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Abstract: When deploying a model for object detection, a confidence score threshold is chosen to
filter out false positives and ensure that a predicted bounding box has a certain minimum score.
To achieve state-of-the-art performance on benchmark datasets, most neural networks use a rather
low threshold as a high number of false positives is not penalized by standard evaluation metrics.
However, in scenarios of Artificial Intelligence (AI) applications that require high confidence scores
(e.g., due to legal requirements or consequences of incorrect detections are severe) or a certain level of
model robustness is required, it is unclear which base model to use since they were mainly optimized
for benchmark scores. In this paper, we propose a method to find the optimum performance point of
a model as a basis for fairer comparison and deeper insights into the trade-offs caused by selecting a
confidence score threshold.

Keywords: computer vision; deep neural networks; object detection; confidence score

1. Introduction

Object detection is still a hot topic in academia and industry. The term “object detec-
tion” yields ca. 33,400 search results on Google Scholar (excluding patents and citations)
and arXiv.org lists 410 papers uploaded (title and abstract searched) for 2020. Considering
that many new deployment scenarios of robots become feasible beyond tech/lab demos,
the importance of reliable and robust object detection will increase further. Applications in
e.g., medical sciences or maintenance identification of e.g., aircraft parts impose similarly
high requirements for reliable and robust object detection.

Furthermore, in remote sensing applications reliability and robustness are increasingly
critical as deploying object detection on-board satellites is becoming a necessity. Having an
updated mosaic of the Earth’s surface with a frequency of once per hour and ground sample
distance (GSD) of 5m would require over 1000 petabytes of data per day [1]. Transmitting
this to ground-stations over telemetry is simply infeasible [2]. Thus, it is required to have
only metadata updates of object detection, pattern recognition and anomalies instead of
full-scale raw data transmission. Sensor development has led the way to ground structures
detection [3] and analysis from remote sensing satellite imagery data. One example of this
is bridge dislocation analysis, where a high degree of displacement detection precision is
achieved [4,5]. This gives promise for remote sensing maintenance analysis for power grid
and oil/gas pipelines as well. However, these applications have minimum requirements
with respect to model robustness while maintaining deployability on edge devices. Instance
segmentation is generally preferred in high-aspect-ratio object detection, which is often
prevalent in these applications; however, in some circumstances, where computational
power requirements are limited (e.g., on-board processing) or there is a lack of datasets
classical object detection must do be sufficient enough.
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On the research side, there is a clear focus on new model architectures, loss metrics
(e.g., [6,7]) and loss functions (e.g., [8–11]). These are proposed and published constantly.
However, benchmark datasets used in publications are not growing despite a growing num-
ber of datasets covering the task of 2D (e.g., [12–16]) and 3D object detection (e.g., [17–23]).
Object detection models are primarily evaluated on very few datasets [24]; foremost they
are evaluated on Pascal VOC [25] and COCO (Common Objects in Context) [26]. The for-
mer seems to be used for some form of legacy compliance whereas the latter seems to
be used as the main evaluation baseline. Other datasets for e.g., remote sensing or au-
tonomous driving are often not used in any ablation study—the KITTI dataset [27] might
be an exception here but is mainly used for semantic segmentation.

At some point the research is evaluated for usage in industry. In practice, selecting
a new model for further, application-specific evaluation is usually based on one or a
combination of multiple of these considerations:

• (benchmark) performance metrics (e.g., COCO evaluation results),
• object size or class-specific performance metrics,
• inference speed (e.g., FPS as a function of batch size),
• computational cost/power consumption (e.g., for edge devices),
• source code license.

This often boils down to the usage of provided example scripts and pre-trained
weights to either evaluate a model for scenarios with similar data to what it was trained
on or retraining it for different datasets/tasks. When visualizing a model’s output, it
becomes apparent that a model might actually either produce many false positives or
misses a large number of objects (false negatives). Karol Majek provides a plethora of
model performance examples on a 30 min recording of a drive through Warsaw, Poland
(https://www.youtube.com/c/KarolMajek/videos, accessed on 6 February 2021).

Among other causes, the number of false positives/negatives is highly dependent on
the confidence score threshold chosen. Frequently, the reference confidence score threshold
used is not provided in the paper accompanying a model but must be inferred from the
source code. Unfortunately, these confidence score thresholds are ridiculously low (<5%;
<25% not uncommon) when comparing them to best practices in other fields of data
science and machine learning. We may argue that the confidence score does not represent
a model’s certainty in a strict probabilistic sense but many people, especially third-party
users without expert knowledge, understand it this way.

In the fields of robotics or in medical applications, the consequences of an unreliable
model for object detection are likely to be significantly more severe than e.g., in a deploy-
ment scenario that involves object detection for an online retail store [28–30]. Similarly,
when considering on-board processing on satellites or other edge devices, consequences of
large amounts of false positives and false negatives may render a product or an application
pointless. Therefore, the number of false positives should be as low as possible—ideally
approaching zero, and the number of false negatives should be zero as an object missed in
e.g., several frames in a row might cause severe damage. Given an open-world deploy-
ment scenario, the trade-off between false positives and false negatives is not only about
mitigation using constant retraining of a models deployed, but about finding a suitable
confidence score threshold to mitigate adverse behavior in deployment scenarios.

Therefore, we evaluate a large subset of state-of-the-art models performance at differ-
ent confidence score thresholds, using the standard COCO metrics as well as Probability-
based Detection Quality (PDQ) [30], and propose a method for finding the optimal confi-
dence score for a model as a basis for a fairer model comparison than what is commonly
used (Figure 1). In other words, we propose a method to find the optimal operating point
of a model that could be used to decide what model to choose and what to expect if the
threshold is lowered or increased.

https://www.youtube.com/c/KarolMajek/videos


Sensors 2021, 21, 4350 3 of 21

30 40 50 60 70 80 90
FPS (V100)

34

36

38

40

42

44

46

m
AP

YOLOv4
EfficientDet
RFBNet
YOLOv3+ASFF

Figure 1. Example of a typical graphical model comparison on the COCO test set (data from
Bochkovskiy et al. (2020) [31]).

2. Experimental Setup
2.1. Dataset Selection

The selection of evaluation metrics (Section 2.3) requires that a dataset provides data
suitable for instance segmentation and not just (horizontal) bounding boxes as this is
required by the PDQ.

The COCO dataset is one of the most used and evaluated datasets for object classi-
fication DNN architecture and hyperparameter tuning benchmarks. Previous research
indicates that the COCO dataset is well-suited for model robustness and efficiency anal-
ysis [32]. Since the COCO dataset could be considered to be the reference dataset for
object detection and provides annotations for instance segmentation as well, we consider
it necessary to use it as a basis. Moreover, almost all model architectures are provided
with pre-trained weights on this dataset. This allows for a large selection of models to
investigate the impact of the selection of the confidence score thresholds.

Although there is an abundance of image datasets of objects in forward looking setups
(e.g., the COCO dataset), there is scarcity of over-head datasets usable for specific real-life
and real-time applications on satellites, aircraft and UAV-s. The subset of datasets which
provide annotations for instance segmentation as required by the PDQ metric. Therefore,
the second dataset selected is the TTPLA (Transmission Towers and Power Lines Areal
images) [13] dataset. This dataset contains aerial images captured from an UAV showing
transmission towers and power lines. Therefore, it can be seen as a proxy for multi-purpose
object detection on aerial images. With respect to UAV navigation and control it can be seen
as a dataset for robust detection of obstacles to prevent damage caused by an UAV. Similarly,
it can be seen as an example for inspection work carried out by UAVs. Furthermore, power
lines have a high aspect ratio making this particularly challenging for object detection.
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2.2. Model Selection
2.2.1. COCO

Models are selected differently for both datasets. Models used for evaluation on
the COCO dataset are selected to evaluate a good assortment of state-of-the-art models
whereas TTPLA comes with a few reference models only.

Most object detection models are available pre-trained on the COCO dataset. There-
fore, we choose the COCO val2017 subset as our evaluation basis. These pre-trained models
are likely to be trained on the validation set. However, reported performance differences
between val2017 and test2017 seem to be rather small, and therefore we can use this as
a proxy. We selected a subset of state-of-the-art object detection models based on the
following criteria:

• state-of-the-art results promised in accompanying publications
• deployed commonly in industry and academia
• small models suitable for deployment on edge device
• large models with highest scores despite high hardware requirements

These selection criteria lead to a list of selected models covering a broad range of
different model architectures, approaches and deployment purposes (Table 1). Some
models may use NMS (Non-Maximum Suppression) or SoftNMS [33] to output only the
most suitable boxes whereas others do not. Some models, e.g., ones using SSD (Single Shot
Detector) [34] are limiting their detections per image to 100 bounding boxes by default and
therefore are matching the max. number of bounding boxes considered by the COCO API
for evaluation.

Table 1. Models selected for evaluation.

Model Reference Implementation (accessed on 15 January 2021)

CenterNet [35] https://github.com/tensorflow/models
DETR [36] https://github.com/facebookresearch/detr
EfficientDet [37] https://github.com/google/automl/
Faster R-CNN-MobileNetV2 - https://github.com/youngwanLEE/vovnet-detectron2
Faster R-CNN-Resnet - https://github.com/facebookresearch/detectron2
Faster R-CNN-ResNeXt - https://github.com/facebookresearch/detectron2
Faster R-CNN-VOVNETv2 [38,39] https://github.com/youngwanLEE/vovnet-detectron2,
NanoDet - https://github.com/RangiLyu/nanodet,
RetinaNet [40] https://github.com/tensorflow/models,
RetinaNet-FPN - https://github.com/facebookresearch/detectron2
SSD (MobileNetv2-320) - https://github.com/tensorflow/models
YOLOv2(-,-tiny) [41] https://github.com/AlexeyAB/darknet
YOLOv3(-,-tiny,-SPP) [42] https://github.com/AlexeyAB/darknet
YOLOv4(-,-SAM-MISH) [31] https://github.com/AlexeyAB/darknet
YOLOv4-tiny [43] https://github.com/AlexeyAB/darknet
YOLOv4-P(5-7) [43] https://github.com/WongKinYi/ScaledYOLOv4
YOLOv5(s,m,l,x) [44] https://github.com/ultralytics/yolov5

2.2.2. Models for Selected for Evaluation on TTPLA

We use the reference models provided by the TTPLA publication for resolutions
of 550 × 550 and 700 × 700 pixels as our evaluation baseline. These reference models
use YOLACT [45] with ResNet backbones [46]. Moreover, NanoDet and five models
with different backbones for Faster R-CNN heads are trained for 150 epochs on TTPLA
(resolution 700 × 700 px) for a better comparison. We used default settings provided
by NanoDet and Faster R-CNN models available via detectron2. No mitigation of class
imbalances and additional image augmentation during training was implemented.

https://github.com/tensorflow/models
https://github.com/facebookresearch/detr
https://github.com/google/automl/
https://github.com/youngwanLEE/vovnet-detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/youngwanLEE/vovnet-detectron2
https://github.com/RangiLyu/nanodet
https://github.com/tensorflow/models
https://github.com/facebookresearch/detectron2
https://github.com/tensorflow/models
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/WongKinYi/ScaledYOLOv4
https://github.com/ultralytics/yolov5


Sensors 2021, 21, 4350 5 of 21

2.3. Evaluation Metrics

Two metrics are used to evaluate each model’s performance on the COCO dataset.
This includes the standard COCO evaluation metric as well as the PDQ. On the TTPLA
dataset only the more relevant PDQ metric is used.

With respect to the COCO evaluation metric, we would like to point out a few im-
portant things. The most important thing is that the evaluation function sorts detections
per class by confidence score and considers only the 100 best (highest confidence score)
bounding boxes per image for evaluation. Therefore, it is clear already that if a model
outputs a rather large number of bounding boxes with low confidence scores, then this is
not penalized by the evaluation function.

Due to the nature of the calculation of the mean average precision (mAP) it includes
the recall as well. Since the mean average precision is calculated based on an 11-point inter-
polated precision-recall curve, which is generated using different thresholds for confidence
score, the confidence score is somewhat integrated in the metric. However, the model
output evaluated still depends on what the user selects or uses as the default confidence
score threshold. Combining this with the limited number of bounding boxes used in
evaluation (max. is 100), the incentive to minimize the false positives is low when using
this limit. Furthermore, multiple predicted bounding boxes per ground-truth bounding are
not punished as false positives as long as their IoU score satisfied the IoU threshold used
for evaluation. This is a change compared to the Pascal VOC mAP calculation in which
these bounding boxes are penalized.

In this paper, we consider only the mAP which is averaged with IoU thresholds
between 0.5 and 0.95 at steps of. 0.05. The procedure would be the same if e.g., the mean
average precision of small objects (mAPsmall) would be of interest for selecting a model.

In contrast, the (PDQ Probability-based Detection Quality), introduced by Hall et al. [30],
focuses on a probabilistic evaluation what an object detected is and where it is. The main
reason for choosing this metric is that the PDQ explicitly penalizes false positives and false
negatives and penalizes low confidences scores. Furthermore, it assesses and includes
an average label quality and an average spatial quality and therefore the PDQ explicitly
evaluates whether a model is better at locating or classifying an object.

Similar to the Pascal VOC mAP, the PDQ is calculated as the best match between the
ground-truth labels and the detections. Bounding boxes that are not considered a best
match are counted as false positives.

The label quality is assessed based on a categorical distribution over all class labels.
The spatial quality is measured as a probability distribution of individual pixels against
the ground-truth annotation mask and not the ground-truth bounding box. Therefore,
predicted bounding boxes are not evaluated against ground-truth bounding using the
standard IoU metric. Considering an object of non-rectangular shape parts of this object
are likely to be occupy more space inside a bounding box than other parts. If a detection is
centered more around this part, it will be scored higher than if the detection covers other
parts of the bounding box with a smaller amount for foreground (=object) pixels.

For our purposes we use the PDQ as a proxy as the standard computer vision mod-
els for object detection do not output the required input for PDQ evaluation, namely
quantifying spatial and label uncertainty of a bounding box. We converted the standard
COCO-style predictions to a format suitable for computing the PDQ (https://github.com/
david2611/pdq_evaluation, accessed on 26 February 2021, to convert coco results and
compute the PDQ).

An in-depth analysis of more common object detection model performance evaluation
metrics can be found in Padilla et al. [47].

2.4. Evaluation Process

All models are evaluated on their respective dataset without filtering the model output
by a minimum confidence score if applicable. The output is evaluated using the standard
COCO metrics and the PDQ with minimum confidence score thresholds ranging from

https://github.com/david2611/pdq_evaluation
https://github.com/david2611/pdq_evaluation
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0.0 to 0.95 in steps of 0.05. If a model uses non-maximum suppression, the default IoU
threshold of a model was used and not changed.

3. Results
3.1. COCO Dataset

Evaluating the models selected using the COCO evaluation API for different confi-
dence score thresholds leads to similar results for all models (Figures 2 and 3). The mAP of
a model decreases monotonically with increasing threshold values. The gradient of mAP
drops varies from model to model and with confidence score threshold ranges. At some
threshold value, a more significant drop is observable. Other COCO metrics (mAPsmall,
mAPmedium, mAPlarge, etc.) show similar results though individual models are ranked
differently than in the mAP comparison.

Although most models mAP score drop to (close to) zero mAP at a confidence score
threshold of 0.95, there are a few exceptions. Most notably DETR and models using Faster
R-CNN. These models, especially DETR, show a more constant mAP curve with much
lower gradients from low to high confidence score thresholds.

With lower confidence thresholds, a model outputs a lot more false positives than if
a higher threshold is used. This indicates that the COCO evaluation score seems to not
penalize false positives that much.

0.0 0.2 0.4 0.6 0.8
Confidence Score Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
AP

 (c
oc

o 
va

l2
01

7)

YOLOv2
YOLOv3
YOLOv4
YOLOv4-P5
YOLOv4-P6
YOLOv4-P7
YOLOv4-SAM-MISH
YOLOv5l
YOLOv5x
DETR-R101-DC5
DETR-R50-DC5
EfficientDet-D0
EfficientDet-D1
EfficientDet-D2
EfficientDet-D3
EfficientDet-D4
EfficientDet-D5
EfficientDet-D6
EfficientDet-D7
EfficientDet-D7x
CenterNet-1024-HG104
CenterNet-512-HG104
CenterNet-512-R101
CenterNet-512-R50v2
CenterNet-512-R50v1
RetinaNet-R101-FPN
RetinaNet-R50-FPN
Faster-R-CNN-V2-39-FPN
Faster-R-CNN-V2-57-FPN
Faster-R-CNN-V2-99-FPN
Faster-R-CNN-X101-FPN

Figure 2. COCO mAP results of models selected (bigger models).

This becomes apparent when considering the total number of bounding boxes de-
tected by a model on the COCO val2017 subset. Figure 4 already indicates fundamental
challenges with finding an optimal confidence score threshold as well as evaluating a
model’s performance. Most models show a rather steep gradient approaching the inter-
section between number of ground-truth bounding boxes across all classes in the COCO
val2017 set and the number of predicted bounding boxes across all classes.
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Figure 3. COCO mAP results of models selected (smaller models).
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Sensors 2021, 21, 4350 8 of 21

Assuming a perfect model, this intersection would be at a high confidence threshold
and no false positives or false negatives would be found. In such a case, a very simplified
approach to understand an optimal confidence score threshold would be based on the
assumption that every lower confidence score threshold chosen would result in false
positives whereas and higher threshold would result in false negatives.

Comparing Figures 2–4 shows that there is a higher tolerance for false positives
produced by a model than for false negatives. This clearly indicates that the model
architectures and training processes involved are optimized for the COCO evaluation
function as it penalizes false positives only marginally. In practice, a high and persistent
false positives count can result in similarly poor performance than if a model is not able to
detect objects of interest. A simple example for such a case would be an autonomous robot
not able to perform its task since it might drop into to a safety state constantly because too
many obstacles/objects that should not be harmed might be detected constantly. A similar
adverse scenario might be some form of intrusion detection, either on premises or in orbit
that either detects nothing or triggers so many false alarms that the human responsible to
act on this alarm will simply ignore it.

Computing the PDQ as a function of confidence score threshold leads to a different
kind of curve than the COCO metrics (Figure 5). Using such a PDQ curve, we are ending up
with a confidence score threshold that could be understood as the optimal operating point of
a model. Since the PDQ penalizes false positives and false negatives and incentivizes higher
confidence scores attached to a prediction, the curve could be understood as follows. If a
confidence score threshold lower than for PDQmax is used, false positives are predominantly
penalized, whereas choosing a higher threshold leads to significant penalization of a
model’s performance due to an increasing number of false negatives.
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Figure 5. PDQ curves of selected subset of models.
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Across all models (Figures 6–14), PDQ curves seem to peak at a slightly higher
confidence score threshold than at the respective number of bounding box intersection
curves. This implies that the false negatives count is higher than the false positives count
when selecting a model at PDQmax.
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Figure 6. PDQ results of CenterNet on the COCO dataset.
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Figure 7. PDQ results of DETR on the COCO dataset.
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Figure 8. PDQ results of EfficientDet on the COCO dataset.
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Figure 9. PDQ results of Faster R-CNN on the COCO dataset.
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Figure 10. PDQ results of NanoDet on the COCO dataset.
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Figure 11. PDQ results of RetinaNet on the COCO dataset.
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Figure 12. PDQ results of SSD on the COCO dataset.
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Figure 14. PDQ results of YOLOv{4, 5} on the COCO dataset.

An exception to the general trend of (a)symmetric hill-shaped PDQ curves are the
DETR models (Figure 7). These models output a large number of bounding boxes even at
threshold of 0.8 and therefore, the trade-off between false positives and false negatives is
still rather low when using a high confidence score threshold. Faster R-CNN-based models
also show higher confidence thresholds than most other models evaluated.

The PDQ allows the gaining of more insights into a model’s performance than the
COCO evaluation score. A significant observation is that most models have a high average
label quality, often above 80%, whereas the average label quality is a lot lower (Table 2).
The highest average spatial quality observed at PDQmax is still below 25%. Therefore, we
can conclude that the models evaluated are a lot more suited to tell what an object is and
are less suited to tell us where exactly it is. We must point out that partially these low scores
might also originate from the format conversion to evaluate COCO-style bounding boxes
using the PDQ. However, no model evaluated in the original PDQ publication exceeds an
average spatial score of 45% [30].
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Table 2. COCO metrics comparison at PDQmax.

Model Confidence PDQ(max) Spatial Label mAP(max) mAP ∆mAP mAP50 mAP75 mAPs mAPm mAPl TP FP FN
Threshold (PDQ) (PDQ)

[%] [%] [%] [%] [%] [%] [p.p.] [%] [%] [%] [%] [%]

CenterNet-1024-HG104 40 11.77 21.18 64.03 44.47 34.33 10.14 44.61 38.29 19.80 36.08 44.60 17,590. 4611 19,191
CenterNet-512-R101 45 9.26 17.75 69.31 34.23 27.28 6.96 37.81 29.74 8.10 29.58 44.49 14,781 4169 22,000
CenterNet-512-R50v1 40 7.60 14.72 62.74 31.29 25.35 5.94 36.62 27.87 8.67 27.46 40.44 15,257 6563 21,524
CenterNet-512-R50v2 40 7.11 14.64 62.84 29.53 23.94 5.60 34.39 26.17 7.10 26.07 39.46 13,840 5287 22,941
DETR-R101 95 12.30 17.07 97.41 43.49 35.62 7.87 49.74 38.69 15.14 39.11 53.25 18,136 5194 18,645
DETR-R101-DC5 95 13.96 19.54 97.58 44.90 37.01 7.89 50.81 40.13 16.52 40.74 54.52 18,791 5374 17,990
DETR-R50 95 12.83 18.86 97.44 42.01 33.97 8.04 47.63 36.65 14.18 36.76 52.36 17,387 4553 19,394
DETR-R50-DC5 95 14.07 20.50 97.34 43.27 35.01 8.27 48.59 37.92 15.61 38.65 51.38 18,179 5062 18,602
EfficientDet-D0 40 7.20 13.38 66.97 33.48 27.58 5.91 39.02 30.90 6.00 31.04 47.84 14,249 4567 22,532
EfficientDet-D1 45 8.47 15.03 70.46 39.18 30.92 8.26 41.75 34.64 8.08 35.40 50.42 14,720 3538 22,061
EfficientDet-D2 45 9.54 15.92 70.31 42.52 33.51 9.01 44.65 37.20 12.71 37.71 52.97 16,034 3586 20,747
EfficientDet-D3 45 10.82 16.60 71.75 45.87 36.75 9.12 48.14 40.75 16.15 40.65 55.66 17,634 4065 19,147
EfficientDet-D4 40 11.30 16.65 68.44 49.13 40.64 8.49 53.35 45.07 20.22 45.33 58.99 19,239 4897 17,542
EfficientDet-D5 45 12.01 17.56 71.36 50.45 40.47 9.99 52.52 44.76 21.42 44.67 57.60 18,921 4178 17,860
EfficientDet-D6 45 12.13 17.05 71.67 51.10 41.26 9.85 53.27 45.74 21.98 45.12 59.22 19,631 4415 17,150
EfficientDet-D7 45 12.46 17.37 72.67 53.07 43.05 10.01 55.37 47.32 23.77 47.07 60.67 19,762 4521 17,019
Faster-R-CNN-MobileNetV2 70 8.42 12.63 89.85 33.18 25.98 7.20 39.08 28.90 11.97 27.15 36.25 16,379 6658 20,402
Faster-R-CNN-R101-FPN 75 12.36 16.67 92.84 42.42 34.86 7.55 49.06 39.04 17.06 38.59 48.15 19,174 6048 17,607
Faster-R-CNN-R50-FPN 75 11.51 15.81 92.61 40.52 33.09 7.42 47.39 37.27 15.32 36.52 46.14 18,523 6168 18,258
Faster-R-CNN-V2-19-DW-FPNLite 75 10.01 14.14 91.95 37.08 29.10 7.98 42.89 32.73 14.71 31.54 39.32 17,233 5423 19,548
Faster-R-CNN-V2-19-FPN 75 10.53 14.30 92.20 39.20 31.32 7.88 45.60 34.98 16.34 33.77 42.13 18,209 6011 18,572
Faster-R-CNN-V2-19-FPNLite 75 10.74 14.76 92.41 39.13 31.34 7.79 45.69 34.98 16.39 33.99 42.66 18,132 5900 18,649
Faster-R-CNN-V2-19-Slim-DW 70 8.52 12.50 89.81 32.57 25.52 7.05 39.01 28.46 11.73 26.88 35.16 16,518 6380 20,263
Faster-R-CNN-V2-19-Slim-FPNLite 75 9.40 13.67 91.61 35.40 27.22 8.18 40.51 30.36 13.71 28.41 37.40 16,732 5594 20,049
Faster-R-CNN-V2-39-FPN 75 12.31 16.29 93.06 43.09 35.41 7.69 50.12 39.65 18.61 38.85 47.75 19,408 5916 17,373
Faster-R-CNN-V2-57-FPN 75 12.72 16.64 93.16 43.70 35.97 7.73 50.74 40.10 18.97 39.61 49.25 19,689 6010 17,092
Faster-R-CNN-V2-99-FPN 75 13.11 17.02 93.45 44.59 36.78 7.81 51.50 41.09 18.85 39.97 50.98 19,808 5781 16,973
Faster-R-CNN-X101-FPN 80 12.91 17.20 94.55 43.58 35.78 7.80 49.87 40.13 18.26 38.89 49.07 19,171 5485 17,610
NanoDet-m-320 40 4.25 11.75 57.35 20.57 16.45 4.12 25.70 17.47 2.21 14.40 30.02 10,322 5150 26,459
NanoDet-m-416 40 4.44 10.76 57.34 21.65 17.66 3.99 28.12 18.70 4.08 17.47 28.52 11,974 7035 24,807
NanoDet-m-608 45 4.25 10.60 59.03 18.75 14.29 4.47 23.72 14.79 5.32 17.00 19.42 11,542 6058 25,239
RetinaNet-R101-FPN 55 11.57 19.38 78.03 40.41 32.03 8.38 44.15 35.67 13.92 35.88 44.42 16,700 4287 20,081
RetinaNet-R50-FPN 50 10.67 17.83 75.03 38.69 31.61 7.08 44.32 35.20 14.11 34.80 44.27 17,285 5899 19,496
SSD-MobileNetV2-320 55 3.83 9.79 66.54 20.24 16.35 3.89 25.98 17.43 1.13 11.26 36.49 10,357 7059 26,424
SSD-MobileNetV2-320-FPN 40 3.90 9.55 58.11 22.25 18.49 3.76 29.07 20.22 1.39 17.91 35.03 10,793 5683 25,988
SSD-R101-640 45 7.50 14.61 64.01 35.60 28.28 7.32 39.60 31.83 8.28 30.93 45.02 14,440 4553 22,341
SSD-R152-640 45 7.40 14.39 64.11 35.40 27.99 7.42 39.10 31.36 8.16 30.22 45.63 14,302 4587 22,479
SSD-R50-640 45 6.94 13.82 63.35 34.19 26.79 7.40 37.92 30.25 8.22 28.63 43.29 13,961 4613 22,820
YOLOv2 45 4.45 6.63 68.93 29.39 24.41 4.98 42.13 25.69 6.44 28.16 40.53 14,358 5053 22,423
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Table 2. Cont.

Model Confidence PDQ(max) Spatial Label mAP(max) mAP ∆mAP mAP50 mAP75 mAPs mAPm mAPl TP FP FN
Threshold (PDQ) (PDQ)

[%] [%] [%] [%] [%] [%] [p.p.] [%] [%] [%] [%] [%]

YOLOv2-tiny-320 45 0.88 2.81 67.46 9.54 6.96 2.57 15.69 5.16 0.33 4.64 15.40 5957 8631 30,824
YOLOv2-tiny-416 45 0.90 2.47 66.90 10.53 7.71 2.82 17.75 5.52 0.67 6.75 15.55 6774 9287 30,007
YOLOv2-tiny-608 45 0.86 2.20 64.86 9.59 6.84 2.74 16.93 4.18 1.66 9.16 10.04 7263 9127 29,518
YOLOv3 55 7.18 9.01 88.61 38.84 30.16 8.68 48.99 33.48 16.69 33.11 42.04 17,811 6670 18,970
YOLOv3-spp 40 8.16 10.68 78.20 42.59 33.20 9.39 49.47 38.02 16.96 34.60 48.09 18,121 5426 18,660
YOLOv3-tiny-320 30 1.21 3.85 62.36 8.56 6.23 2.33 11.27 6.46 0.02 1.98 19.19 6513 6668 30,268
YOLOv3-tiny-416 30 1.26 3.57 60.18 9.65 6.68 2.97 12.35 6.49 0.04 4.75 18.52 7423 7047 29,358
YOLOv3-tiny-608 30 1.27 3.59 58.37 9.46 6.20 3.26 11.95 5.67 0.24 9.48 11.93 7811 7261 28,970
YOLOv4 55 12.20 15.72 86.27 50.50 40.13 10.38 54.63 46.24 23.10 46.01 53.27 19,103 3896 17,678
YOLOv4-P5 50 15.45 22.74 77.57 50.75 41.55 9.20 53.43 46.13 21.68 47.06 56.69 20,163 4926 16,618
YOLOv4-P6 50 16.56 23.34 78.62 53.41 44.91 8.49 57.42 49.51 25.83 50.12 60.84 21,455 5451 15,326
YOLOv4-P7 60 17.15 24.58 82.58 54.63 44.25 10.38 55.55 48.65 22.50 50.34 62.37 20,053 3862 16,728
YOLOv4-SAM-MISH 55 13.10 15.42 88.02 55.26 45.23 10.02 61.09 52.34 29.02 51.41 59.89 20673 4097 16,108
YOLOv4-tiny-320 30 3.55 7.45 68.66 20.55 16.03 4.52 27.78 16.73 2.70 17.48 28.83 10,706 5263 26,075
YOLOv4-tiny-416 35 3.70 7.10 70.73 21.97 16.53 5.44 28.64 17.23 4.80 19.91 24.84 11,366 4961 25,415
YOLOv4-tiny-608 40 2.89 6.38 67.50 17.28 12.06 5.22 22.28 11.76 5.86 17.89 11.92 10,486 6737 26,295
YOLOv5l 55 13.24 20.22 78.53 47.34 38.04 9.29 49.62 42.26 18.11 44.25 52.79 18,470 4283 18,311
YOLOv5m 50 11.91 18.51 76.45 43.88 35.66 8.22 47.87 39.45 17.07 41.59 49.02 18,166 4882 18,615
YOLOv5s 45 8.53 14.67 71.02 36.71 28.49 8.23 40.43 31.97 12.44 33.75 38.64 15,788 4614 20,993
YOLOv5x 55 14.05 20.71 79.32 48.66 40.35 8.31 52.55 44.51 20.59 46.16 56.40 19,463 4770 17,318
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3.2. TTPLA Dataset

The results on the TTPLA dataset are similar to the results on the COCO validation
set (Figures 15 and 16). Since TTPLA contains power lines which are objects of with a high
aspect ratio, the object detection task is more challenging than on the COCO dataset. This
is reflected in the PDQ scores which are a lot lower compared to the ones obtained on the
COCO dataset. The shape of the PDQ curves seem to be similar when looking at the Faster
R-CNN-based models whereas e.g., NanoDet shows a peak shifted to lower confidence
score thresholds.

However, excluding the power line predictions from evaluation indicates that Faster
R-CNN-based models seem to generalize a lot better on this dataset than e.g., the ResNet-
based YOLACT reference models as the PDQ values change less though finding the optimal
confidence score threshold seems to be trickier depending on the model architecture used.
This could be caused by filtering out power line detections from evaluation and not
retraining a model without power line objects as the transmission towers are easier objects
to detect.
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Figure 15. PDQ results on TTPLA.
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Figure 16. PDQ results on TTPLA (power lines excluded from evaluation).

4. Discussion

The results indicate that there is at least one better way to evaluate a model’s perfor-
mance than using the COCO evaluation metrics. Furthermore, we propose a PDQ-backed
method to select a suitable confidence score threshold to find a model’s optimal performance.

However, such an optimal setting still comes with trade-offs. Except for the smaller
models and a few larger models, we end up with a TP/FN ratio ranging from 0.8 to 1.4 for
most models at PDQmax. Therefore, we must acknowledge that the number of correctly
detected models and the total amount of missed objects is approximately of the same order
of magnitude. Depending on the deployment case for a particular model, this might have
severe consequences and implications when selecting a model for deployment.

In this paper, we did not compare model performance at PDQmax against FPS explicitly.
However, as a rule of thumb, smaller and faster models perform significantly worse than
larger models. Depending on application-specific requirements when engineering a “tiny”
model for edge device deployment, our findings should be taken into consideration.

In a more general setting, the method proposed solves only a subset of challenges
involved with training and comparing models for object detection. False positives and
missed detections might highly fluctuate based on small changes between consecutive
frames. This might be primarily caused by the issue that most neural network architectures
overfit to texture [48] and are susceptible to small pixel shifts [49]. To some extend this
texture bias can be used for adversarial attacks as well [50–52].

In this paper, we focus on model performance on the COCO and TTPLA datasets.
On different datasets, model performance may vary lot as most of the models evaluated
were developed and designed with the COCO metric as the main design goal. The ranking
of models implied by Figure 5 may change depending on what another dataset a model is
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trained on and how it is trained on a certain dataset. Since we used pre-trained models
provided by reference implementations, we cannot estimate the impact of training method
variations on the results presented in this paper.

Other data driven approaches to estimate model performance or verify a model’s
performance, e.g., a test scenario based on real data or simulated might profit from a more
rigorous metric and model selection process as well.

It might be of further interest to investigate the effects of using different datasets with
significantly less classes but larger variability of objects per class as we would expect for
e.g., an autonomous robot. As most models published are designed for a few benchmark
datasets, it is of interest how the confidence score threshold for PDQmax may change on
other datasets. Furthermore, it would be of interest to investigate how to achieve a better
average spatial score and how a potential integration of the method propose into a model’s
design and training process would lead to more robust models.

5. Related Work

To the best of our knowledge, this is the first paper evaluating the impact of selecting
confidence score thresholds rigorously using standard models for object detection. In a
less rigorous way, this approach was used to find the optimal performance of a single
model [53] for a PDQ-related computer vision competition.

Using f1-scores (e.g., [54]) or similar metrics as a function of confidence score is not
helpful either as these approaches depend on selecting IoU thresholds for evaluation as
well. Any f1 score will depend on selecting IoU thresholds and selecting confidence scores.

Furthermore, using f1 scores with the FP, FN, and TP counts as provided by the
PDQ will lead to confidence score thresholds shifted towards lower thresholds as it only
takes FPs, FNs, and TPs into consideration. Higher confident scores of predictions are
not incentivized.

6. Conclusions

In this paper, we introduce a simple approach to find the optimal confidence score
threshold for fairer model performance comparison. We evaluated a subset of state-of-the-
art models using this approach. At this proposed operating point the trade-offs between
counts of true positives, false positives negatives, and the overall confidence in bounding
boxes detected are minimized. Furthermore, we would like to point out that many models
show a high average label quality but a poor average spatial quality. Therefore, there is
a lot of room for developing better models that can use latest advancements in sensor
technology to provide useful products and services to customers. With respect to edge
devices (e.g., UAV-based, static cameras or orbital sensors), these deployment scenarios are
only feasible if models deployed output predictions with sufficiently good spatial and label
qualities. Deploying models with non-optimal settings renders such applications pointless
as the trade-offs between false negatives, false positives and true positives are too high.

Author Contributions: Conceptualization, S.W. and K.A.; methodology, S.W. and K.A.; experiments,
S.W., S.A., K.A., and T.L.; writing—original draft preparation, S.W., K.A., T.L., S.A. and M.S.; writing—
review and editing, S.W., M.S. and K.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the King Abdulaziz City for Science and Technology (KACST).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the King Abdulaziz City for Science and Tech-
nology (KACST).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 4350 19 of 21

References
1. Lal, B.; de la Rosa Blanco, E.; Behrens, J.R.; Corbin, B.A.; Green, E.K.; Picard, A.J.; Balakrishnan, A. Global Trends in Small Satellites;

Analysis P-3-23; The IDA Science and Technology Policy Institute: Washington, DC, USA, 2017.
2. Kothari, V.; Liberis, E.; Lane, N.D. The final frontier: Deep learning in space. In Proceedings of the 21st International Workshop

on Mobile Computing Systems and Applications, Austin, TX, USA, 3 March 2020; pp. 45–49.
3. You, Y.; Wang, S.; Ma, Y.; Chen, G.; Wang, B.; Shen, M.; Liu, W. Building Detection from VHR Remote SensingImagery Based on

the Morphological Building Index. Remote Sens. 2018, 10, 1287. [CrossRef]
4. Ahlborn, T.M.; Shuchman, R.A.;Sutter, L.L.; Harris, D.K.; Brooks, C.N.; Burns, J.W. Bridge Condition Assessment Using Remote

Sensors; Final Report DT0S59-10-H-00001, USDOT/RITA; Michigan Technological University: Houghton, MI, USA, 2013.
5. Liu, W.; Chen, S.-E.; Hauser, E. Remote sensing for bridge health monitoring. Proc. SPIE Int. Soc. Opt. Eng. 2009. [CrossRef]
6. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–17 June 2019; pp. 658–666.
7. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In

Proceedings of the The AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA, 7–8 February 2020.
8. Welleck, S.; Yao, Z.; Gai, Y.; Mao, J.; Zhang, Z.; Cho, K. Loss Functions for Multiset Prediction. In Advances in Neural Information

Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Associates, Inc.: Red
Hook, NY, USA, 2018; Volume 31.

9. Walder, C.; Nock, R. All your loss are belong to Bayes. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 18505–18517.

10. Lv, Y.; Gu, Y.; Xinggao, L. The Dilemma of TriHard Loss and an Element-Weighted TriHard Loss for Person Re-Identification. In
Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 17391–17402.

11. Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized Focal Loss: Learning Qualified and Distributed
Bounding Boxes for Dense Object Detection. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 21002–21012.

12. Shao, S.; Li, Z.; Zhang, T.; Peng, C.; Yu, G.; Zhang, X.; Li, J.; Sun, J. Objects365: A large-scale, high-quality dataset for object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November
2019; pp. 8430–8439.

13. Abdelfattah, R.; Wang, X.; Wang, S. TTPLA: An Aerial-Image Dataset for Detection and Segmentation of Transmission Towers and
Power Lines. In Computer Vision—ACCV 2020; Ishikawa, H., Liu, C.L., Pajdla, T., Shi, J., Eds.; Springer International Publishing:
Cham, Swizerland, 2021; pp. 601–618. [CrossRef]

14. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object
detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018; pp. 3974–3983.

15. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.
ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

16. Waqas Zamir, S.; Arora, A.; Gupta, A.; Khan, S.; Sun, G.; Shahbaz Khan, F.; Zhu, F.; Shao, L.; Xia, G.S.; Bai, X. iSAID: A Large-scale
Dataset for Instance Segmentation in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 28–37.

17. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuscenes: A
multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11621–11631.

18. Geyer, J.; Kassahun, Y.; Mahmudi, M.; Ricou, X.; Durgesh, R.; Chung, A.S.; Hauswald, L.; Pham, V.H.; Mühlegg, M.; Dorn, S.; et al.
A2d2: Audi autonomous driving dataset. arXiv 2020, arXiv:2004.06320.

19. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2446–2454.

20. Huang, X.; Cheng, X.; Geng, Q.; Cao, B.; Zhou, D.; Wang, P.; Lin, Y.; Yang, R. The apolloscape dataset for autonomous driving. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 12–18
June 2018; pp. 954–960.

21. Liu, Z.; Yuan, L.; Weng, L.; Yang, Y. A high resolution optical satellite image dataset for ship recognition and some new
baselines. In International Conference on Pattern Recognition Applications and Methods; SCITEPRESS: Porto, Portugal, 2017; Volume 2,
pp. 324–331.

22. Lam, D.; Kuzma, R.; McGee, K.; Dooley, S.; Laielli, M.; Klaric, M.; Bulatov, Y.; McCord, B. Xview: Objects in context in overhead
imagery. arXiv 2018, arXiv:1802.07856.

23. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016,
117, 11–28. [CrossRef]

24. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic Object Detection: A Survey.
Int. J. Comput. Vis. 2019, 128, 261–318. [CrossRef]

http://doi.org/10.3390/rs10081287
http://dx.doi.org/10.1117/12.825528
http://dx.doi.org/10.1007/978-3-030-69544-6_36
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.014
http://dx.doi.org/10.1007/s11263-019-01247-4


Sensors 2021, 21, 4350 20 of 21

25. Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2009, 88, 303–338. [CrossRef]

26. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing:
Cham, Swizerland, 2014; pp. 740–755.

27. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

28. Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman, J.; Mané, D. Concrete Problems in AI Safety. arXiv 2016,
arXiv:1606.06565.

29. Sünderhauf, N.; Brock, O.; Scheirer, W.; Hadsell, R.; Fox, D.; Leitner, J.; Upcroft, B.; Abbeel, P.; Burgard, W.; Milford, M.; et al. The
limits and potentials of deep learning for robotics. Int. J. Robot. Res. 2018, 37, 405–420. [CrossRef]

30. Hall, D.; Dayoub, F.; Skinner, J.; Zhang, H.; Miller, D.; Corke, P.; Carneiro, G.; Angelova, A.; Sünderhauf, N. Probabilistic Object
Detection: Definition and Evaluation. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), Snowmass Village, CO, USA, 1–5 March 2020; pp. 1031–1040. [CrossRef]

31. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

32. Shivappriya, S.N.; Priyadarsini, M.J.P.; Stateczny, A.; Puttamadappa, C.; Parameshachari, B.D. Cascade Object Detection and
Remote Sensing Object Detection Method Based on Trainable Activation Function. Remote Sens. 2021, 13, 200. [CrossRef]

33. Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS—Improving Object Detection with One Line of Code. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5562–5570. [CrossRef]

34. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision – ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Swizerland, 2016;
pp. 21–37.

35. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
36. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers.

arXiv 2020, arXiv:2005.12872.
37. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790.
38. Lee, Y.; Hwang, J.W.; Lee, S.; Bae, Y.; Park, J. An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object

Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA,
USA, 14–17 June 2019.

39. Lee, Y.; Park, J. Centermask: Real-time anchor-free instance segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13906–13915.

40. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

41. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

42. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
43. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. arXiv 2020, arXiv:2011.08036.
44. Jocher, G.; Stoken, A.; Borovec, J.; Changyu, L.; Hogan, A.; Diaconu, L.; Ingham, F.; Poznanski, J.; Fang, J.; Yu, L.; et al.

ultralytics/yolov5: v3.1—Bug Fixes and Performance Improvements. Zenodo 2020. [CrossRef]
45. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9157–9166.
46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
47. Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a

Companion Open-Source Toolkit. Electronics 2021, 10, 279. [CrossRef]
48. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards

texture; increasing shape bias improves accuracy and robustness. arXiv 2018, arXiv:1811.12231v1.
49. Zhang, R. Making Convolutional Networks Shift-Invariant Again. In Proceedings of the 36th International Conference on

Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 7324–7334.
50. Wiyatno, R.R.; Xu, A. Physical adversarial textures that fool visual object tracking. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 4822–4831.
51. Yang, C.; Kortylewski, A.; Xie, C.; Cao, Y.; Yuille, A. Patchattack: A black-box texture-based attack with reinforcement learning.

In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 681–698.
52. Wu, Z.; Lim, S.N.; Davis, L.S.; Goldstein, T. Making an invisibility cloak: Real world adversarial attacks on object detectors. In

European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–17.

http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1177/0278364918770733
http://dx.doi.org/10.1109/WACV45572.2020.9093599
http://dx.doi.org/10.3390/rs13020200
http://dx.doi.org/10.1109/ICCV.2017.593
http://dx.doi.org/10.5281/zenodo.4154370.
http://dx.doi.org/10.3390/electronics10030279


Sensors 2021, 21, 4350 21 of 21

53. Ammirato, P.; Berg, A.C. A Mask-RCNN Baseline for Probabilistic Object Detection. arXiv 2019, arXiv:1908.03621
54. Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A Cascaded R-CNN With Multiscale Attention and Imbalanced Samples for Traffic

Sign Detection. IEEE Access 2020, 8, 29742–29754. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2972338

	Introduction
	Experimental Setup
	Dataset Selection
	Model Selection
	COCO
	Models for Selected for Evaluation on TTPLA

	Evaluation Metrics
	Evaluation Process

	Results
	COCO Dataset
	TTPLA Dataset

	Discussion
	Related Work
	Conclusions
	References

