified as green;
• 0.2 mm < W < 0.35 mm—drill classified as yellow;
• 0.35 mm < W—drill classified as red.

From those images, 3780 were classified as the green class, 2800 samples were classified
as the yellow class, and 1946 represented the red class. Images were chosen as input data,
since, while showing the declining state of the drill (edges tend to be more jagged in the
case of more used tools than in the case of new ones), they do not require a significant
amount of time to obtain, and the acquisition process itself can be adjusted to the specific
needs of each manufacturer. All samples used in the current research were obtained in
cooperation with the Institute of Wood Sciences and Furniture at Warsaw University of
Life Sciences. The summary of the dataset is presented in Table 1 below.

Table 1. Dataset structure.

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Green 840 840 700 840 560 3780
Yellow 420 700 560 560 560 2800

Red 406 280 420 280 560 1946

Total 1666 1820 1680 1680 1680 8526

Holes were drilled with a standard CNC vertical machining center, Busellato Jet
100 (Busellato, Thiene, Italy). To ensure that the entire setup is as close to the potential
manufacturer requirements as possible, the drilled material was a material typically used
in the furniture industry, laminated chipboard U511SM Swiss Krono Group (Swiss Krono
Sp. z o.o., Żary, Poland). The drill used for this application was a 12 mm Faba WP01 (Faba
SA, Baboszewo, Poland) with a tungsten carbide tip. Initial test piece dimensions were
2500 mm × 300 mm × 18 mm. To acquire the actual images, they were later divided into
smaller ones, which were separately photographed. Example fragments representing each
of the recognized classes are presented in Figure 1. Final images, representing one hole
each, were obtained using a custom script, which extracted the desired area and saved it
in separate images with three RGB color channels. The images were stored in the exact
order in which they were made, facilitating easier evaluation of the obtained results, but
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the time series structure of the obtained data was not incorporated into the current solution.
Example images showing the input images used by the presented procedure are shown in
Figure 2.

Figure 1. Images showing photographed samples after division into smaller elements, representing
holes made by drills with different drill wear classifications: green (top), yellow (middle), and
red (bottom).

Figure 2. Images obtained after initial processing which are used as an input to the main procedure:
green (top), yellow (middle), and red (bottom).
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All the images in the current dataset were manually labeled as one of recognized
classes by a human expert and later used by the prepared model.

2.2. Model

Images converted to gray-scale using ITU-R 601-2 luma transform specification were
the input data for the following algorithm steps. During model preparation, the initial
classification based on the overall grouping of pixels was conducted. The initial research
presented in [11] showed that, although the images with holes of degrading quality show
a steady increase in gray pixels (the pixels in each image were divided into three groups
for that process—black for the hole, white for the laminated chipboard surface, and gray
for the hole edge), there is no clear border between each class; hence, the images cannot
be easily classified using only that count. At the same time, the general relation between
the number of gray pixels and the quality of the drilled hole still remained, with images
of holes belonging to the green class having significantly less gray pixels than those that
belonged to the yellow or red classes.

During this initial step, the image preparation was conducted. Original images were
represented in RGB and varied in size (the custom script prepared for this phase focused on
cutting out the fragment of the image containing the hole, with the edges, and with as little
detail from the surrounding sample as possible, but including any jagged parts of the hole
edge). Due to that variation, in the first step, images were resized to 256 × 256 pixels to
make sure that they have a uniform size. Additionally, since the information regarding the
state of the hole edge does not require color values, the images were converted to gray-scale.

The next step involved counting occurrences of each pixel value and normalizing
them to fit in the 0–1 range. This was accomplished by a simple operation of dividing
each pixel count by the total number of pixels in the image. From those counts, an array
containing 256 pixel values was prepared, which was later used as an input to the next part
of the model. This element used Light Gradient Boosting Machine (also LGBM or Light
GBM, described in [12]). LGBM uses tree-based learning, which grows trees vertically, with
the maximal delta loss for leaves, and can handle larger datasets while using less memory.
This approach also focuses on accuracy and has an efficiency parameter used as one of the
main quality indicators. During experiments, 15 rounds of Bayesian optimization were
used to choose and optimize hyperparameters with a multi-log loss metric. Data obtained
from this element were later used in the following steps of the presented procedure.

In order to obtain probabilities with a window size of 1 (meaning that only a single
image is taken into account, and not a sequence of images), the 5-fold cross-validation
method was used. The presented method can also be easily expanded to include larger
windows. Meanwhile, the baseline accuracy for the chosen set of parameters was 0.67 (these
results were obtained in previous work [11], where no feature selection approach with a
window equal to 1 achieved exactly the same result). Given the probabilities’ distribution,
achieved by 5-fold cross-validation, we calculate the confidences for each of the 4 different
confidence functions defined in Section 3. For each of those 4 results, we calculate different
metrics of how well they achieved their goal of measuring confidence, which are also
defined in Section 3. We compare the results of those metrics in Section 4.

2.3. Problem Formulation

The main metrics considered with the current classification model were accuracy
and the number of severe (red–green) errors. In order to increase both of them, several
approaches can be adapted, including using a set of subsequent images instead of single
ones, as conducted in previous authors’ work [9] using window parameters. After that,
the dominant value of all classifications can be used. This method, although it increases
the classification rate in general, is only suitable for some problems, especially since it
complicates the deployment of the classifier into the manufacturing process (the industry
needs to be able to produce subsequent images during production).
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In the current approach, instead of hard classification, where an image is assigned to
one of the recognized classes, an additional class or state was added, making it possible
to return an “I don’t know” or an “undefined” pseudo-class, where some observations
will not be classified at all. Later on, those samples labeled as “undefined” can be further
examined by human experts. While this approach is not fully automatic, it can eliminate
the majority of observations with a clear classification, leaving only harder and more
interesting examples for manual evaluation, possibly resulting in better performance of
the entire solution. The folds are the same as in Table 1; therefore, this process is based
on 5-fold cross-validation. The overall structure of the presented solution is shown in
Listing 1, where classification and calculating confidence are presented, and in Listing 2,
where different confidence metrics are calculated.

Listing 1. Classifying observations, and calculating confidence.

1

2 #Initialize model
3

4 model = LgbmDrillClassifier(size =256x256 ,greyscale=True , window_size =1,
5 hyperparameters_rounds = 15)
6

7 #Calculate predictions using 5-fold cross validatation
8

9 folds = [f1 ,f2,f3,f4 ,f5]
10 predicted_results = []
11 true_results = []
12

13 for (training_folds , test_fold) in enumerate_folds(folds):
14 model.fit(training_folds)
15 predictions = model.predict_trial(test_fold)
16 predicted_results.append(predictions)
17 true_results.extend(test_fold.true_y)
18

19 #Calculate confidence
20

21 confidences = {}
22 confidence_function_names = [’Shannon ’, ’l1=l_inf’, ’l2’, ’Gini’]
23

24 for confidence_name in confidence_function_names:
25 confidences[confidence_name] = calculate_confidence(confidence_name ,
26 predicted_results ,
27 true_results)

Listing 2. Calculating confidence metrics.

1

2 #Calculate metrics that can be used to compare confidence functions
3

4 # Calculate accuracy threshold
5

6 accuracy_threshold_results = {}
7

8 for confidence_name in confidence_function_names:
9 for accuracy_threshold in [0.7, 0.75, 0.80, 0.85, 0.9]:

10 result = calculate_accuracy_threshold(true_results ,
11 predicted_results ,
12 confidences[confidence_name],
13 accuracy_threshold)
14 accuracy_threshold_results[confidence_name] = result
15

16 # Calculate coverage threshold
17

18 coverage_threshold_results = {}
19

20 for confidence_name in confidence_function_names:
21 for coverage_threshold in [0.95 , 0.90, 0.80, 0.70, 0.60]:
22 result = calculate_coverage_threshold(true_results ,
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23 predicted_results ,
24 confidences[confidence_name],
25 coverage_threshold)
26 coverage_threshold_results[confidence_name] = result
27

28 # Calculate weighted accuracy gain
29

30 weighted_accuracy_gain_results = {}
31 for confidence_name in confidence_function_names:
32 result = calculate_weighted_accuracy_gain(true_results ,
33 predicted_results ,
34 confidences[name])
35 weighted_accuracy_gain_results[confidence_name] = result
36

37 # Calculate area under curve
38

39 auc_results = {}
40 for confidence_name in confidence_function_names:
41 result = calculate_auc(true_results ,
42 predicted_results ,
43 confidences[name])
44 auc_results[confidence_name] = result

3. Confidence Function

The approach presented in this paper is based on a confidence function, which will
describe how sure used the model is of the presented classification. The results which have
low confidence can be discarded, hence leaving only those with higher values in that aspect.
By using such filtered samples, it is believed that better results can be obtained when
compared with using the entire dataset with an unsure classification. An ideal situation
will, for example, drop 2% of the least confident results, boosting the actual accuracy by
around 10%.

3.1. Confidence Function Constraints

In order to use some methods as confidence functions, a set of constraints needs to be
defined first. Assume that a result’s probability vector of a multi-classification problem
with a number of classes of n ≥ 3 is given with probabilities obtained using the softmax
function (which is a common practice in neural networks and other models [13]).

To achieve comparable results for different confidence functions, the function should
be able to transform an n element vector of probabilities into a single value in the range
[0.0, 1.0].

The confidence function Con f should satisfy three constraints:

Con f (veq) = 0 (1)

Con f (vunit) = 1 (2)

0 < Con f (v) < 1 ∀v ∈ Vn \ {veq, vunit} (3)

where veq is the probability vector containing equal probabilities, vunit is the probability
vector with all but one element equal to 0, and Vn is the set of all probability vectors with
length n.

Given some confidence threshold t, all observations that have a confidence score lower
than t are categorized with the “undefined” pseudo-class. The coverage c is the fraction of
all observations for some threshold t that are still normally classified, and we will denote
the accuracy of that classification as a. Increasing the threshold should increase accuracy,
but it will decrease coverage.
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3.2. Confidence Function Candidates

While the constraints and some general assumptions for the presented model were
defined, it still requires some candidates for the confidence function to be pointed out. For
the initial approach, a total of three methods were considered: Shannon, Gini, and Norm
confidence, which are outlined below.

3.2.1. Shannon-Based Confidence

Shannon entropy is a good candidate for confidence, as it is used as an inequality
measure [14]. It can be defined as presented in Equation (4).

Con fShannon(vn) = 1.0− Hn(vn) (4)

where vn is an n dimensional probability vector, and Hn is the entropy with a logarithm
base equal to n. It satisfies all constraints because the maximal possible entropy achieved
with veq is 1, and for Hn(vunit), it is 0.

3.2.2. Gini-Based Confidence

Another measure of inequality [15] is the Gini coefficient. In order to satisfy the chosen
constraints, they should be normalized by the Gini coefficient of the unitary vector vunit.
Gini confidence can then be defined as shown in Equation (5).

Con fGini(vn) = Gini(vn)/Gini(vunit) (5)

As Gini(veq) is 0, and maximal inequality is achieved by vunit, this confidence measure
also satisfies all constraints.

3.2.3. Norm-Based Confidence

To use a slightly different approach, the inequality of a given prediction can also be
measured as the distance to the closest unitary vector. In order to satisfy the constraints,
the distance needs to be adjusted, considering the maximal possible distance, which is the
distance from vunit to veq. To choose the distance metric, standard l1, l2, or lin f norms can
be used, as shown in Equation (6).

Con fnorm(vn) = max0≤i≤n(1−
norm(vn − [0, . . . 1i, . . . , 0]n)

norm(vunit − veq)
) (6)

The maximum norm lin f is the baseline comparison of all confidence functions (see
Equation (7)). It is the simplest one of the presented functions, and it just measures the
distance between the maximum probability and 1.0, standardizing it to be between [0.0, 1.0]
so it can fulfill the constraint set.

It is worth noting that with that scaling, lin f -based confidence gives the same re-
sults as l1-based confidence; therefore, a baseline value can be obtained using either of
those functions.

Con fl1 = Con flin f
(7)

3.3. Comparing Confidence Functions

To select the best confidence function, which will be one that maximizes the accuracy
a and coverage c for all thresholds t, a direct comparison of the chosen confidence functions
is required for given model outputs. One additional factor that also needs to be included is
the actual gain the confidence function gives for the current approach. This is achieved by
comparing the confidence threshold accuracy with the default approach which does not
use any confidence at all (default accuracy for the presented model).
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3.3.1. Accuracy Threshold

Since the presented approach aims at being as versatile as possible, it is worth noting
that depending on the specific application, the accuracy constraints might differ, requiring
the solution to achieve specific values in that aspect. For that approach, the best confidence
function would be one that, for the chosen accuracy threshold a, will achieve a confidence
threshold t that it ensures the best coverage c.

In the presented case, the default accuracy of the used classifier is 0.67, and the goal
accuracy is 0.80. The threshold t for Shannon-based confidence is 0.33, which corresponds
to 0.80 accuracy a and 0.55 coverage c. For l2-based confidence, the threshold t will be 0.41
with 0.46 coverage c. Therefore, in that problem, Shannon-based confidence is a better
confidence function than l2-based confidence.

3.3.2. Coverage Threshold

Another approach to this problem would consider, instead, that the confidence func-
tion should maximize the accuracy a for observations above the confidence threshold
t corresponding to a given coverage threshold c. In general, this would correspond to
eliminating the most problematic (1− c) fraction of cases from the set, and maximizing the
accuracy on the rest of the observations.

For example, in the presented model, let us assume a 0.9 coverage threshold is our
goal. With Gini-based confidence, the corresponding confidence threshold t would be 0.42
with accuracy a equal to 0.69. With the same requirements, for l1-based confidence, the
confidence threshold t would be 0.02 with accuracy a of 0.67.

3.3.3. Weighted Accuracy Gain

Weighted accuracy gain measures the weighted sum of the difference between differ-
ent threshold accuracies and default classifier accuracies, as shown in Equation (8).

Wag =
∑1.0

t=0.0(at − a0)× ct

n
(8)

where at is accuracy with a confidence threshold t, a0 is accuracy with a confidence thresh-
old of 0, which corresponds to the baseline classifier accuracy, ct is coverage with a confi-
dence threshold t, and n is the number of thresholds considered.

3.3.4. Confidence Area under Curve

In the case when no accuracy threshold is given, several confidence thresholds can
be checked instead, and the function maximizing both accuracy and coverage should be
chosen. This problem is similar in formulation to the receiver operating characteristic area
under the curve—roc_auc [16]—and we will be using the auc shortcut in the next sections.

The area under the confidence curve (as shown in Figure 3) can be calculated using the
trapezoid rule. The used points were constructed in pairs (a, c) that correspond, respectively,
to accuracy and coverage for each of the confidence thresholds t, from 0 to 1.0. It was
assumed that an accuracy with confidence of 1.0 is also one of the thresholds with the
lowest coverage. The baseline for this is also the accuracy result of the initial model, which
does not include any type of confidence.
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0.0 0.2 0.4 0.6 0.8 1.0
Coverage of observations

0.7

0.8

0.9

1.0

1.1
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0.8372 auc
Shannon based confidence
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Figure 3. Plot presenting confidence curve for Shannon-based confidence, where it achieves a
0.8372 auc score.

4. Results and Discussion

The process of calculating results for different confidence functions is shown in
Listing 2 and is based on the dataset presented in Table 1 using the 5-fold cross-validation
presented in Listing 1.

For each confidence function, different accuracy and confidence threshold functions
were used. There is an expected trade-off between accuracy gain and coverage drop.
For example, the Shannon-based confidence accuracy change is presented in Figure 4a,
represented by the blue line. As it can be seen, it comes with a drop in the coverage, as the
same colored line representing this function in Figure 4b is the lowest one. All norm-based
confidences behave similarly in that aspect. In the case of the general accuracy–coverage,
Shannon-based confidence and Gini-based confidence seem to represent opposite trade-off
values; therefore, their usage should be adjusted accordingly.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence threshold

0.6

0.7

0.8

0.9

1.0

1.1
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cy
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l2
gini

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence threshold
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0.6

0.8

1.0
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Coverage drop for increasing confidence thresholds
shannon
l1=l_inf
l2
gini

(b)

Figure 4. Accuracy (a) and coverage (b) curves for evaluated functions.
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4.1. Comparison of Accuracy Threshold

The main goal of the presented research is to increase the accuracy and keep high
coverage c. The first method of comparison focuses on the coverage of observations that is
kept given some accuracy threshold. The best results for different accuracy thresholds a
were obtained by different functions, with Gini-based confidence being the only exception
to that (see Table 2). The used baseline lin f was the best in two of five cases. While high
accuracy can be obtained, the methods that actually achieve it also need to sacrifice a
significant portion of coverage c. The highest value of coverage for the 90% threshold
was achieved for Shannon-based confidence but covered only 36% of the used dataset.
In comparison, the accuracy rate of 70% was able to cover over 87% of the data for the
l1 = lin f function. It is also worth noting that different functions performed best for different
accuracy thresholds; therefore, some additional improvement can be achieved by using the
best performing function for the current setup.

Table 2. Comparison of dataset coverage for different accuracy thresholds at for each evaluated
confidence function.

Confidence Function at = 0.70 at = 0.75 at = 0.80 at = 0.85 at = 0.90

Shannon 0.8403 0.6586 0.5389 0.4464 0.3611
l1 = lin f 0.8770 0.6929 0.5463 0.4429 0.3500

l2 0.8692 0.6832 0.5493 0.4504 0.3456
Gini 0.8586 0.6661 0.5385 0.4424 0.3554

4.2. Comparison of Coverage Threshold

The problem presented in this paper can also be approached from the coverage
threshold point of view. If the goal of classification, instead of achieving a specific accuracy,
is more focused on including as many samples as possible (with only a specified fraction of
examples being evaluated by a human expert), the coverage threshold approach should
be used. The achieved results for different coverage parameters are presented in Table 3.
In this case, the baseline lin f metric is the best two out of five times. The best results are
obtained for the l2 norm, which wins three out of five times; however, differences for each
coverage threshold c are often negligible.

Table 3. Comparison of accuracy obtained by the evaluated confidence functions for different
coverage thresholds ct.

Confidence Function ct = 0.95 ct = 0.90 ct = 0.80 ct = 0.70 ct = 0.60

Shannon 0.6799 0.6895 0.7063 0.7400 0.7756
l1 = lin f 0.6820 0.6945 0.7175 0.7457 0.7815

l2 0.6807 0.6940 0.7182 0.7486 0.7823
Gini 0.6810 0.6895 0.7123 0.7426 0.7799

4.3. Comparison of Weighted Accuracy Gain

For this metric, the baseline lin f performs significantly worse than the other metrics.
The best result is achieved by Shannon-based confidence, and second place is taken by l2.
Gini-based confidence again is not the best solution. Results for the weighted accuracy
gain comparison are presented in Table 4.

Table 4. Comparison of weighted accuracy gain with different confidence functions.

Confidence Function Weighted Accuracy Gain

Shannon 0.0550
l1 = lin f 0.0491

l2 0.0525
Gini 0.0387
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4.4. Comparison of Area under Confidence Curve

In the case of the area under the confidence curve comparison, the obtained results
are very indecisive, presenting similar qualities for all used functions. As it can be seen
in Figure 5, all curves look very similar, and differences between all norms are negligible.
The baseline confidence norm lin f has the highest auc result of 0.401 (see Table 5), but
differences between the functions are not significant. Further investigation is needed to
check if this is the case for all models.
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(c) l1 = lin f auc 0.8401
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Figure 5. Confidence threshold curves comparison.

Table 5. Comparison of threshold area under the curve with different confidence functions.

Confidence Function Area under Curve

Shannon 0.8372
l1 = lin f 0.8401

l2 0.8399
Gini 0.8395

4.5. Error Rate Evaluation

When it comes to the relation between accuracy and the used coverage threshold,
one additional parameter needs to be evaluated. When it comes to overall requirements
in different industries, usually mistakes between border classes are the most costly ones
(green and red in the case of drill wear classification, which was presented in this paper).
Such errors should be avoided in general, and the coverage parameter presented in this
paper was introduced in order to discard as many unsure examples (for later classification
by a human expert) as possible, in order to increase the classification accuracy and reduce
the number of severe errors. In order to evaluate the impact of coverage on the number of
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critical errors that the classifier makes, the Shannon-based confidence from Figure 3 will
be used.

Figure 6 shows confusion matrixes for three coverage thresholds, starting with the
classification representing the full dataset, and finishing with coverage of 30%. As it can be
seen, while the coverage decreases, the number of critical errors (red–green or green–red)
between border classes diminishes at the same time. For the initial, baseline setup, with full
dataset coverage (which can also be denoted as an approach that does not use confidence
at all), the overall number of critical errors equaled 159, with 80 cases of the red class
classified as green and 59 green samples classified as red. This number decreases to a
total of 45 critical errors when the dataset coverage decreases to 60% (29 red–green and
16 green–red misclassifications). The Shannon-based confidence function mostly removes
observations with the yellow class. With this coverage threshold, we keep 50% of red
observations, 39% of yellow observations, and 78% of green observations. The number of
critical errors is even lower for the 30% coverage threshold, with only four critical errors
(three red–green and one green–red). This threshold removes the yellow observations
almost completely.
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Figure 6. Confusion matrix obtained for different coverage thresholds: full dataset coverage and
a baseline value for the critical error rate (top left), 60% coverage (top right), and 30% cover-
age (bottom).

4.6. Discussion

The problem which confidence calculation is trying to solve can be commonly seen
in our world. The machine learning aid in diagnosing cancer can be a great aid if the
expected accuracy of the used model can be controlled. The coverage threshold can
be adjusted for human resources in different companies, thus allowing easy scaling of
human–computer hybrid systems. It also aligns with the trend of explainable artificial
intelligence [17], where the confidence of each prediction is a very good parameter outlining
the model transparency.
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For the four different confidence functions and the four different metrics, there is
no clear winner. The used baseline lin f -based confidence performed well in three out of
four metrics and thus is a good, robust confidence function. However, if the focus is put
on a particular metric, Shannon-based confidence and l2-based confidence can be better
solutions, depending on the chosen parameters. The Gini coefficient, which is often used as
an inequality metric, performed poor as a confidence function, which is a surprising result.

There are other approaches that are similar to the confidence-based approach pre-
sented in this work. Bayesian networks, as presented in [18], can also be used to dis-
criminate some observations into the “undefined” class. The Bayesian approach requires
changing the underlying parameters into a parameter distribution, and sampling results
from a posterior distribution. This, however, requires deep modification in the underly-
ing model and is considerably slower due to the need for sampling from several differ-
ent distributions.

Another approach that can also incorporate the “undefined” class is fuzzy classifi-
cation [19]. Observations with low membership values with each class can be labeled
as “undefined”. There is also some work that defines confidence in fuzzy classification
terms [20]. The caveat in this approach is that it requires entirely different problem formu-
lations and datasets and thus cannot be easily combined with prior models.

5. Conclusions

In this article, a novel and adaptable classification algorithm was described. While
the presented solution was mainly applied to drill wear classification, it is not limited to
this task. Instead of focusing on hard classification, transferring to assigning a single class
to each example, the method focuses more on evaluating confidence for each considered
sample. While there is no clear winner in the evaluated confidence function set, the
performance of at least one function for each accuracy or coverage threshold was at least
acceptable. For some cases, the differences between different functions were negligible,
while their performance was still satisfactory.

Even in its current state, the presented solution is quite versatile and can be easily
adapted to any number of recognized classes. Furthermore, due to the confidence metrics
applied, the model can be better evaluated in that aspect, pointing out how sure the
classifier is when assigning a certain class to each sample. As an additional feature,
depending on the manufacturer requirements, the method can focus more on obtaining
the required accuracy rate, or covering a chosen fraction of samples. Finally, by discarding
some of the examples, labeling them as too complicated for automatic classification (for
the cases when the metric will show a confidence below the assigned threshold), and
evaluating them by manual experts, the accuracy rate of the entire solution should perform
better, avoiding severe errors which tend to be a problem with fully automatic solutions.
All of the above features expand the available applications of the prepared algorithm.
Additionally, when combined with a possible focus on either accuracy or dataset coverage,
the overall functionality makes the presented solution more suited for various classification
tasks that may appear in the wood and other industries.
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