
sensors

Article

A Tactical Conflict Resolution Proposal for U-Space Zu
Airspace Volumes

Jesús Jover , Aurelio Bermúdez * and Rafael Casado

����������
�������

Citation: Jover, J.; Bermúdez, A.;

Casado, R. A Tactical Conflict

Resolution Proposal for U-Space Zu

Airspace Volumes. Sensors 2021, 21,

5649. https://doi.org/10.3390/

s21165649

Academic Editors: Biswajeet Pradhan

and Carlos Tavares Calafate

Received: 25 June 2021

Accepted: 19 August 2021

Published: 22 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Albacete Research Institute of Informatics, University of Castilla–La Mancha (UCLM), Campus Universitario s/n,
02071 Albacete, Spain; jesus.jover@uclm.es (J.J.); rafael.casado@uclm.es (R.C.)
* Correspondence: aurelio.bermudez@uclm.es; Tel.: +34-967-599-200

Abstract: Conflict management between UAVs is one of the key aspects in developing future urban
aerial mobility (UAM) spaces, such as the one proposed in U-Space. In the framework of tactical
conflict management, i.e., with the UAVs in flight, this paper presents PCAN (Prediction-based
Conflict-free Adaptive Navigation). This relatively simple navigation technique predicts the oc-
currence of the conflict and avoids it by modifying the velocity vector of the UAVs involved. The
performance evaluation carried out demonstrates its effectiveness compared to similar techniques,
even in high-density scenarios, while proving a low overhead in flight time or in the distance traveled
by the UAVs to reach their destinations.

Keywords: urban air mobility (UAM); unmanned aerial vehicle (UAV); conflict detection and resolution

1. Introduction

In recent years, interest in Unmanned Aerial Vehicles (UAVs) [1] has grown consider-
ably, given the wide range of possibilities they offer. Within this revolution, it is more than
likely that, in the short or medium term, the airspace of the metropolitan environment will
be shared by “traditional” manned aerial vehicles and UAVs, which will be mainly electric
and will have vertical takeoff and landing capabilities (eVTOL) [2]. These UAVs will fly
autonomously [3] at low or very low altitude levels, covering a wide range of services,
including the transport of goods or people, and contributing to reducing the surface and
sub-surface congestion and the carbon footprint produced by our daily activity. These
scenarios are called Urban Air Mobility/Advanced Air Mobility (UAM/AAM) [4].

Several public and private organizations have begun to restructure the airspace to
integrate UAVs into it. In this sense, the concept of UTM (Unmanned Aircraft System
Traffic Management) has been developed in the United States [5,6], while in Europe, this
initiative has adopted the name U-Space [7,8]. Similar initiatives have appeared in other
geographical areas, such as Korea [9] and Australia [10].

Conflict management is one of the many technical challenges to be solved in this
scenario. Here, a “conflict” is understood as a situation in which two or more UAVs
are at a distance less than a minimum separation predetermined by regulation. This is
a classic problem in traditional Air Traffic Management (ATM) [11], where it is called
Conflict Detection and Resolution (CD&R), and there are already countless resolution
proposals [12,13]. In short, the aim is to avoid the occurrence of a collision between two
aircraft at all costs.

One possible way of classifying conflict management techniques is to differentiate
between those that obtain a priori a set of conflict-free routes or flight plans for the UAVs
and those that detect conflicts during flight and resolve them by modifying the flight plan
of the UAVs involved. Along the same lines, both UTM and U-space distinguish between
strategic (pre-flight) and tactical (in-flight) conflict management.

Within the second group of techniques, there are strategies based on the calculation
of the space of valid velocities that prevent any potential conflict between UAVs, such as

Sensors 2021, 21, 5649. https://doi.org/10.3390/s21165649 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9213-3238
https://orcid.org/0000-0002-3313-4078
https://orcid.org/0000-0002-5170-5743
https://doi.org/10.3390/s21165649
https://doi.org/10.3390/s21165649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165649
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165649?type=check_update&version=2

Sensors 2021, 21, 5649 2 of 19

the popular ORCA (Optimal Reciprocal Collision Avoidance) algorithm [14] and, more
recently, the BBCA (Bounding Box Collision Avoidance) algorithm [15]. Still, there are also
numerous force-based strategies, such as APF (Artificial Potential Field) [16], or swarm
intelligence algorithms, such as PSO (Particle Swarm Optimization) [17]. It is also worth
mentioning the existence of a group of methods, referred to as “sense-and-avoid,” in which
the UAV is equipped with special hardware (LiDAR type) that allows a fast response in
case of imminent collision [18,19].

One of the main characteristics of U-Space is that all operations must be safe. In this
sense, and from the perspective of tactical conflict management, this paper presents a new
proposal for navigating autonomous UAVs in UAM scenarios that manages to avoid any
conflict between them while executing their corresponding flight plans.

Our proposal, called PCAN (Prediction-based Conflict-free Adaptive Navigation), is
based on predicting the conflict based on estimating the future position of the UAVs. To
prevent the occurrence of each predicted conflict, PCAN proceeds to adapt the velocity vec-
tor of the UAVs involved, considering the airspace situation. PCAN works in a centralized
way, from the position, velocity, and destination information of all UAVs flying over the
airspace.

Apart from preventing the occurrence of any conflict between the UAVs in flight,
the proposed algorithm has a low computational cost, which makes it very suitable for
urban mobility environments with a high density of UAVs, where fast response to conflicts
is demanded. Additionally, as we will proof, the overhead (in terms of flight time and
distance traveled by the UAVs) of avoiding all conflict is more than reasonable.

The rest of the paper is structured as follows. Next, Section 2 describes the U-Space
context, as well as different techniques for in-flight conflict management. Then, Section 3
focuses on the detailed description of our proposal. Section 4 includes an analysis of the
PCAN algorithm in various scenarios and its comparison with similar proposals. Finally,
Section 5 presents our conclusions and outlines future works in this line.

2. Background
2.1. Tactical Conflict Management in U-Space

As stated, U-Space is focused on the safe integration of many UAVs into the airspace.
To this end, it plans to introduce a set of services that will be deployed progressively,
based on 4 phases (U1, U2, U3, and U4) with an incremental complexity and level of
integration [8,20].

U-Space services related to tactical conflict management are in phase U2. Very briefly,
a tracking service provides the estimated positions and trajectories of the UAVs. Then,
the monitoring service uses the above information and, if applicable, alerts on potential
conflicts. The tactical conflict resolution service is responsible for modifying the UAV flight
plan. Finally, the emergency management service provides the UAVs involved with the
action to be taken to mitigate the risk.

For UAV/UAS flight, U-Space defines a new Very Low Level (VLL) airspace, which
coexists with the ICAO (International Civil Airspace Organization) A-G airspaces [21]. The
VLL airspace is decomposed into three volumes, X, Y, and Z, which offer different services
and have different access requirements. The main difference between these volumes lies
precisely in the provision of conflict resolution services.

There are no such services in X-type volumes, and the pilot, in whose visual range the
UAV is located (this is known as Visual Line of Sight, or VLOS), is responsible for ensuring
a safe operation. In Y-type volumes, Beyond Visual Line of Sight (BVLOS) flights are
allowed using remote pilots connected to U-Space, with strategic (but not tactical) conflict
resolution services. Operation plans must be approved prior to takeoff. The drawback is
that this can result in large separations between aircraft, both in space and time.

The Z-type volume allows for a higher density of operations, adding tactical conflict
resolution services, which reduce the residual risk of strategic for in- and out-of-visual-
range and autonomous flights. Specifically, and as discussed above, these services should

Sensors 2021, 21, 5649 3 of 19

check for any potential conflict in real-time, based on the current position of all aircraft
(and, if possible, their flight plans), and provide the necessary avoidance instructions to
the aircraft involved in the form of changes in velocity, altitude or course. If the airspace is
controlled by the Air Traffic Service (ATS), it is called a Za volume. As we assume in this
paper, the airspace is controlled by U-Space. It is referred to as a Zu volume.

2.2. Conflict Resolution Techniques for UAV

As discussed, UAV conflict management techniques have traditionally been classified
into proactive (or strategic) and reactive (or tactical). Other possible classifications consider
whether conflict control is centralized or distributed in each UAV or whether there is
communication between UAVs sharing the airspace [22].

Within strategic management, the literature is abundant in collision-free path planning
mechanisms, which have been widely explored for years in mobile robotics. Some of the
most popular ones are visibility graphs, Probabilistic Road Maps (PRM), Rapidly-exploring
Random Trees (RRT), A-Star (A*) and its multiple variants, Ant Colony Optimization
(ACO), Tabu Search (TS), and Voronoi diagrams [23]. In general, all these techniques share
a high computational complexity. In the following, we describe with more detail some of
the techniques for tactical UAV conflict management.

ORCA [14] is a velocity-based conflict avoidance method. These methods are based
on choosing the optimal velocity for a mobile agent (in our case, a UAV) from among all
those velocities that avoid conflict with other mobile agents (called “valid velocities”). Each
agent predicts its future position and nearby agents based on current velocities and, under
this assumption, determines its new velocity according to some optimization criterion. In
ORCA, each agent computes a Velocity Obstacle (VO) with respect to each agent flying
in its environment. The VO includes all the prohibited velocities for the UAV. ORCA
guarantees collision-free navigation in sparse scenarios. In dense scenarios it is possible
not to find a valid velocity. Linear programming techniques are used to solve this problem,
with a medium to high computational cost [24].

BBCA [15] is also a velocity-based mechanism with lower complexity than ORCA and,
therefore, is more appropriate for real-time conflict management. Basically, in BBCA the set
of valid velocities for each UAV is represented by a rectangular area. This area is modified
in each execution of the algorithm (by very simple operations) to avoid conflict with each
of the nearby UAVs. BBCA can avoid any conflict in scenarios with two UAVs, and most of
them in denser scenarios, with a reasonably acceptable overhead on the distance traveled
and the final flight time of the UAVs.

On the other hand, APF [16] is an example of a force-based conflict avoidance method.
These methods simulate particle systems, where each particle exerts a certain force on the
nearest ones. In the case of APF, the motion of each agent is determined by an attractive
force towards its final destination, while the rest of the agents behave as obstacles exerting
repulsive forces on it [25]. The main drawback of these methods is the existence of local
minima that prevents the agents from moving towards their goal and a high computational
cost.

There are also methods based on swarm intelligence, such as PSO [17]. They are
inspired by the behavior of certain animal species, organizing agents into groups that work
together to obtain an optimal solution to the problem of reaching their destinations (while
avoiding conflicts between them). In PSO, obtaining this optimal solution is based on a
continuous optimization problem. The distance of each agent to its destination is iteratively
calculated and shared with the rest of the agents. These algorithms also involve a high
computational cost, not being good candidates for real-time applications with multiple
agents.

Another recent proposal is [26], where conflict management is performed in three
separate stages. The first stage consists of strategic path planning using a PSO-type
algorithm. Later, in a “pre-tactical” stage, it is proposed to delay the start of flights to avoid
unresolved conflicts in the previous stage. Finally, residual conflicts that may appear in

Sensors 2021, 21, 5649 4 of 19

flight are solved using the “hovering” technique, which stops the UAV in the air for the
time necessary to avoid the conflict.

3. Conflict-Free Navigation

This section presents our proposal for conflict-free navigation in UAM scenarios,
which we have named PCAN (Prediction-based Conflict-free Adaptive Navigation). PCAN
aims to avoid any conflict between a set of UAVs in flight, regardless of the airspace
configuration. As the strategy will be based on modifying the velocity vector of the UAVs,
the algorithm should try to introduce as little change as possible in the optimal velocity of
each UAV. We will understand as optimal a solution in which the UAVs fly in a straight
line towards their destination, traveling at the maximum possible velocity (which we call
vmax). We call this strategy the “direct” method or algorithm.

We will base the choice of the new velocity vector for each UAV on the future state
of the airspace. Considering the future position of a set of UAVs, we will decide which
ones should modify their velocity vector and which ones should not to reach a conflict-free
solution. PCAN employs two strategies to modify the velocities: (1) modify the direction of
the velocity vector with a certain angle and (2) modify the modulus of the velocity vector,
reducing the flight velocity below the maximum, but maintaining the direction and sense.
Both modifications will be made on the direct velocity, trying to alter it as little as possible.

From now on, ”airspace” refers to the region of the space where UAVs fly. We assume
that all UAVs fly at the same altitude. Consequently, we tackle conflict detection in the
2D plane, working on an area where UAVs move from their initial position to their final
(or destination) position. Nevertheless, it is possible to run the algorithm in parallel by
using multiple layers at different heights. The criteria for the layer choice are left to the
U-Space service provider and can be very varied (UAV heading, priority, maneuverability,
airspace congestion...). The only requirement is that a UAV must participate in the conflict
management of the layers below the deployment one during vertical takeoff and landing.

Before going into detail, we will introduce some starting definitions and assumptions.

3.1. UAV Dynamic Model

A comprehensive model of the dynamic behavior of a quadcopter-type UAV can be
found in previous work [27]. In the present paper, it is sufficient to apply the simplified 2D
model described below.

Let x =
[
p

.
p
]

be the dynamic state of a UAV, where vectors p =
[
px py

]
∈ P and

.
p =

[
vx vy

]
∈ V, represent its current position and velocity, respectively. Let v =

[
vx vy

]
∈ V

be the commanded (or desired) velocity for that UAV. Then, its dynamic behavior is
modeled by the following first order system:

..
p =

(
v− .

p
)
/τ, being τ the response time

of the system (time employed to achieve the 63% of the desired value). Note that, the
first-order system applies to the velocity of the UAV. However, due to it has been described
with respect to its position, a second-order derivative appears. Figure 1 shows an example.

Under these conditions, the position error experienced by the UAV due to the delay
in following the commanded velocity is e = τ

∣∣v− .
p0
∣∣. The maximum error would occur

in a scenario with both vectors at maximum speed and opposite direction: emax = 2τvmax.
As we will see later, the conflict detection mechanism will consider the error due to the
dynamic behavior of the UAVs, consequently increasing their safety radius.

Let A = {a1,t, a2,t . . . an,t} be the set of aircraft in the airspace at time t. Each element
a = [x R] ∈ A represents the status vector of a UAV, including its dynamic behavior and
a route composed of several waypoints to its destination. Let R = {w1, w2 . . . wm} be an
ordered sequence of waypoints wi ∈ P.

Without loss of generality, we assume that all UAVs behave homogeneously, initially
flying at a predetermined maximum velocity vmax and they are considering a safety radius
r (which delimits their “protected zone”). Figure 2 shows an example.

Sensors 2021, 21, 5649 5 of 19

Sensors 2021, 21, 5649 5 of 19

As we will see later, the conflict detection mechanism will consider the error due to the

dynamic behavior of the UAVs, consequently increasing their safety radius.

(a) (b)

Figure 1. UAV dynamic model. (a) Example of a UAV turning 45° clockwise: the red line shows the ideal trajectory fol-

lowed if the commanded velocity is applied instantaneously (|�̇�𝟎| = |𝐯| = 10 𝑚/𝑠); the blue line shows its dynamic trajec-

tory assuming 𝜏 = 0.5 𝑠. (b) Ideal and real position (every second) of the UAV when turning 45°, 90°, and 135°, respec-

tively.

Let 𝔸 = {𝐚1,𝑡 , 𝐚2,𝑡 … 𝐚𝑛,𝑡} be the set of aircraft in the airspace at time t. Each element

𝐚 = [𝐱 𝑅] ∈ 𝔸 represents the status vector of a UAV, including its dynamic behavior and

a route composed of several waypoints to its destination. Let 𝑅 = {𝐰1, 𝐰2 … 𝐰𝑚} be an

ordered sequence of waypoints 𝐰𝑖 ∈ ℙ.

Without loss of generality, we assume that all UAVs behave homogeneously, initially

flying at a predetermined maximum velocity 𝑣𝑚𝑎𝑥 and they are considering a safety ra-

dius 𝑟 (which delimits their “protected zone”). Figure 2 shows an example.

Figure 2. Two UAVs in the airspace.

With this definition, the optimal behavior for each UAV in ideal airspace (without

restrictions due, for example, to the presence of buildings or no-fly zones) would be to fly

in a straight line towards the next waypoint in its route, at a velocity 𝑣𝑚𝑎𝑥 (what we have

called the direct method). Table 1 shows the implementation of this navigation system,

which is executed periodically. If the UAV would reach the current waypoint before the

next execution (02), it switches to the next waypoint in route (03–04). If multiple UAVs

behave in this way in the same airspace, they may collide in flight.

Figure 1. UAV dynamic model. (a) Example of a UAV turning 45◦ clockwise: the red line shows the ideal trajectory followed
if the commanded velocity is applied instantaneously (

∣∣ .
p0
∣∣ = |v| = 10 m/s); the blue line shows its dynamic trajectory

assuming τ = 0.5 s. (b) Ideal and real position (every second) of the UAV when turning 45◦, 90◦, and 135◦, respectively.

Sensors 2021, 21, 5649 5 of 19

As we will see later, the conflict detection mechanism will consider the error due to the
dynamic behavior of the UAVs, consequently increasing their safety radius.

(a) (b)

Figure 1. UAV dynamic model. (a) Example of a UAV turning 45° clockwise: the red line shows the ideal trajectory fol-
lowed if the commanded velocity is applied instantaneously (|𝐩𝟎| = |𝐯| = 10 𝑚/𝑠); the blue line shows its dynamic trajec-
tory assuming 𝜏 = 0.5 𝑠. (b) Ideal and real position (every second) of the UAV when turning 45°, 90°, and 135°, respec-
tively.

Let 𝔸 = {𝐚 , , 𝐚 , … 𝐚 , } be the set of aircraft in the airspace at time t. Each element 𝐚 = 𝐱 𝑅 ∈ 𝔸 represents the status vector of a UAV, including its dynamic behavior and
a route composed of several waypoints to its destination. Let 𝑅 = {𝐰 , 𝐰 … 𝐰 } be an
ordered sequence of waypoints 𝐰 ∈ ℙ.

Without loss of generality, we assume that all UAVs behave homogeneously, initially
flying at a predetermined maximum velocity 𝑣 and they are considering a safety ra-
dius 𝑟 (which delimits their “protected zone”). Figure 2 shows an example.

Figure 2. Two UAVs in the airspace.

With this definition, the optimal behavior for each UAV in ideal airspace (without
restrictions due, for example, to the presence of buildings or no-fly zones) would be to fly
in a straight line towards the next waypoint in its route, at a velocity 𝑣 (what we have
called the direct method). Table 1 shows the implementation of this navigation system,
which is executed periodically. If the UAV would reach the current waypoint before the
next execution (02), it switches to the next waypoint in route (03–04). If multiple UAVs
behave in this way in the same airspace, they may collide in flight.

Figure 2. Two UAVs in the airspace.

With this definition, the optimal behavior for each UAV in ideal airspace (without
restrictions due, for example, to the presence of buildings or no-fly zones) would be to fly
in a straight line towards the next waypoint in its route, at a velocity vmax (what we have
called the direct method). Table 1 shows the implementation of this navigation system,
which is executed periodically. If the UAV would reach the current waypoint before the
next execution (02), it switches to the next waypoint in route (03–04). If multiple UAVs
behave in this way in the same airspace, they may collide in flight.

Table 1. Direct navigation to the destination.

v = DirectNav(a)

01 [p v {w, R}] = a
02 if |pw| < vmaxtnav & R 6= ∅
03 a = [p v R]
04 {w, ∼} = R
05 end if
06 v = pw

|pw| vmax

Sensors 2021, 21, 5649 6 of 19

From now on, the expression “navigation computation” refers to the operation consist-
ing in assigning to each UAV in the airspace a velocity with which it must move in order
not to cause any conflict. A “valid velocity” for a UAV is a velocity that does not produce
any conflict between it and the rest of the UAVs in the airspace. “Final velocity” is the valid
velocity that each UAV will use to move after the execution of the navigation computation.

UAV movement through airspace occurs in given units of time (e.g., seconds). We
assume that all displacements start simultaneously, but not all of them end at the same
time. This will depend on the initial and final positions of the UAVs, their velocities during
the travel, and the route they take. Navigation computation also occurs in units of time,
with the same unit as UAV movement. We assume that navigation is executed every t units
of travel. We call this parameter tnav. In other words, tnav defines how many time units a
UAV can travel with the same navigation computation.

3.2. Conflict Prediction Mechanism

In this subsection, we will first detail a mechanism to check for the occurrence of a
future conflict between two UAVs. From this, we will describe how to predict whether a
given UAV will be involved in a conflict with any other UAV present in the airspace.

If we assume that a UAV ai maintains its velocity constant, then its position at a future
time t (relative to the current time) is provided by Equation (1):

pi,t = pi,0 + vit (1)

Two UAVs, a1 and a2, present a conflict if |p1p2| < 2r. The system of equations shown
in Equation (2) allows us to determine the existence of a conflict between them, obtaining
the instants and positions of its beginning and end.

p1,t = p1,0 + v1t
p2,t = p2,0 + v2t∣∣p1,tp2,t
∣∣ = 2r

(2)

By solving this system, we obtain the expression shown in Equation (3):(
p2,0 + v2t

)2 −
(
p1,0 + v1t

)2
= 4r2 (3)

which results in a second-degree equation as a function of t. After being solved, several
situations may occur:

• No real root is obtained. This means that the protected zones of both UAVs do not
contact at any time. No conflict situation arises and, therefore, there are not potential
collisions.

• A real root is obtained. This means that the protected zones of both UAVs contact each
other without overlapping, which does not generate a conflict situation either.

• Two real roots, t1 and t2 are obtained. These values indicate the instants of the
beginning and end of the conflict. During this time interval, the protected zones of
both UAVs are partially overlapped. If both roots are positive, the conflict is predicted
in the future. If only one root is negative, a1 and a2 are currently in a conflict situation.
Finally, if both roots are negative, the conflict was resolved in the past, or it never
occurred (the navigation algorithm prevented it).

As an example, Figure 3 shows two UAVs whose trajectories lead to a conflict in the
future.

Sensors 2021, 21, 5649 7 of 19

Sensors 2021, 21, 5649 7 of 19

Finally, if both roots are negative, the conflict was resolved in the past, or it never

occurred (the navigation algorithm prevented it).

As an example, Figure 3 shows two UAVs whose trajectories lead to a conflict in the

future.

Figure 3. Example of conflict prediction (𝑟 = 5 𝑚; 𝑣 = 10 𝑚/𝑠). The two UAVs maintain a conflict

from 𝑡 = 4.83 𝑠 (solid lines) to 𝑡 = 5.63 𝑠 (dotted lines).

Table 2 presents the implementation of the conflict prediction operation between two

UAVs. If the ConflictPrediction function is given a velocity, the prediction is performed

using this value (lines 04–06). Otherwise, the velocity previously assigned to the UAV will

be used (03). We will use this function later to check whether a velocity is suitable for

resolving a conflict before assigning it to a UAV. Then, the system of equations is imple-

mented in the variable 𝐭𝑐 (07–09) and its roots are computed (10). If any real root results

(11), 𝑡𝑐 will be the smallest of them (12). If no real root exists, 𝑡𝑐 would be assigned to ∞

(14).

Table 2. Conflict prediction between two UAVs.

 𝒕𝒄 = 𝐂𝐨𝐧𝐟𝐥𝐢𝐜𝐭𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧(𝐯, 𝐚𝟏, 𝐚𝟐)

01 assume 𝑟

02 [𝐩1𝐯1~] = 𝐚1

03 [𝐩2𝐯2~] = 𝐚2

04 if v ~= null

05 𝐯2 = 𝐯

06 end if

07 𝐭2 = (𝐯1 − 𝐯2)2

08 𝐭1 = 2(𝐩1 − 𝐩2)(𝐯1 − 𝐯2)

09 𝐭0 = (𝐩1 − 𝐩2)2 − 4𝑟2

10 𝐭𝑐 = roots([𝐭2𝐭1𝐭0])

11 if isreal(𝐭𝑐) & 𝐭𝑐 > 0

12 𝑡𝑐 = min(𝐭𝑐)

13 else

14 𝑡𝑐 = ∞

15 end if

To predict whether a particular UAV will be involved in a conflict, we can use the

conflict prediction operation just described (see Table 2), using as arguments the UAV

Figure 3. Example of conflict prediction (r = 5 m; v = 10 m/s). The two UAVs maintain a conflict
from t = 4.83 s (solid lines) to t = 5.63 s (dotted lines).

Table 2 presents the implementation of the conflict prediction operation between two
UAVs. If the ConflictPrediction function is given a velocity, the prediction is performed using
this value (lines 04–06). Otherwise, the velocity previously assigned to the UAV will be
used (03). We will use this function later to check whether a velocity is suitable for resolving
a conflict before assigning it to a UAV. Then, the system of equations is implemented in the
variable tc (07–09) and its roots are computed (10). If any real root results (11), tc will be the
smallest of them (12). If no real root exists, tc would be assigned to ∞ (14).

Table 2. Conflict prediction between two UAVs.

tc = ConflictPrediction(v, a1, a2)

01 assume r
02 [p1v1 ∼] = a1
03 [p2v2 ∼] = a2
04 if v ~= null
05 v2 = v
06 end if
07 t2 = (v1 − v2)

2

08 t1 = 2(p1 − p2)(v1 − v2)
09 t0 = (p1 − p2)

2 − 4r2

10 tc = roots([t2t1t0])
11 if isreal(tc) & tc > 0
12 tc = min(tc)
13 else
14 tc = ∞
15 end if

To predict whether a particular UAV will be involved in a conflict, we can use the
conflict prediction operation just described (see Table 2), using as arguments the UAV under
study and the rest of the UAVs present in the airspace. This check can be implemented
through a loop, which will be interrupted as soon as the first conflict is detected, to replace
the velocity of the UAV analyzed by a new valid velocity. If, on the other hand, this loop
concludes without detecting any conflict, the current UAV velocity will be replaced by the
direct velocity to the destination. We will discuss all this in more depth in later subsections.

Table 3 implements this behavior using a Boolean function. The main loop (01–08)
checks if there is a conflict between each pair of UAVs (05). If so, a true value is immediately
returned (06). Obviously, we must omit this check for the current UAV (02–04). If, after

Sensors 2021, 21, 5649 8 of 19

considering all the UAVs in the airspace, no conflict has been found, a false value is provided
(09), indicating that there is no conflict with the UAV under study.

Table 3. Conflict prediction between a UAV and the rest.

boolean = AirspaceConflicts(v, a1,A)

01 for all a2 ∈ A do
02 if a1 = a2
03 continue
04 end if
05 if ConflictPrediction(v, a1, a2) = ∞
06 return true
07 end if
08 end do
09 return false

3.3. Valid Velocity Computation

After predicting a conflict, PCAN replaces the direct velocity of the UAV concerned
by a new one that guarantees that no conflicts will occur. Each UAV must have a final
velocity before moving during the following tnav time units, which guarantees that it will
not collide with any other UAV in the airspace before the next execution of the navigation
computation.

A set of candidate velocities “close” to the direct velocity are generated to obtain this
final velocity, and these new velocities are checked for conflicts. Suppose any of them
manages to resolve all the conflicts between the UAV under study and the rest of the UAVs
in the airspace. In that case, this velocity will be a valid velocity, and it will be taken as
the final velocity for the UAV. If none of these velocities leads to a conflict-free scenario,
the algorithm proceeds to generate a new set of candidate velocity vectors. This process
continues until a final velocity is found or a preset limit of iterations is exceeded. If, after
exhausting all iterations and discarding all candidate velocity vectors, any valid velocity
has been obtained, a decision is made to assign the UAV a zero velocity (assuming it is a
rotary-wing UAV). This is done because, in this case, the airspace is very crowded, and no
velocity in any direction would allow the UAV to proceed while guaranteeing a conflict-free
scenario without increasing the time or distance traveled too much. The UAV should stop
moving forward to leave its path clear for other UAVs to move in this situation.

To generate all these candidate velocities, a loop can be used that generates new
velocities from the previous ones. In its first iteration, velocities generated are based on
the direct one (vd). In each iteration, three candidate velocities are generated. One of these
velocities will have the same direction as the previous one but a lower modulus. The other
two velocities will have a different direction but the same modulus. Through the coe f
parameter, we can set how much the velocity is reduced when we are varying its modulus.
In the same way, through the α parameter (angular displacement), we can control how
much the direction will vary when we are obtaining two new velocities with different
directions. These two velocities will have the same amount of direction variation, but one
will be varied clockwise and the other counterclockwise.

We can see an example in Figure 4. As stated, the iterative process starts with vd. The
three new candidate velocities generated in iteration i are called vj

i , where j distinguishes
between them. In the figure, we can see that v1

1 and v2
1 (orange color) present the same

angular displacement with respect to vd, but in different directions. On the other hand, v3
1,

which is the modified velocity in modulus, follows the direction of vd. If none of these three
candidate velocities were valid, we would proceed to generate new ones (vj

2), following
the same methodology, but this time starting from the velocities generated in the previous
loop iteration.

Sensors 2021, 21, 5649 9 of 19

Sensors 2021, 21, 5649 9 of 19

directions. These two velocities will have the same amount of direction variation, but one
will be varied clockwise and the other counterclockwise.

We can see an example in Figure 4. As stated, the iterative process starts with 𝑣 . The
three new candidate velocities generated in iteration 𝑖 are called 𝑣 , where 𝑗 distin-
guishes between them. In the figure, we can see that 𝑣 and 𝑣 (orange color) present
the same angular displacement with respect to 𝑣 , but in different directions. On the other
hand, 𝑣 , which is the modified velocity in modulus, follows the direction of 𝑣 . If none
of these three candidate velocities were valid, we would proceed to generate new ones
(𝑣), following the same methodology, but this time starting from the velocities generated
in the previous loop iteration.

Figure 4. Searching for a valid velocity from the direct one. Above, a UAV with direct velocity (𝑣)
flying from the initial position (𝑝) to the destination (𝑤). In the center, three candidate velocity vec-
tors have been generated in the first iteration. Below, new candidate velocity vectors have been
generated, based on those of the previous iteration (if they did not lead to a conflict-free scenario).

Table 4 provides the function that generates valid velocities for a UAV. As described
above, three different velocities will be evaluated, which are initialized using the direct
velocity (02). The computation is enclosed in a loop (03–17), which iterates until a valid
velocity is found or a predetermined maximum number of iterations (𝑚) is reached. At
each iteration, three modified velocities are obtained from the previous velocity vector.
We use the 𝑐𝑜𝑒𝑓 parameter (a value less than 1) to modify the modulus of the velocity
vector (04). The change in direction is performed by the Veer function (05–06), described
below. These three candidate velocities are then checked for conflicts (07, 10, 13). If any of
them did not cause any conflict, the corresponding velocity vector is returned (08, 11, 14).
If the loop concludes without finding any valid velocity, a null velocity is provided (18).

Table 5 details the behavior of the Veer function. The 𝒗 argument is the velocity vec-
tor to vary. The 𝛼 argument defines the angular displacement between iterations (ex-
pressed in radians). In our study, this value has been assigned to the maximum allowed
angular displacement divided by the maximum number of iterations (𝑚). The direction
argument admits the values 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒, and represents the direc-
tion of the angular displacement (01–03). In (04), a new velocity vector with an angular
displacement in a counterclockwise or clockwise direction, respectively, is obtained.

Figure 4. Searching for a valid velocity from the direct one. Above, a UAV with direct velocity (vd)
flying from the initial position (p) to the destination (w). In the center, three candidate velocity vectors
have been generated in the first iteration. Below, new candidate velocity vectors have been generated,
based on those of the previous iteration (if they did not lead to a conflict-free scenario).

Table 4 provides the function that generates valid velocities for a UAV. As described
above, three different velocities will be evaluated, which are initialized using the direct
velocity (02). The computation is enclosed in a loop (03–17), which iterates until a valid
velocity is found or a predetermined maximum number of iterations (m) is reached. At
each iteration, three modified velocities are obtained from the previous velocity vector. We
use the coe f parameter (a value less than 1) to modify the modulus of the velocity vector
(04). The change in direction is performed by the Veer function (05–06), described below.
These three candidate velocities are then checked for conflicts (07, 10, 13). If any of them
did not cause any conflict, the corresponding velocity vector is returned (08, 11, 14). If the
loop concludes without finding any valid velocity, a null velocity is provided (18).

Table 5 details the behavior of the Veer function. The v argument is the velocity vector
to vary. The α argument defines the angular displacement between iterations (expressed
in radians). In our study, this value has been assigned to the maximum allowed angular
displacement divided by the maximum number of iterations (m). The direction argument
admits the values clockwise and counterclockwise, and represents the direction of the angu-
lar displacement (01–03). In (04), a new velocity vector with an angular displacement in a
counterclockwise or clockwise direction, respectively, is obtained.

3.4. Navigation Computation. The PCAN Algorithm

We have seen the above two mechanisms to predict a conflict between a UAV and the
rest of the UAVs in the airspace and provide a new valid velocity for a UAV in that situation.
This subsection will describe the general mechanism to compute the final velocity for all
the UAVs in the airspace (what we have called navigation computation).

Table 6 details the general behavior of the PCAN algorithm. First, all UAVs are
assigned direct velocity to the destination (02–06). Then, for each UAV we check if it
produces any conflict with the airspace (08). If there are no conflicts, we assign the direct
velocity as the final velocity for the considered UAV (15). However, if a conflict is predicted,
a valid velocity is computed for that UAV (09).

Sensors 2021, 21, 5649 10 of 19

Table 4. Computation of a valid velocity for a UAV.

v = ValidVelocity(a1,A)

01 assume m, coe f , α
02 v1 = v2 = v3 = DirectNav(a1)
03 while m > 0
04 v1 = v1 ∗ coe f
05 v2 = Veer(v2, α, counterclockwise)
06 v3 = Veer(v3, α, clockwise)
07 if not AirspaceConflicts(v1, a1,A)
08 return v = v1
09 end if
10 if not AirspaceConflicts(v2, a1,A)
11 return v = v2
12 end if
13 if not AirspaceConflicts(v3, a1,A)
14 return v = v3
15 end if
16 m = m − 1
17 end while
18 return v = 0

Table 5. Velocity vector direction change.

v
′
= Veer(v, α, direction)

01 if direction = clockwise
02 α = −α
03 end if
04 v

′
= v×

[
cos(α) sen(α)
−sen(α) cos(α)

]

Table 6. The PCAN algorithm.

A = PCAN(A)

01 assume r
02 for all a ∈ A do
03 [p ∼ R] = a
04 v = DirectNav(a)
05 a = [p v R]
06 end do
07 for all ai ∈ A do
08 if AirspaceConflicts(v, ai, A)
09 v = ValidVelocity(ai,A)
10 if v = 0
11 A = PCAN({a1 . . . ai−1}) ∪ {ai . . . an}
12 end if
13 end if
14 [p ∼ R] = ai
15 ai = [p v R]
16 end do

Sensors 2021, 21, 5649 11 of 19

If the ValidVelocity function returns a null velocity (10), we must recalculate the final
velocities for the previously processed UAVs (11). If the velocity is not null, we assign the
obtained velocity as the final velocity for the UAV (15).

It is important to clarify that the process must be carried out in sequence, processing
one UAV after another until all of them have a final velocity. When a UAV is about to
calculate its final velocity, conflict prediction will be made using the final velocities of the
UAVs that already have calculated their final velocity and the direct velocities of the UAVs
that have not been processed yet. In the case of the first UAV processed, conflict prediction
will be made from the direct velocities of the rest of the UAVs, while the last UAV processed
will perform the prediction from the final velocities of the rest of the UAVs in the airspace.
Since a final velocity for a UAV will only be accepted if it does not lead to a conflict with
any other UAV, the order in which the final velocities are obtained will affect the solution
for each of the UAVs. The UAV whose final velocity is calculated first will have to fight
more conflicts than the last UAV processed, which will not have to fight any conflict, since
the previous UAVs treated have already prevented the conflict with it.

For this work, the order in which the UAVs are processed is given by their number
within the airspace (ordinal within the set). This implies a priority which, although not
chosen, is necessary since there must be an order. However, as future work, we plan to
implement a priority system based, for example, on UAV categories (as established by
U-space), on the urgency of the service provided, or on any other criteria. In this way, those
UAVs with higher priority will minimally modify the optimal trajectory offered by the
direct method, while those UAVs with lower priority will have to avoid a greater number
of conflicts, obtaining for them a solution farther away from the optimal one.

Finally, note that assigning a null velocity to a UAV implies a higher computational
cost because it invalidates the final velocities of UAVs that have been processed before
it. By assigning a null velocity, the prediction made by another UAV for which the final
velocity was already calculated is invalidated and must be performed again. This process
only occurs in really crowded airspaces.

3.5. Airspace Bounding

As mentioned before, valid velocities are generated from the airspace state. However,
in airspaces with a high density of UAVs, which is expected to happen in UAM scenarios,
the computational cost of calculating these valid velocities increases. Moreover, considering
UAVs far enough away from a given UAV not to cause a conflict with it in the short term
does not make sense and leads to worse solutions. For this reason, an immediate improve-
ment of PCAN would consist of analyzing only the portion of the airspace containing
those UAVs that could collide with the UAV understudy before the next execution of the
navigation computation.

In short, we define a boundary radius (BR), establishing a circular region around the
UAV so that only the UAVs inside that area will be considered for the calculation of the
valid velocity. This radius should be greater than the threshold (BRmin) defined by the
worst possible situation, consisting of two UAVs flying in opposite directions, according to:

BR ≥ BRmin = 2(vmaxtnav + r) (4)

Figure 5 shows an example. Given the airspace A = {a1 . . . a6}, we proceed to
calculate a valid velocity for a1. Consequently, only the UAVs within the circular region
defined by BR, plotted in green, are considered for the valid velocity calculation. Thus, a5
and a6 do not influence the final velocity of a1.

Sensors 2021, 21, 5649 12 of 19

Sensors 2021, 21, 5649 12 of 19

improvement of PCAN would consist of analyzing only the portion of the airspace con-
taining those UAVs that could collide with the UAV understudy before the next execution
of the navigation computation.

In short, we define a boundary radius (𝐵𝑅), establishing a circular region around the
UAV so that only the UAVs inside that area will be considered for the calculation of the
valid velocity. This radius should be greater than the threshold (𝐵𝑅) defined by the
worst possible situation, consisting of two UAVs flying in opposite directions, according
to: 𝐵𝑅 ≥ 𝐵𝑅 = 2(𝑣 𝑡 + 𝑟) (4)

Figure 5 shows an example. Given the airspace 𝔸 = {𝐚 … 𝐚 }, we proceed to calcu-
late a valid velocity for 𝐚 . Consequently, only the UAVs within the circular region de-
fined by 𝐵𝑅, plotted in green, are considered for the valid velocity calculation. Thus, 𝐚
and 𝐚 do not influence the final velocity of 𝐚 .

Figure 5. Airspace bounding for 𝐚 .

4. Performance Evaluation
In this section, we present the performance evaluation results of the proposed algo-

rithm (PCAN), with the airspace bounding improvement described in Subsection 3.5. This
evaluation has been carried out using simulation techniques.

The simulation tool employed has been developed in Matlab R2020b [28] by making
use of the object-oriented programming language offered by this platform. The simulator
allows the configuration of the parameters of the proposed algorithm and the generation
of random scenarios of any size. It also provides result reports, generating plots such as
the ones shown below.

In total, more than 150,000 scenarios have been simulated, with different configura-
tions. As we will see next, the PCAN algorithm has prevented the occurrence of conflicts
in all cases.

4.1. Two-UAV Study
First, we will analyze the behavior of PCAN when 𝔸 = {𝐚 , 𝐚 }. Figure 6 shows the

different scenarios evaluated. Given a circumference of 4 km in diameter, in all the sce-
narios 𝐚 starts its flight from the west (point 𝐩), crosses the circumference passing

500 m x 500 m

Figure 5. Airspace bounding for a1.

4. Performance Evaluation

In this section, we present the performance evaluation results of the proposed algo-
rithm (PCAN), with the airspace bounding improvement described in Section 3.5. This
evaluation has been carried out using simulation techniques.

The simulation tool employed has been developed in Matlab R2020b [28] by making
use of the object-oriented programming language offered by this platform. The simulator
allows the configuration of the parameters of the proposed algorithm and the generation
of random scenarios of any size. It also provides result reports, generating plots such as
the ones shown below.

In total, more than 150,000 scenarios have been simulated, with different configura-
tions. As we will see next, the PCAN algorithm has prevented the occurrence of conflicts
in all cases.

4.1. Two-UAV Study

First, we will analyze the behavior of PCAN when A = {a1, a2}. Figure 6 shows
the different scenarios evaluated. Given a circumference of 4 km in diameter, in all the
scenarios a1 starts its flight from the west (point p), crosses the circumference passing
through its center, and ends at the opposite point of the circumference (w). On the other
hand, a2 starts its flight from a different position in each scenario. In particular, we have
considered 18 different initial positions for a2 (p1 . . . p18) resulting in 18 relative angles
between both UAVs (between 0◦ and 170◦, in 10◦ intervals). Each initial position (p1 . . . p18)
has an associated destination (w1 . . . w18), which is also reached by passing through the
center of the circumference. In each configuration, a1 and a2 start the flight simultaneously,
with vmax = 13.9 m/s (50 km/h), finally colliding at the center of the circumference if the
navigation algorithm does not prevent it. We have set r = 45 m, tnav = 3 s and τ = 0.3 s,
and PCAN parameters as BR = ∞, m = 50, coe f = 0.95, and α = π

m rad. Moreover, the
safety radius r has been increased 8.34 m, as Figure 1 shown explains.

Sensors 2021, 21, 5649 13 of 19

Sensors 2021, 21, 5649 13 of 19

through its center, and ends at the opposite point of the circumference (𝐰). On the other
hand, 𝐚 starts its flight from a different position in each scenario. In particular, we have
considered 18 different initial positions for 𝐚 (𝐩 … 𝐩) resulting in 18 relative angles
between both UAVs (between 0° and 170°, in 10° intervals). Each initial position (𝐩 … 𝐩)
has an associated destination (𝐰 … 𝐰), which is also reached by passing through the
center of the circumference. In each configuration, 𝐚 and 𝐚 start the flight simultane-
ously, with 𝑣 = 13.9 m/s (50 km/h), finally colliding at the center of the circumfer-
ence if the navigation algorithm does not prevent it. We have set 𝑟 = 45 m, 𝑡 = 3 s
and 𝜏 = 0.3 s, and PCAN parameters as 𝐵𝑅 = ∞, 𝑚 = 50, 𝑐𝑜𝑒𝑓 = 0.95, and 𝛼 = 𝑟𝑎𝑑.
Moreover, the safety radius 𝑟 has been increased 8.34 m, as Figure 1 shown explains.

Figure 6. Two-UAV scenarios: relative angles between trajectories.

Figure 7 shows a scenario number corresponding to each of the 18 configurations
described above on its abscissa axis. The ordinate axis represents the number of conflicts
produced in each scenario. The two series represent the results obtained by the direct and
PCAN algorithms. As expected, the direct algorithm produces conflicts (leading to colli-
sions) in all scenarios. In contrast, the PCAN algorithm manages to avoid them in all the
scenarios analyzed.

Figure 7. Two-UAV study. The number of conflicts.

As detailed, PCAN avoids conflicts by causing UAVs to deviate from the optimal
trajectory to the destination or by reducing their velocity (but maintaining the optimal
trajectory). This can lead to increases in the distance traveled by the UAVs and the time
required to reach their destinations. Figure 8a shows the average distance traveled by the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
scenario

0

0.5

1

1.5
direct
PCAN

Figure 6. Two-UAV scenarios: relative angles between trajectories.

Figure 7 shows a scenario number corresponding to each of the 18 configurations
described above on its abscissa axis. The ordinate axis represents the number of conflicts
produced in each scenario. The two series represent the results obtained by the direct
and PCAN algorithms. As expected, the direct algorithm produces conflicts (leading to
collisions) in all scenarios. In contrast, the PCAN algorithm manages to avoid them in all
the scenarios analyzed.

Sensors 2021, 21, 5649 13 of 19

through its center, and ends at the opposite point of the circumference (𝐰). On the other

hand, 𝐚2 starts its flight from a different position in each scenario. In particular, we have

considered 18 different initial positions for 𝐚2 (𝐩1 … 𝐩18) resulting in 18 relative angles

between both UAVs (between 0° and 170°, in 10° intervals). Each initial position (𝐩1 … 𝐩18)

has an associated destination (𝐰1 … 𝐰18), which is also reached by passing through the

center of the circumference. In each configuration, 𝐚1 and 𝐚2 start the flight simultane-

ously, with 𝑣𝑚𝑎𝑥 = 13.9 m/s (50 km/h), finally colliding at the center of the circumfer-

ence if the navigation algorithm does not prevent it. We have set 𝑟 = 45 m, 𝑡𝑛𝑎𝑣 = 3 s

and 𝜏 = 0.3 s, and PCAN parameters as 𝐵𝑅 = ∞, 𝑚 = 50, 𝑐𝑜𝑒𝑓 = 0.95, and 𝛼 =
𝜋

𝑚
 𝑟𝑎𝑑.

Moreover, the safety radius 𝑟 has been increased 8.34 m, as Figure 1 shown explains.

Figure 6. Two-UAV scenarios: relative angles between trajectories.

Figure 7 shows a scenario number corresponding to each of the 18 configurations

described above on its abscissa axis. The ordinate axis represents the number of conflicts

produced in each scenario. The two series represent the results obtained by the direct and

PCAN algorithms. As expected, the direct algorithm produces conflicts (leading to colli-

sions) in all scenarios. In contrast, the PCAN algorithm manages to avoid them in all the

scenarios analyzed.

Figure 7. Two-UAV study. The number of conflicts.

As detailed, PCAN avoids conflicts by causing UAVs to deviate from the optimal

trajectory to the destination or by reducing their velocity (but maintaining the optimal

trajectory). This can lead to increases in the distance traveled by the UAVs and the time

required to reach their destinations. Figure 8a shows the average distance traveled by the

Figure 7. Two-UAV study. The number of conflicts.

As detailed, PCAN avoids conflicts by causing UAVs to deviate from the optimal
trajectory to the destination or by reducing their velocity (but maintaining the optimal
trajectory). This can lead to increases in the distance traveled by the UAVs and the time
required to reach their destinations. Figure 8a shows the average distance traveled by the
UAVs, expressed in meters. The direct algorithm indicates the minimum distance between
the initial and the final position. The increase due to the deviations made by PCAN to
avoid conflict is negligible in this plot. In the case of the BBCA algorithm, an increase in
the distance traveled is clearly visible.

To better analyze these results, Figure 8b shows the increase in the distance traveled
by the UAVs when using PCAN and BBCA relative to the minimum distance provided by
the direct algorithm. As we can see, the penalty in the distance for BBCA is appreciable in
some scenarios. In PCAN, this increase is negligible again (about 0.11% in the worst case,
but about 0.06% in most of the scenarios).

Sensors 2021, 21, 5649 14 of 19

Sensors 2021, 21, 5649 14 of 19

UAVs, expressed in meters. The direct algorithm indicates the minimum distance between

the initial and the final position. The increase due to the deviations made by PCAN to

avoid conflict is negligible in this plot. In the case of the BBCA algorithm, an increase in

the distance traveled is clearly visible.

To better analyze these results, Figure 8b shows the increase in the distance traveled

by the UAVs when using PCAN and BBCA relative to the minimum distance provided

by the direct algorithm. As we can see, the penalty in the distance for BBCA is appreciable

in some scenarios. In PCAN, this increase is negligible again (about 0.11% in the worst

case, but about 0.06% in most of the scenarios).

(a) (b)

Figure 8. Two-UAV study. Distance traveled: (a) absolute values; (b) relative increase with respect to the direct algorithm.

We have also analyzed the impact on the flight time due to the avoidance maneuvers

performed by the UAVs. Figure 9a shows the average flight time of UAVs, expressed in

seconds. In the case of PCAN, it can be observed that the increase in time is greater than

in the distance. This is because PCAN tends to modify the velocity modulus (instead of

the UAV trajectory) to avoid the conflict, thereby slightly increasing the time the UAV

remains in flight.

Analogous to Figure 8b, Figure 9b shows the relative increase (with respect to the

direct algorithm) in the UAV flight time when using PCAN and BBCA. For PCAN, we can

observe an increase of less than 2% in all the scenarios. One more time, the penalty intro-

duced by BBCA in some scenarios is notable.

(a) (b)

Figure 9. Two-UAV study. Flight time: (a) absolute values; (b) relative increase with respect to the direct algorithm.

Figure 8. Two-UAV study. Distance traveled: (a) absolute values; (b) relative increase with respect to the direct algorithm.

We have also analyzed the impact on the flight time due to the avoidance maneuvers
performed by the UAVs. Figure 9a shows the average flight time of UAVs, expressed in
seconds. In the case of PCAN, it can be observed that the increase in time is greater than in
the distance. This is because PCAN tends to modify the velocity modulus (instead of the
UAV trajectory) to avoid the conflict, thereby slightly increasing the time the UAV remains
in flight.

Sensors 2021, 21, 5649 14 of 19

UAVs, expressed in meters. The direct algorithm indicates the minimum distance between

the initial and the final position. The increase due to the deviations made by PCAN to

avoid conflict is negligible in this plot. In the case of the BBCA algorithm, an increase in

the distance traveled is clearly visible.

To better analyze these results, Figure 8b shows the increase in the distance traveled

by the UAVs when using PCAN and BBCA relative to the minimum distance provided

by the direct algorithm. As we can see, the penalty in the distance for BBCA is appreciable

in some scenarios. In PCAN, this increase is negligible again (about 0.11% in the worst

case, but about 0.06% in most of the scenarios).

(a) (b)

Figure 8. Two-UAV study. Distance traveled: (a) absolute values; (b) relative increase with respect to the direct algorithm.

We have also analyzed the impact on the flight time due to the avoidance maneuvers

performed by the UAVs. Figure 9a shows the average flight time of UAVs, expressed in

seconds. In the case of PCAN, it can be observed that the increase in time is greater than

in the distance. This is because PCAN tends to modify the velocity modulus (instead of

the UAV trajectory) to avoid the conflict, thereby slightly increasing the time the UAV

remains in flight.

Analogous to Figure 8b, Figure 9b shows the relative increase (with respect to the

direct algorithm) in the UAV flight time when using PCAN and BBCA. For PCAN, we can

observe an increase of less than 2% in all the scenarios. One more time, the penalty intro-

duced by BBCA in some scenarios is notable.

(a) (b)

Figure 9. Two-UAV study. Flight time: (a) absolute values; (b) relative increase with respect to the direct algorithm.

Figure 9. Two-UAV study. Flight time: (a) absolute values; (b) relative increase with respect to the direct algorithm.

Analogous to Figure 8b, Figure 9b shows the relative increase (with respect to the
direct algorithm) in the UAV flight time when using PCAN and BBCA. For PCAN, we
can observe an increase of less than 2% in all the scenarios. One more time, the penalty
introduced by BBCA in some scenarios is notable.

4.2. Multi-UAV Study

Next, we study the behavior of PCAN when it is used in airspaces with multiple UAVs.
We have considered a 5× 5 km flight region and with different UAV densities. In particular,
|A| = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. Figure 10 shows an example. For each
density, 24 random route configurations have been generated for the UAVs, considering
that the initial and the final position cannot be less than 100 m from the edges of the
region and less than 1 km away. Each route configuration has been simulated with the
direct, BBCA, APF, and PCAN algorithms, resulting in 960 runs. In all cases, we have
set vmax = 50 km/h, r = 40 m, tnav = 3 s and τ = 0.3 s, and PCAN parameters as
BR = 3vmaxtnav + 2r, m = 50, coe f = 0.95, and α = π

m rad. Moreover, the safety radius r
has been increased 8.34 m, as Figure 1 explains.

Sensors 2021, 21, 5649 15 of 19

Sensors 2021, 21, 5649 15 of 19

4.2. Multi-UAV Study

Next, we study the behavior of PCAN when it is used in airspaces with multiple

UAVs. We have considered a 5 × 5 km flight region and with different UAV densities.

In particular, |𝔸| = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. Figure 10 shows an example.

For each density, 24 random route configurations have been generated for the UAVs, con-

sidering that the initial and the final position cannot be less than 100 𝑚 from the edges

of the region and less than 1 km away. Each route configuration has been simulated with

the direct, BBCA, APF, and PCAN algorithms, resulting in 960 runs. In all cases, we have

set 𝑣𝑚𝑎𝑥 = 50 km/h , 𝑟 = 40 m , 𝑡𝑛𝑎𝑣 = 3 s and 𝜏 = 0.3 s , and PCAN parameters as

𝐵𝑅 = 3𝑣𝑚𝑎𝑥𝑡𝑛𝑎𝑣 + 2𝑟, 𝑚 = 50, 𝑐𝑜𝑒𝑓 = 0.95, and 𝛼 =
𝜋

𝑚
 𝑟𝑎𝑑 . Moreover, the safety ra-

dius 𝑟 has been increased 8.34 m, as Figure 1 explains.

Figure 10. Random scenario with 80 UAVs and PCAN. Each number represents the initial position

of a UAV; each circle represents the current position of the UAV and its safety radius; each line

represents the trajectory followed by the UAV. Units on the X and Y axes are meters.

The abscissa axis in the plot of Figure 11a indicates the number of UAVs in the flight

region. In contrast, the ordinate axis shows the mean number of conflicts produced and

the corresponding standard deviation. For the direct method, conflicts increase exponen-

tially with the number of UAVs in the region. The APF algorithm manages to resolve iso-

lated conflicts, but its performance decreases as the UAV density increases. BBCA signif-

icantly reduces the number of conflicts but does not eliminate them. Finally, as expected,

PCAN successfully resolves all the conflicts.

Figure 11b shows the same results, but now from the point of view of the percentage

of solved conflicts. We can clearly see that PCAN and BBCA outperform APF. Obviously,

the direct method is not plotted since it does not avoid any conflict.

Figure 10. Random scenario with 80 UAVs and PCAN. Each number represents the initial position
of a UAV; each circle represents the current position of the UAV and its safety radius; each line
represents the trajectory followed by the UAV. Units on the X and Y axes are meters.

The abscissa axis in the plot of Figure 11a indicates the number of UAVs in the flight
region. In contrast, the ordinate axis shows the mean number of conflicts produced and the
corresponding standard deviation. For the direct method, conflicts increase exponentially
with the number of UAVs in the region. The APF algorithm manages to resolve isolated
conflicts, but its performance decreases as the UAV density increases. BBCA significantly
reduces the number of conflicts but does not eliminate them. Finally, as expected, PCAN
successfully resolves all the conflicts.

Figure 11b shows the same results, but now from the point of view of the percentage
of solved conflicts. We can clearly see that PCAN and BBCA outperform APF. Obviously,
the direct method is not plotted since it does not avoid any conflict.

Sensors 2021, 21, 5649 16 of 19

(a) (b)

Figure 11. Multi-UAV study. The number of conflicts: (a) not solved conflicts (mean and standard deviation); (b) solved

conflicts (%).

Figure 12a shows the distance traveled by the UAVs, in absolute terms, as a function

of the UAV density. As expected, when applying the direct method, the distance traveled

by each UAV does not vary with its number, while the standard deviation decreases. On

the contrary, the detours introduced by BBCA increase the distance linearly. Finally,

PCAN also increases the distance traveled by the UAVs, but to a lesser extent since it

resolves the conflicts more efficiently.

In Figure12b, we can see the relative increase in the distance traveled by the UAVs

regarding the direct algorithm. We can observe the linearity in this increase, which in the

case of PCAN progresses from 0% to about 4% for the 100-UAV configuration. If we com-

pare PCAN to BBCA, we can see that the increase in distance is marginal, even avoiding

all conflicts. APF performs slightly better than PCAN, but at the cost of not being conflict-

free.

(a) (b)

Figure 12. Multi-UAV study. Distance traveled: (a) absolute values (mean and standard deviation); (b) relative increase

with respect to the direct algorithm.

Figure 13a shows the flight time of UAVs, in absolute terms, as a function of the UAV

density. For the direct method, flight time does depend on the number of UAVs. As

shown, PCAN offers better results than the rest of conflict management algorithms.

Finally, Figure 13b compares the flight time for BBCA, APF, and PCAN with respect

to the direct algorithm. In the case of PCAN, in the highest density scenarios, the flight

time is increased by about 6%, outperforming, in any case, the other two techniques.

Figure 11. Multi-UAV study. The number of conflicts: (a) not solved conflicts (mean and standard deviation); (b) solved
conflicts (%).

Sensors 2021, 21, 5649 16 of 19

Figure 12a shows the distance traveled by the UAVs, in absolute terms, as a function
of the UAV density. As expected, when applying the direct method, the distance traveled
by each UAV does not vary with its number, while the standard deviation decreases. On
the contrary, the detours introduced by BBCA increase the distance linearly. Finally, PCAN
also increases the distance traveled by the UAVs, but to a lesser extent since it resolves the
conflicts more efficiently.

Sensors 2021, 21, 5649 16 of 19

(a) (b)

Figure 11. Multi-UAV study. The number of conflicts: (a) not solved conflicts (mean and standard deviation); (b) solved

conflicts (%).

Figure 12a shows the distance traveled by the UAVs, in absolute terms, as a function

of the UAV density. As expected, when applying the direct method, the distance traveled

by each UAV does not vary with its number, while the standard deviation decreases. On

the contrary, the detours introduced by BBCA increase the distance linearly. Finally,

PCAN also increases the distance traveled by the UAVs, but to a lesser extent since it

resolves the conflicts more efficiently.

In Figure12b, we can see the relative increase in the distance traveled by the UAVs

regarding the direct algorithm. We can observe the linearity in this increase, which in the

case of PCAN progresses from 0% to about 4% for the 100-UAV configuration. If we com-

pare PCAN to BBCA, we can see that the increase in distance is marginal, even avoiding

all conflicts. APF performs slightly better than PCAN, but at the cost of not being conflict-

free.

(a) (b)

Figure 12. Multi-UAV study. Distance traveled: (a) absolute values (mean and standard deviation); (b) relative increase

with respect to the direct algorithm.

Figure 13a shows the flight time of UAVs, in absolute terms, as a function of the UAV

density. For the direct method, flight time does depend on the number of UAVs. As

shown, PCAN offers better results than the rest of conflict management algorithms.

Finally, Figure 13b compares the flight time for BBCA, APF, and PCAN with respect

to the direct algorithm. In the case of PCAN, in the highest density scenarios, the flight

time is increased by about 6%, outperforming, in any case, the other two techniques.

Figure 12. Multi-UAV study. Distance traveled: (a) absolute values (mean and standard deviation); (b) relative increase
with respect to the direct algorithm.

In Figure 12b, we can see the relative increase in the distance traveled by the UAVs
regarding the direct algorithm. We can observe the linearity in this increase, which in
the case of PCAN progresses from 0% to about 4% for the 100-UAV configuration. If
we compare PCAN to BBCA, we can see that the increase in distance is marginal, even
avoiding all conflicts. APF performs slightly better than PCAN, but at the cost of not being
conflict-free.

Figure 13a shows the flight time of UAVs, in absolute terms, as a function of the UAV
density. For the direct method, flight time does depend on the number of UAVs. As shown,
PCAN offers better results than the rest of conflict management algorithms.

Sensors 2021, 21, 5649 17 of 19

(a) (b)

Figure 13. Multi-UAV study. Flight time: (a) absolute values (mean and standard deviation); (b) relative increase with

respect to the direct algorithm.

4.3. Computation Time

To conclude the analysis, we studied the time used by the direct, PCAN, BBCA, and

APF algorithms to offer their solutions. Figure 14 shows the time consumed to produce

an output for every UAV each time the navigation computation is executed, expressed in

milliseconds. Results were generated with an Intel i9-10900KF@3.7GHz processor, using

one core.

As shown, PCAN works very well in low-density scenarios exhibiting better behav-

ior than BBCA from 10 to 50 UAVs. As the density of UAVs increases, PCAN requires

more time to solve all the potential conflicts produced, which were shown in Figure 11a,

series direct. In any case, the computation time does not represent a dramatic bottleneck.

For the 100-UAV configuration, the time employed is less than 0.9 ms. Note that these are

extremely dense scenarios in which avoiding all conflict is complex.

Figure 14. Time (per UAV) consumed by the navigation algorithm.

5. Conclusions and Future Works

This paper proposes the PCAN algorithm for conflict-free navigation among a set of

UAVs flying over urban airspace according to a set of predetermined flight plans. In each

run of the algorithm, assuming that all UAVs are heading in a straight line and at maxi-

mum velocity towards their destinations, the algorithm predicts future conflicts between

them and proposes modifications in their velocities to prevent their occurrence. The anal-

ysis carried out shows that PCAN results, in the worst case, in an increase in the distance

traveled by the UAVs of about 4% and an increase in flight time of approximately 6%.

This makes our conflict avoidance proposal suitable for the deployment of tactical conflict

resolution services in the framework of the future U-Space UAM space.

Figure 13. Multi-UAV study. Flight time: (a) absolute values (mean and standard deviation); (b) relative increase with
respect to the direct algorithm.

Finally, Figure 13b compares the flight time for BBCA, APF, and PCAN with respect
to the direct algorithm. In the case of PCAN, in the highest density scenarios, the flight
time is increased by about 6%, outperforming, in any case, the other two techniques.

Sensors 2021, 21, 5649 17 of 19

4.3. Computation Time

To conclude the analysis, we studied the time used by the direct, PCAN, BBCA, and
APF algorithms to offer their solutions. Figure 14 shows the time consumed to produce
an output for every UAV each time the navigation computation is executed, expressed in
milliseconds. Results were generated with an Intel i9-10900KF@3.7GHz processor, using
one core.

Sensors 2021, 21, 5649 17 of 19

(a) (b)

Figure 13. Multi-UAV study. Flight time: (a) absolute values (mean and standard deviation); (b) relative increase with

respect to the direct algorithm.

4.3. Computation Time

To conclude the analysis, we studied the time used by the direct, PCAN, BBCA, and

APF algorithms to offer their solutions. Figure 14 shows the time consumed to produce

an output for every UAV each time the navigation computation is executed, expressed in

milliseconds. Results were generated with an Intel i9-10900KF@3.7GHz processor, using

one core.

As shown, PCAN works very well in low-density scenarios exhibiting better behav-

ior than BBCA from 10 to 50 UAVs. As the density of UAVs increases, PCAN requires

more time to solve all the potential conflicts produced, which were shown in Figure 11a,

series direct. In any case, the computation time does not represent a dramatic bottleneck.

For the 100-UAV configuration, the time employed is less than 0.9 ms. Note that these are

extremely dense scenarios in which avoiding all conflict is complex.

Figure 14. Time (per UAV) consumed by the navigation algorithm.

5. Conclusions and Future Works

This paper proposes the PCAN algorithm for conflict-free navigation among a set of

UAVs flying over urban airspace according to a set of predetermined flight plans. In each

run of the algorithm, assuming that all UAVs are heading in a straight line and at maxi-

mum velocity towards their destinations, the algorithm predicts future conflicts between

them and proposes modifications in their velocities to prevent their occurrence. The anal-

ysis carried out shows that PCAN results, in the worst case, in an increase in the distance

traveled by the UAVs of about 4% and an increase in flight time of approximately 6%.

This makes our conflict avoidance proposal suitable for the deployment of tactical conflict

resolution services in the framework of the future U-Space UAM space.

Figure 14. Time (per UAV) consumed by the navigation algorithm.

As shown, PCAN works very well in low-density scenarios exhibiting better behavior
than BBCA from 10 to 50 UAVs. As the density of UAVs increases, PCAN requires more
time to solve all the potential conflicts produced, which were shown in Figure 11a, series
direct. In any case, the computation time does not represent a dramatic bottleneck. For
the 100-UAV configuration, the time employed is less than 0.9 ms. Note that these are
extremely dense scenarios in which avoiding all conflict is complex.

5. Conclusions and Future Works

This paper proposes the PCAN algorithm for conflict-free navigation among a set of
UAVs flying over urban airspace according to a set of predetermined flight plans. In each
run of the algorithm, assuming that all UAVs are heading in a straight line and at maximum
velocity towards their destinations, the algorithm predicts future conflicts between them
and proposes modifications in their velocities to prevent their occurrence. The analysis
carried out shows that PCAN results, in the worst case, in an increase in the distance
traveled by the UAVs of about 4% and an increase in flight time of approximately 6%.
This makes our conflict avoidance proposal suitable for the deployment of tactical conflict
resolution services in the framework of the future U-Space UAM space.

As future work, we plan to revise the decision-making of PCAN to reduce the overhead
involved in conflict avoidance. Instead of performing an intensive search of modified
velocities, the algorithm can start by exploring the most promising velocities according
to the airspace state. Moreover, as discussed in Section 3.4, we can implement a priority
system based on categories. In this way, those UAVs with higher priority will see their
trajectories modified to a lesser extent. Finally, we must consider the existence of geofences
in the airspace that define no-fly zones.

Author Contributions: Conceptualization, A.B. and R.C.; methodology, J.J., A.B. and R.C.; software,
J.J.; validation, A.B. and R.C.; formal analysis, J.J., A.B. and R.C.; investigation, J.J., A.B. and R.C.;
resources, J.J., A.B. and R.C.; data curation, J.J., A.B. and R.C.; writing—original draft preparation, J.J.,
A.B. and R.C.; writing—review and editing, J.J., A.B. and R.C.; visualization, J.J.; supervision, A.B.
and R.C.; project administration, A.B. and R.C.; funding acquisition, A.B. and R.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades
(MCIU) and European Union (EU) under RTI2018-098156-B-C52 grant, by the Junta de Comunidades
de Castilla-La Mancha (JCCM) and EU through the European Regional Development Fund (ERDF-

Sensors 2021, 21, 5649 18 of 19

FEDER) under SBPLY/19/180501/000159 grant, and by the Universidad de Castilla–La Mancha
under 2021-GRIN-31042 grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in FigShare at
http://doi.org/10.6084/m9.figshare.15830565.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani,

M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019,
7, 48572–48634. [CrossRef]

2. Kleinbekman, I.C.; Mitici, M.A.; Wei, P. eVTOL Arrival Sequencing and Scheduling for On-Demand Urban Air Mobility. In
Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018;
Volume 2018-Septe, pp. 1–7.

3. Casado, R.; Bermúdez, A. A simulation framework for developing autonomous drone navigation systems. Electronics 2021, 10, 7.
[CrossRef]

4. Straubinger, A.; Rothfeld, R.; Shamiyeh, M.; Büchter, K.D.; Kaiser, J.; Plötner, K.O. An overview of current research and
developments in urban air mobility—Setting the scene for UAM introduction. J. Air Transp. Manag. 2020, 87, 101852. [CrossRef]

5. Kopardekar, P. Enabling civilian low-altitude airspace and Unmanned Aerial System (UAS) operations by Unmanned Aerial
System Traffic Management (UTM). AUVSI Unmanned Syst. 2014, 2, 1678–1683.

6. FAA NextGen Organization. UTM Concept of Operations Version 2.0 (UTM ConOps v2.0); U.S. Department of Transportation:
Washington, DC, USA, 2020.

7. Barrado, C.; Boyero, M.; Brucculeri, L.; Ferrara, G.; Hately, A.; Hullah, P.; Martin-Marrero, D.; Pastor, E.; Rushton, A.P.; Volkert, A.
U-space concept of operations: A key enabler for opening airspace to emerging low-altitude operations. Aerospace 2020, 7, 24.
[CrossRef]

8. CORUS project. U-Space Concept of Operations; Single European Sky ATM Research Joint Undertaking (SESAR JU): Brussels,
Belgium, 2019.

9. Konkuk University; Korean Air Urban Air Mobility Concept of Operations. Available online: http://kada.konkuk.ac.kr/2021/0
6/09/urban-air-mobility-concepts-of-operations/ (accessed on 15 July 2021).

10. EmbraerX. Airservices Australia Urban Air Traffic Management Concept of Operations. Available online: https://embraerx.
embraer.com/global/en/uatm (accessed on 15 July 2021).

11. International Civil Aviation Organization (ICAO). Doc 4444. PANS-ATM, Procedures for Air Navigation Services. Air Traffic
Management; ICAO: Montreal, QC, Canada, 2016.

12. Tang, J. Conflict Detection and Resolution for Civil Aviation: A literature survey. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 20–35.
[CrossRef]

13. Casado, R.; Bermúdez, A. Neural network-based aircraft conflict prediction in final approach maneuvers. Electronics 2020, 9, 1708.
[CrossRef]

14. van den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-Body Collision Avoidance. In Springer Tracts in Advanced Robotics;
Springer: Berlin, Germany, 2011; Volume 70, pp. 3–19; ISBN 9783642194566. [CrossRef]

15. Sánchez, P.; Casado, R.; Bermúdez, A. Real-time collision-free navigation of multiple UAVs based on bounding boxes. Electronics
2020, 9, 1632. [CrossRef]

16. Sun, J.; Tang, J.; Lao, S. Collision Avoidance for Cooperative UAVs with Optimized Artificial Potential Field Algorithm. IEEE
Access 2017, 5, 18382–18390. [CrossRef]

17. Alejo, D.; Cobano, J.A.; Heredia, G.; Ollero, A. Particle Swarm Optimization for collision-free 4D trajectory planning in Unmanned
Aerial Vehicles. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, ICUAS 2013—Conference
Proceedings, Atlanta, GA, USA, 28–31 May 2013; pp. 298–307.

18. Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned Aerial Vehicles (UAVs):
Collision Avoidance Systems and Approaches. IEEE Access 2020, 8, 105139–105155. [CrossRef]

19. Park, J.; Cho, N. Collision avoidance of hexacopter UAV based on lidar data in dynamic environment. Remote Sens. 2020, 12, 975.
[CrossRef]

20. Acevedo, J.J.; Capitan, C.; Capitiin, J.; Castano, A.R.; Ollero, A. A Geometrical Approach based on 4D Grids for Conflict
Management of Multiple UAVs operating in U-space. In Proceedings of the 2020 International Conference on Unmanned Aircraft
Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 263–270.

http://doi.org/10.6084/m9.figshare.15830565
http://doi.org/10.6084/m9.figshare.15830565
http://doi.org/10.1109/ACCESS.2019.2909530
http://doi.org/10.3390/electronics10010007
http://doi.org/10.1016/j.jairtraman.2020.101852
http://doi.org/10.3390/aerospace7030024
http://kada.konkuk.ac.kr/2021/06/09/urban-air-mobility-concepts-of-operations/
http://kada.konkuk.ac.kr/2021/06/09/urban-air-mobility-concepts-of-operations/
https://embraerx.embraer.com/global/en/uatm
https://embraerx.embraer.com/global/en/uatm
http://doi.org/10.1109/MAES.2019.2914986
http://doi.org/10.3390/electronics9101708
http://doi.org/10.1007/978-3-642-19457-3_1
http://doi.org/10.3390/electronics9101632
http://doi.org/10.1109/ACCESS.2017.2746752
http://doi.org/10.1109/ACCESS.2020.3000064
http://doi.org/10.3390/rs12060975

Sensors 2021, 21, 5649 19 of 19

21. International Civil Aviation Organization (ICAO). Annex 11 to the Convention on International Civil Aviation. Air Traffic Servies;
ICAO: Montreal, QC, Canada, 2001.

22. Yang, X.; Wei, P. Autonomous Free Flight Operations in Urban Air Mobility With Computational Guidance and Collision
Avoidance. IEEE Trans. Intell. Transp. Syst. 2021. [CrossRef]

23. Shin, H.; Chae, J. A performance review of collision-free path planning algorithms. Electronics 2020, 9, 316. [CrossRef]
24. Snape, J.; Guy, S.J.; Lin, M.C.; Manocha, D.; Van Den Berg, J. Reciprocal collision avoidance and multi-agent navigation for video

games. In Proceedings of the Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada,
22–26 July 2012.

25. Khatib, O. The Potential Field Approach And Operational Space Formulation in Robot Control. In Adaptive and Learning Systems;
Springer US: Boston, MA, USA, 1986; pp. 367–377.

26. Alharbi, A.; Poujade, A.; Malandrakis, K.; Petrunin, I.; Panagiotakopoulos, D.; Tsourdos, A. Rule-based conflict management for
unmanned traffic management scenarios. In Proceedings of the AIAA/IEEE Digital Avionics Systems Conference—Proceedings,
San Antonio, TX, USA, 11–15 October 2020; Volume 2020-Octob.

27. Bermúdez, A.; Casado, R.; Fernández, G.; Guijarro, M.; Olivas, P. Drone challenge: A platform for promoting programming and
robotics skills in K-12 education. Int. J. Adv. Robot. Syst. 2019, 16. [CrossRef]

28. The MathWorks Inc Matlab. Available online: https://www.mathworks.com/products/matlab.html (accessed on 25 June 2021).

http://doi.org/10.1109/TITS.2020.3048360
http://doi.org/10.3390/electronics9020316
http://doi.org/10.1177/1729881418820425
https://www.mathworks.com/products/matlab.html

	Introduction
	Background
	Tactical Conflict Management in U-Space
	Conflict Resolution Techniques for UAV

	Conflict-Free Navigation
	UAV Dynamic Model
	Conflict Prediction Mechanism
	Valid Velocity Computation
	Navigation Computation. The PCAN Algorithm
	Airspace Bounding

	Performance Evaluation
	Two-UAV Study
	Multi-UAV Study
	Computation Time

	Conclusions and Future Works
	References

