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Abstract: Sign language is designed to assist the deaf and hard of hearing community to convey
messages and connect with society. Sign language recognition has been an important domain of
research for a long time. Previously, sensor-based approaches have obtained higher accuracy than
vision-based approaches. Due to the cost-effectiveness of vision-based approaches, researchers have
been conducted here also despite the accuracy drop. The purpose of this research is to recognize
American sign characters using hand images obtained from a web camera. In this work, the media-
pipe hands algorithm was used for estimating hand joints from RGB images of hands obtained from
a web camera and two types of features were generated from the estimated coordinates of the joints
obtained for classification: one is the distances between the joint points and the other one is the
angles between vectors and 3D axes. The classifiers utilized to classify the characters were support
vector machine (SVM) and light gradient boosting machine (GBM). Three character datasets were
used for recognition: the ASL Alphabet dataset, the Massey dataset, and the finger spelling A dataset.
The results obtained were 99.39% for the Massey dataset, 87.60% for the ASL Alphabet dataset, and
98.45% for Finger Spelling A dataset. The proposed design for automatic American sign language
recognition is cost-effective, computationally inexpensive, does not require any special sensors or
devices, and has outperformed previous studies.

Keywords: american sign language recognition; massey dataset; finger spelling a dataset; media-pipe;
distance-based features; angle-based features; support vector machine; light gradient boosting machine

1. Introduction

Sign language is a form of communication that utilizes visual–manual methodologies
such as expressions, hand gestures, and body movements to interact among the deaf and
hard of hearing community, yield opinions, and convey meaningful conversations [1]. The
term deaf and hard of hearing is employed to identify a person who is either deaf or incapable
to speak an oral language or have some level of speaking ability but prefer to not speak to
bypass negative or undesired attention that atypical voices seldom attract.

Deafness is often expressed as hearing loss or injury which is an entire or moderate
inability to hear which may appear in one or both ears of an individual [2,3]. The main
reasons for hearing loss involve aging, genetics, noise exposure, a variety of infections,
such as chronic ear infections, and certain toxins or medications [2]. Diagnosis of hearing
loss can be practised when a person is incapable to hear 25 decibels in at least one ear
after performing the poor-hearing test [2] and this test is recommended for all newborn
children [4]. Hearing loss can be classified as mild (25–40 decibels), moderate (41–55 deci-
bels), moderate-severe (56–70 decibels), severe (71–90 decibels), and profound (greater
than 90 decibels) [2]. Approximately 1.33 billion people have been affected by hearing
impairment to some extent, as of 2015, which covered 18.5% of the overall population of the
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world [5]. Similar to deafness, mutism typically denotes an absolute or moderate inability
to speak. The main reasons for mutism include organic, psychological, developmental, or
neurological trauma, physical disability, communication disorder, and so on [6].

Although there exist several treatments for hearing loss and mutism such as hearing
aids, assistive and augmentative communication devices, sign language, cochlear implants,
subtitles, etc. [2], all treatments are not commonly accepted. Statistics showed that 124 mil-
lion people had moderate to severe disability as of 2013 [2,7,8] and among those, 108 million
people lived in low and middle-income countries [7]. Hence, most members of deaf culture
reject the efforts to cure deafness to support the community [9] and some consider the
cochlear implants as concerns as they have the potential to eradicate their culture [10].
Because of these reasons sign language has become an important tool for both the deaf and
hard of hearing community, and general people as a means of communication.

Previously, sign language recognition has been conducted by following two main
classification mechanisms: sensor-based and vision-based recognition. Sensor-based ap-
proaches extracts the hand measurements, i.e., joints orientation, hands position, and hand
velocity [11], and can be conducted using microcontrollers and specific sensors, such as
data gloves [12,13], power gloves [14], digital camera [15], accelerometer [16,17], depth
camera [18], Kinect [19], leap motion controller [20], dexterous master gloves [21], etc.
The advantage of the sensor-based approach is the higher recognition rate because of
the skeletal data [22]. However, sensor-based approaches are expensive, allow limited
movement, require specialized devices, environment, and training to utilize the systems
fully [22]. There is also a risk that noise will reduce the recognition rate of sensor-based
systems as sensors, such as accelerometers are sensitive to noise, and even a slight move-
ment can be identified as a waveform [22]. Hence, researchers have proposed vision-based
approaches in recent years by utilizing inputs of the camera, such as web camera, stereo
camera, or 3D camera [23]. These approaches are more attractive because they do not
need any specialized devices with limited movement and can conduct the recognition
without contact. In some cases, images with color-coded gloves have also been utilized
to make hand detection easier [24]. The main advantage of vision-based approaches is
that these methods are affordable and the main weaknesses are the lower recognition
rate and high computing power consumption [22]. Both sensor-based and vision-based
approaches can be broadly divided into two sections: feature extraction and recognition.
Although the sensor-based approaches utilize different sensors and devices to acquire the
skeletal data, the vision-based approaches first detect the hand and then extract desired
useful features from the hand [22]. The feature extraction for sensor-based approaches
is costly because of the specialized equipment. On the other hand, feature extraction for
vision-based approaches is computationally expensive [22].

In this study, images captured by webcam have been utilized. The purpose of utilizing
a webcam is that it is comparatively simple for anyone to get one, and the price is affordable.
The fact that one does not require expensive equipment, such as the leap motion sensor or
3D camera stated earlier is undoubtedly an essential benefit of using a webcam system. For
the feature extraction, a recently developed coordinate estimator called media-pipe [25], has
been utilized in this research to obtain 21 coordinate estimators of hands from 2D images.
After trying several coordinate estimators this one was chosen because it is relatively less
prone to collapse and can estimate coordinates cleanly, making it suitable for this research.
From the coordinate estimators or joint points, distance-based and angle-based features
have been extracted. After that, the support vector machine and the light gradient boosting
machine have been used for recognition. Because of using distance-based and angle-based
features the feature extraction process is not computationally expensive like convolutional
neural networks or color-based mechanisms. Moreover, the feature extraction procedure
is able to extract 3D skeletal joint points from a 2D image without using a leap motion
controller, 3D camera, or any other specialized devices or sensors.

That means our proposed system is ensuring the strengths of both sensor-based and
vision-based approaches such as free movement, high accuracy, skeletal points extraction



Sensors 2021, 21, 5856 3 of 19

from 2D images, and contactless and affordable recognition. At the same time, our proposed
system is omitting the weaknesses of both sensor-based and vision-based approaches, such
as usage of expensive devices, usage of costly cameras, high computational complexity,
and lower accuracy. Since this study uses a webcam, similar studies that classify characters
from RGB cameras or images will be used for comparison. One of the studies has a very
high result of 99.31% for Massey dataset [26], and this result is one of the indicators.

Similar to natural languages, sign language also holds specific grammar and vocabu-
lary [27]. However, despite having similarities and notable connections, sign languages all
over the world are not widely the same and not mutually recognized [27]. Depending on
the community, the corresponding sign language also differs in terms of gestures. In this
research, American sign language has been considered as it is utilized by the American
and Canadian deaf community consisting of approximately 250,000 to 500,000 Americans
and some Canadians [28].

2. Literature Review

In this section, related works will be discussed considering both sensor-based and
vision-based approaches. Researches on hand tracking and hand pose recognition have also
been discussed here as sign language recognition is an application of hand pose recognition.

One recent study suggested a novel approach for textual input in which the authors
conducted an air-writing recognition using smart bands [29]. In [29], the authors proposed a
user-dependent method based on k-nearest neighbors (KNN) with dynamic tree wrapping
(DTW) as the distance measure and a user-independent method based on a convolutional
neural network (CNN) that achieved 89.2% and 83.2% average accuracy, respectively. Apart
from the smart bands, Kinect sensors have been being utilized by researchers for a long time
now. Earlier research suggested that up to 98.9% average recognition rate can be achieved
by capturing the letters with Kinect sensors and recognizing them by using dynamic
programming (DP) matching based on inter-stroke information [30]. However, mastering
the technique of writing in the air and the usage of Kinect sensors requires specialized
training, experience, and a suitable environment with the necessary equipment. Another
earlier research suggested a similar approach where the authors captured the alphanumeric
characters written in the air through a video camera instead of Kinect sensors and further
experimentation by dynamic programming matching revealed an overall accuracy of
75% [31]. The main limitation of this study was the determination of starting and ending
points for input and extraction of the user’s hand region in each picture frame.

A more recent study proposed an RGB and RGB-D static gesture recognition mech-
anism that utilized a fine-tuned VGG19 model after capturing the gestures with Kinect
sensors and reported a recognition rate of 94.8% [32]. Based on the successful recognition
of hand gestures, soon the techniques of recognizing hand gestures have been adapted for
sign language alphabet recognition. Microsoft Kinect has been utilized for American sign
language recognition where the authors proposed a random forest classifier on segmented
hand configuration and obtained 90% accuracy [33]. A recent study utilized InceptionV3, a
convolutional neural network model, to obtain 90% validation accuracy on the American
sign language dataset containing 24 characters from the American sign alphabet [34]. One
of the recent works on American sign language recognition proposed a restricted Boltz-
mann machine (RBM) fusing mechanism and reported 99.31%, 97.56%, 90.01%, and 98.13%
recognition accuracy for Massey dataset, ASL finger spelling A dataset, NYU dataset, and
ASL finger spelling dataset of the Surrey University, respectively [26].

Another popular way of hand gesture recognition is via leap motion. Recent work
on British sign language recognition suggested a multimodality approach by fusing two
artificial neural networks (ANN) and 94.44% overall accuracy was reported by utilizing
the leap motion [35]. Leap motion has also been utilized recently for the recognition of
American sign language gestures in a virtual reality environment and the authors reported a
mean accuracy of 86.1% [36]. In [36], the authors have utilized the data from the leap motion
device and hidden Markov classifier (HMC) was utilized for the recognition process. In
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another work, the authors used a leap motion controller and convolutional neural network
to achieve 80.1% accuracy [37]. Moreover, the leap motion controller with support vector
machine (SVM) and the deep neural network (DNN) has been applied on 36 American
signs beforehand with a reported accuracy of 72.79% and 88.79%, respectively [38].

Apart from the above-mentioned approaches, some other schemes for the recognition
of American sign language have been proposed beforehand. A work on static American
signs utilized a skin-color modeling technique and convolutional neural network to achieve
93.67% accuracy [39]. Another research utilized a deep neural network on RGB images with
a squeezenet architecture to make it suitable for mobile devices and achieved an overall
accuracy of 83.28% [40]. Skeletal data and distance descriptors with TreeBag and neural
network (NN) classifiers have been utilized to achieve 90.7% accuracy [41]. Another work
proposed a recognition system for the sign language alphabet that utilizes geometrical
features with an artificial neural network and achieved 96.78% accuracy [42]. Besides,
neuromorphic sensors with the artificial neural network have previously reported 79.58%
accuracy for 24 American signs [43]. Furthermore, a convolutional neural network with
multiview augmentation and inference fusion has been used to achieve 93% accuracy [44].
Table 1 presents the related works with their corresponding approach, classifiers, and recog-
nition rate for a better understanding. It can be observed that the sensor-based approaches
have achieved higher accuracy although they are costly. Additionally, some vision-based
approaches have utilized CNNs to achieve relatively higher accuracy. However, in such
cases, the computational complexity has increased exponentially as well.

Table 1. Previous works performances at a glance including the approach and classifier used.

Reference Approach Classifier Recognition Rate

[29] Smart Bands 1 KNN with DTW 89.20%
[29] Smart Bands 1 CNN 83.20%
[30] Kinect 1 DP Matching 98.90%
[31] Video Camera 2 DP Matching 75.00%
[32] Kinect 1 VGG19 94.80%
[33] Kinect 1 Random Forest 90.00%
[34] Direct Images 2 InceptionV3 90.00%
[26] Images from Massey Dataset 2 RBM 99.31%
[26] Images from Finger Spelling A Dataset 2 RBM 97.56%
[26] Images from NYU Dataset 2 RBM 90.01%
[26] Images from ASL Fingerspelling Dataset of Surrey University 2 RBM 98.13%
[35] Leap Motion Camera 1 ANN 94.44%
[36] Leap Motion in Virtual Reality Environment 1 HMC 86.10%
[37] Leap Motion Controller 1 CNN 80.10%
[38] Leap Motion Controller 1 SVM 72.79%
[38] Leap Motion Controller 1 DNN 88.79%
[39] Skin Color Modeling 2 CNN 93.67%
[40] Direct Images 2 DNN with Squeezenet 83.28%
[41] Skeletal Data and Distance Descriptor 1 TreeBag & NN 90.70%
[42] Geometrical Features 1 ANN 96.78%
[43] Neuromorphic Sensor 1 ANN 79.58%
[44] Multiview Augmentation & Inference Fusion 1 CNN 93.00%

1 Followed sensor-based approaches; 2 Followed vision-based approaches.

3. Materials and Methods

In this section, first, the details of the dataset have been discussed. After that, the
details about the hand pose estimation, distance, and angle-based features, and two classi-
fication methods (SVM and light GBM) have been described.



Sensors 2021, 21, 5856 5 of 19

3.1. Dataset Description

American sign language, popularly known as ASL [45] is a sign language used in
English-speaking countries, such as the United States and Canada, and it consists of
26 letters of the alphabet from A to Z that can be expressed with one hand and has been
illustrated in Figure 1. In this study, a total of three datasets have been utilized. First,
the ASL alphabet dataset from Kaggle [46] has been used for character recognition to
evaluate the performance of more difficult data. The Massey dataset [47] has been utilized
to compare the obtained results with the previous studies, which has produced the best
recognition rate. In addition, the finger spelling A dataset [48] has been used in this study.
Figure 2 shows similar samples from all three datasets for a better understanding of the
similarity and complexity of the three considered datasets.

Figure 1. 26 characters of the American sign language alphabet.

Figure 2. American sign language sample images for A and B from ASL alphabet (a), Massey (b) and
finger spelling A (c) datasets.

3.1.1. ASL Alphabet Dataset

The first dataset used in this study is the ASL data [46], which contains the letters A to
Z. In Figure 2a, it can be observed that the ASL alphabet dataset contains images that are
difficult to distinguish, making it a very difficult dataset. Later, the experimental analysis
will show that the proposed methodology works decently even for this difficult dataset.
There are a total of 780,000 images in the dataset containing 3000 samples per class.

3.1.2. Massey Dataset

Previously, researchers focused on the Massey dataset [47] to report the classification
accuracy. Hence, in this study, the Massey dataset has been considered also for a fair
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comparison with previous work. The dataset contains all 26 letters of the American sign
alphabet. However, it is relatively easy to perform sign alphabet recognition on the Massey
dataset as the areas other than the hand in the images are black and the hand condition is
shown clearly. The dataset contains a total of 1815 images. Apart from 65 samples of the
class T, all the other 25 classes have 70 samples each.

3.1.3. Finger Spelling A Dataset

The finger spelling A [48] dataset is another popular dataset that has been considered
in this study. From Figure 2c, it can be observed from the figure that the dataset is
characterized by a less clear image quality of the hand than the Massey dataset. In addition,
this dataset has both RGB and depth images. However, only the RGB images have been
used in this study. There are a total of 24 characters in this dataset. The authors of the
dataset decided not to include J and Z as they are motion-based signs and the study was
about static signs. There are a total of 65,774 images. The number of images per class varies
from 2615 to 3108.

3.2. Feature Extraction

Feature extraction has been used to recognize the ASL alphabet in this study. The
number of obtained coordinates of the joints is 21 in 3D space containing values of X, Y, and
Z-axis, and these coordinates have been utilized to extract new features. This is because
there may arise some problems if the coordinates are left as they are. For example, if the
hand is on the right edge of the camera or image, the output will be presented as a different
value even if it has the same signature as the hand on the left edge. Therefore, we need
features that are not affected by the location on the screen. In addition, there are some
signs in the American sign language that have the same hand shape but represent different
characters depending on the degree of tilt, therefore, it is needed to extract features that
work effectively even in those cases. In this study, both the distance-based features and the
angle-based features were extracted from the initial joint points which has been described
in the later sections.

3.2.1. Hand Pose Estimation

Media-pipe hands is an API developed by Google to estimate the coordinates of each
joint from a web camera [25]. It can also estimate the coordinates of joints from RGB images.
The output produced by the API consists of 21 points, each with 3D (XYZ) coordinates.
The order of the coordinates is as follows: the first coordinate is for the wrist which is the
bottom point, from there the thumbs coordinates are in the order 1–5 from the bottom, then
the index fingers are in the order 6–9 from the bottom point 1, and so on. The position of
the wrist and other joints is not fixed, and the coordinates of each joint point change as
they move with the movement of the hand. Figure 3 illustrates a sample input image, the
estimated joint points and the order of the joint points.

Figure 3. Using media-pipe API to obtain 21 joint points. The image in the left is an input image,
the image in the middle is presenting the estimated joints and the image in the right is showing the
joint order.
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3.2.2. Distance-Based Features

In order to extract features that are not affected by the screen position, first, the
distances between the number of 21 coordinates are calculated. However, the distances
between neighboring joints were not considered. The distance between two joint points i
and j can be obtained by using Equation (1).

dij =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 (1)

Figure 4 illustrates the distance between the 8th and 10th joint points. Here, neighbor-
ing joints are the joints that are connected by bones. For example, in the case of the third
joint, the second and fourth joints would be the adjacent joints. Since the relative positions
of neighboring joints are always fixed by the bones, the distances between adjacent joints
do not change even if the formation of the hand varies. Hence, the distances between
adjacent joints will not have any impact on the classification as they will produce the same
distance value every time regardless of the hand position or formation in the image. If
neighboring joints are excluded, 190 features can be obtained from each image. Table 2
presents all possible 190 features and how they are obtained. It can be noticed that for
points 20 and 21 joint points, the sets are empty. This is because the expected pairs to be
formed considering 20 and 21 joint points as the starting point has already been covered by
the previous pairs.

Figure 4. An example of distance-based features. Here, the distance between 8th and 10th joint points
is being measured.

Although while using the distance between joints, the problem with the location is
solved, the problem with the size of the object is still there. This is because if the recognized
object is large, the distance between each joint will be large, and if the object is small, the
distance between each joint will be small. Therefore, normalization of the obtained distance
values was performed to solve this problem.

To normalize the data, z-score normalization has been utilized [49], which converts
the mean of the original data to 0 and the standard deviation to 1. Max–min normalization
was not chosen as it sets the maximum value to 1 and minimum value to 0 by not changing
the overall ratio of the values. That means, for a larger hand in the image the max–min
normalized distances will still be larger than a smaller hand scenario. However, z-score
normalization is capable of tackling such dilemmas. Hence, z-normalization was decided
upon for use. For the data in consideration, z-normalization can be performed with the
assistance of Equation (2).

z− normalization =
data− datamean

datastd
(2)
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Table 2. Considered set of starting and ending joint points for calculating distance-based features.

Starting Joint Set of Two Joint Numbers for Measuring Distance by Considering Number of Distance-
Number Starting Joint Number as a First Joint Number Based Features

1 {(1,3), (1,4), (1,6), (1,7), (1,8), (1,10), (1,11), (1,12), 15
(1,14), (1,15), (1,16), (1,18), (1,19), (1,20), (1,21)}

2 {(2,4), (2,5), (2,6), (2,7), (2,8), (2,9), (2,10), (2,11), (2,12), (2,13), 18
(2,14), (2,15), (2,16), (2,17), (2,18), (2,19), (2,20), (2,21)}

3 {(3,5), (3,6), (3,7), (3,8), (3,9), (3,10), (3,11), (3,12), (3,13), 17
(3,14), (3,15), (3,16), (3,17), (3,18), (3,19), (3,20), (3,21)}

4 {(4,6), (4,7), (4,8), (4,9), (4,10), (4,11), (4,12), (4,13), 16
(4,14), (4,15), (4,16), (4,17), (4,18), (4,19), (4,20), (4,21)}

5 {(5,6), (5,7), (5,8), (5,9), (5,10), (5,11), (5,12), (5,13), 16
(5,14), (5,15), (5,16), (5,17), (5,18), (5,19), (5,20), (5,21)}

6 {(6,8), (6,9), (6,10), (6,11), (6,12), (6,13), (6,14), 14
(6,15), (6,16), (6,17), (6,18), (6,19), (6,20), (6,21)}

7 {(7,9), (7,10), (7,11), (7,12), (7,13), (7,14), 13
(7,15), (7,16), (7,17), (7,18), (7,19), (7,20), (7,21)}

8 {(8,10), (8,11), (8,12), (8,13), (8,14), (8,15), 12
(8,16), (8,17), (8,18), (8,19), (8,20), (8,21)}

9 {(9,10), (9,11), (9,12), (9,13), (9,14), (9,15), 12
(9,16), (9,17), (9,18), (9,19), (9,20), (9,21)}

10 {(10,12), (10,13), (10,14), (10,15), (10,16), 10
(10,17), (10,18), (10,19), (10,20), (10,21)}

11 {(11,13), (11,14), (11,15), (11,16), 9
(11,17), (11,18), (11,19), (11,20), (11,21)}

12 {(12,14), (12,15), (12,16), (12,17), 8
(12,18), (12,19), (12,20), (12,21)}

13 {(13,14), (13,15), (13,16), (13,17), 8
(13,18), (13,19), (13,20), (13,21)}

14 {(14,16), (14,17), (14,18), (14,19), (14,20), (14,21)} 6
15 {(15,17), (15,18), (15,19), (15,20), (15,21)} 5
16 {(16,18), (16,19), (16,20), (16,21)} 4
17 {(17,18), (17,19), (17,20), (17,21)} 4
18 {(18,20), (18,21)} 2
19 {(19,21)} 1
20 {} 0
21 {} 0

3.2.3. Angle-Based Features

The feature values of how much the hand is tilted were calculated as the angle-based
features. The direction vectors between the coordinates of each joint were calculated, as
well as how much each vector was tilted from the X, Y, and Z-axis directions. Figure 4
illustrates this process where a vector has been created by connecting the 6th and 11th joint
points. After that, the angles between the vector and the coordinates (~x, ~y, and~z vectors)
have been calculated. Since the number of joints to be estimated is 21, a total of 210 vectors
can be created, and three angle-based features can be calculated for each vector, resulting
in a total of 630 angle-based features. Table 3 illustrates all possible 210 scenarios and
the extraction of 630 angle-based features. Similarly to distance-based features, it can be
noticed that for the joint point number 21 the set is empty. This is because the expected
pairs have already been covered up by the earlier joint points.
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Table 3. Set of vectors obtained when each joint point is considered as a starting point for measuring angle-based features.
Here, pi means joint number i.

Starting Set of Vectors Formed by Taking Starting Joint Number Number of

Joint Number as First Point and Other Joints as Second Points Angle-Based Features

1 {−−→p1 p2, −−→p1 p3, −−→p1 p4, −−→p1 p5, −−→p1 p6, −−→p1 p7, −−→p1 p8, −−→p1 p9, −−−→p1 p10, −−−→p1 p11, −−−→p1 p12 20× 3 = 60
−−−→p1 p13, −−−→p1 p14, −−−→p1 p15, −−−→p1 p16, −−−→p1 p17, −−−→p1 p18, −−−→p1 p19, −−−→p1 p20, −−−→p1 p21}

2 {−−→p2 p3, −−→p2 p4, −−→p2 p5, −−→p2 p6, −−→p2 p7, −−→p2 p8, −−→p2 p9, −−−→p2 p10, −−−→p2 p11, −−−→p2 p12 19× 3 = 57
−−−→p2 p13, −−−→p2 p14, −−−→p2 p15, −−−→p2 p16, −−−→p2 p17, −−−→p2 p18, −−−→p2 p19, −−−→p2 p20, −−−→p2 p21}

3 {−−→p3 p4, −−→p3 p5, −−→p3 p6, −−→p3 p7, −−→p3 p8, −−→p3 p9, −−−→p3 p10, −−−→p3 p11, −−−→p3 p12, −−−→p3 p13 18× 3 = 54
−−−→p3 p14, −−−→p3 p15, −−−→p3 p16, −−−→p3 p17, −−−→p3 p18, −−−→p3 p19, −−−→p3 p20, −−−→p3 p21}

4 {−−→p4 p5, −−→p4 p6, −−→p4 p7, −−→p4 p8, −−→p4 p9, −−−→p4 p10, −−−→p4 p11, −−−→p4 p12, −−−→p4 p13 17× 3 = 51
−−−→p4 p14, −−−→p4 p15, −−−→p4 p16, −−−→p4 p17, −−−→p4 p18, −−−→p4 p19, −−−→p4 p20, −−−→p4 p21}

5 {−−→p5 p6, −−→p5 p7, −−→p5 p8, −−→p5 p9, −−−→p5 p10, −−−→p5 p11, −−−→p5 p12, −−−→p5 p13, −−−→p5 p14 16× 3 = 48
−−−→p5 p15, −−−→p5 p16, −−−→p5 p17, −−−→p5 p18, −−−→p5 p19, −−−→p5 p20, −−−→p5 p21}

6 {−−→p6 p7, −−→p6 p8, −−→p6 p9, −−−→p6 p10, −−−→p6 p11, −−−→p6 p12, −−−→p6 p13, −−−→p6 p14 15× 3 = 45
−−−→p6 p15, −−−→p6 p16, −−−→p6 p17, −−−→p6 p18, −−−→p6 p19, −−−→p6 p20, −−−→p6 p21}

7 {−−→p7 p8, −−→p7 p9, −−−→p7 p10, −−−→p7 p11, −−−→p7 p12, −−−→p7 p13, −−−→p7 p14, −−−→p7 p15 14× 3 = 42
−−−→p7 p16, −−−→p7 p17, −−−→p7 p18, −−−→p7 p19, −−−→p7 p20, −−−→p7 p21}

8 {−−→p8 p9, −−−→p8 p10, −−−→p8 p11, −−−→p8 p12, −−−→p8 p13, −−−→p8 p14, −−−→p8 p15 13× 3 = 39
−−−→p8 p16, −−−→p8 p17, −−−→p8 p18, −−−→p8 p19, −−−→p8 p20, −−−→p8 p21}

9 {−−−→p9 p10, −−−→p9 p11, −−−→p9 p12, −−−→p9 p13, −−−→p9 p14, −−−→p9 p15 12× 3 = 36
−−−→p9 p16, −−−→p9 p17, −−−→p9 p18, −−−→p9 p19, −−−→p9 p20, −−−→p9 p21}

10 {−−−→p10 p11, −−−→p10 p12, −−−→p10 p13, −−−→p10 p14, −−−→p10 p15, −−−→p10 p16 11× 3 = 33
−−−→p10 p17, −−−→p10 p18, −−−→p10 p19, −−−→p10 p20, −−−→p10 p21}

11 {−−−→p11 p12, −−−→p11 p13, −−−→p11 p14, −−−→p11 p15, −−−→p11 p16 10× 3 = 30
−−−→p11 p17, −−−→p11 p18, −−−→p11 p19, −−−→p11 p20, −−−→p11 p21}

12 {−−−→p12 p13, −−−→p12 p14, −−−→p12 p15, −−−→p12 p16, −−−→p12 p17 9× 3 = 27
−−−→p12 p18, −−−→p12 p19, −−−→p12 p20, −−−→p12 p21}

13 {−−−→p13 p14, −−−→p13 p15, −−−→p13 p16, −−−→p13 p17, −−−→p13 p18, −−−→p13 p19, −−−→p13 p20, −−−→p13 p21} 8× 3 = 24
14 {−−−→p14 p15, −−−→p14 p16, −−−→p14 p17, −−−→p14 p18, −−−→p14 p19, −−−→p14 p20, −−−→p14 p21} 7× 3 = 21
15 {−−−→p15 p16, −−−→p15 p17, −−−→p15 p18, −−−→p15 p19, −−−→p15 p20, −−−→p15 p21} 6× 3 = 18
16 {−−−→p16 p17, −−−→p16 p18, −−−→p16 p19, −−−→p16 p20, −−−→p16 p21} 5× 3 = 15
17 {−−−→p17 p18, −−−→p17 p19, −−−→p17 p20, −−−→p17 p21} 4× 3 = 12
18 {−−−→p18 p19, −−−→p18 p20, −−−→p18 p21} 3× 3 = 9
19 {−−−→p19 p20, −−−→p19 p21} 2× 3 = 6
20 {−−−→p20 p21} 1× 3 = 3
21 {} 0

These features are useful and the classifier is expected to have an advantage while the
recognition process when the signs that have the same shape but different tilts based on the
inclination of the hand is under consideration. For example, in this study, I and J are two
such classes and the angle-based features are useful for such letters. While considering the
distance-based features, both letters will produce the same distance-based features as apart
from the tilt, the shape is the same. As a result, the distances between the joints do not
change and the classifier will not be able to find a difference based on the distance-based
features. However, the angle-based features can eliminate this problem. Hence, the angle
from the axis is expected to be important.

Additionally, since the angle information is not affected by the size of the hand, the
extracted features do not require normalization as compared to the distance-based features
described beforehand, and, as a result, the effect of the size of the hand will be reduced. The
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calculation method is to first calculate the direction vector between two points. The angle
between the vectors can be calculated using the direction vector and the vectors in the X, Y,
and Z-axis directions. Figure 5 illustrates extraction of such angles. The calculation method
used was to calculate the cosine of the angle between the two spatial vectors. Suppose, we
have two vectors~a = (a1, a2, a3) and~b = (b1, b2, b3). The angle between these two spatial
vectors can be calculated by using Equation (3).

Figure 5. Calculation of angle-based features. Here,~a is a vector created by 6th and 11th joints. After
that, the angles between~a and X-axis (left), Y-axis (middle), and Z-axis (right) have been calculated.

cosθab =
a1b1 + a2b2 + a3b3√

a1
2 + a22 + a32

√
b1

2 + b2
2 + b3

2
(3)

The method of calculating the inclination from the X-axis is to calculate vector~b as
vector (1, 0, 0) in the X-axis direction, which is expressed in Equation (4). Similarly, the
method of calculating the inclinations from the Y-axis and X-axis is to calculate vector~b
as vector (0, 1, 0) and (0, 0, 1) in the Y-axis and Z-axis directions, which is expressed in
Equations (5) and (6), respectively.

cosθx =
a1√

a1
2 + a22 + a32

(4)

cosθy =
a2√

a1
2 + a22 + a32

(5)

cosθz =
a3√

a1
2 + a22 + a32

(6)

3.3. Classification

For classification, two methods, support vector machine (SVM) and light gradient
boosting machine (GBM) have been utilized. SVM works well for unstructured and semi-
structured high-dimensional datasets. With an appropriate Kernal function, SVM can solve
complex problems. Unlike neural networks, SVM is not solved for local optima. SVM
models have generalization in practice and, therefore, the risk of over-fitting is less in
SVM. On the other hand, light GBM has faster training speed, lower memory usage, better
performance than any other boosting algorithms, is compatible with large datasets, and
supports parallel learning. Due to all these reasons, in this research, we chose both SVM
and light GBM.

3.3.1. Support Vector Machine

SVM is a pattern recognition model that utilizes supervised learning [50], and in
this study, it has been utilized for classification. Support vector machine is a method to
construct a pattern discriminator using linear input elements. From the training data,
the parameters of the linear input elements are learned based on the criterion of finding
the margin-maximizing hyperplane that maximizes the distance to each data point. The
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kernel used in this study is represented by Equation (7) where X1 and X2 are two points, K
denotes kernel and ||X1 − X2|| denotes the Euclidian distance between the two points.

K(X1, X2) = e−γ||X1−X2||2 (7)

The support vector machine has parameters and in order to optimize the parameters,
parameter tuning was performed. Grid search has been used to find the optimal values of
cost (C) and gamma parameters in this research.

3.3.2. Light Gradient Boosting Machine

Light GBM is a machine learning framework for gradient boosting based on the deci-
sion tree algorithm [51]. Gradient boosting is an ensemble learning method that combines
multiple weak learners (in the case of light GBM, decision trees) into one, using ’boosting’.
Before the arrival of light GBM, gradient boosting, called XGboost, was the mainstream
method. Normal decision tree models, including Xgboost, are trained hierarchically. Light
GBM uses leaf-wise learning, which is more efficient because it does not require unnec-
essary learning. Therefore, light GBM solves the drawback of gradient boosting such
as XGboost, which has high prediction accuracy but a long computation time. Figure 6
illustrates both level-wise learning and leaf-wise learning.

Figure 6. Two types of training: level-wise training (left), leaf-wise training (right).

3.4. Experimental Settings and Evaluation Metric

Each of the three datasets were divided into train set and test set, having 20% data in
the test set. While tuning the support vector machine and light GBM, 5-fold cross validation
has been utilized. Accuracy has been used as the evaluation metric in this research which
is denoted by,

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Here, TP = True positive, FP = False positive, TN = True negative, and FN = False negative.

4. Experimental Analysis

This section starts with the details on parameter tuning. After that, experimental set-
tings, evaluation metric and result analysis have been presented, along with a comparison
with previous works. Later, the necessity of both the distance-based, and angle-based
features on the overall performance has been discussed.

4.1. Parameter Turning

In this study, SVM and light GBM has been used to classify the ASL alphabet. To
obtain the best parameters, we used grid search to select the parameters. The parameters
searched were cost (C) values and Gamma values for SVM. Table 4 shows the parameters
search space for SVM classifier. Table 5 shows the selected C and Gamma values after
performing parameter tuning for each of the datasets. Grid search was also applied for
selecting the best parameters for light GBM as well. The parameters searched were the
number of leaves, learning rate, minimum child samples, and the number of estimators.
Table 6 presents the parameters search space and Table 7 presents the selected parameters
for each of the datasets while using the light GBM.
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Table 4. Parameter search space for SVM classifier.

Parameter Name Used Values for Grid Search

C 0.1, 1, 10, 100, 1000
gamma scale *, 0.001, 0.0001

* ‘scale’ is the default parameter of gamma value implemented in sklearn’s SVM, which is automatically
calculated from the number of training data and the variance of feature variables by using the formula 1/(number
of features × variance of features) [52].

Table 5. Selected parameters of SVM for different datasets.

Dataset Parameter All Distance All Angle Both Distance and
Features Features Angle Features

ASL Alphabet C 1000 1000 1000
gamma 0.001 0.001 scale

Massey C 100 1000 1000
gamma 0.01 scale 0.0001

Finger Spelling A C 1000 1000 1000
gamma 0.001 0.001 scale

Table 6. Parameter search space for light GBM classifier.

Parameter Name Used Values for Grid Search

number of leaves 5, 10, 25, 50, 75, 100, 500, 1000
learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001

minimum child samples 5, 10, 25, 50, 100, 500, 1000
number of estimators 10–250

Table 7. Selected parameters of light GBM for different datasets.

Dataset Parameter All Distance All Angle Both Distance and
Features Features Angle Features

ASL Alphabet

No. of leaves 100 100 100
learning rate 0.1 0.1 0.1

min. child samples 25 25 25
No. of estimators 12 13 14

Massey

No. of leaves 50 50 50
learning rate 0.1 0.1 0.1

min. child samples 25 25 25
No. of estimators 86 82 200

Finger Spelling A

No. of leaves 100 100 100
learning rate 0.1 0.1 0.1

min. child samples 25 25 25
No. of estimators 44 42 40

4.2. Results Analysis

In this study, two types of classifiers, SVM and light GBM have been used. SVM has
been used as the main classifier, while light GBM has been utilized for comparison. There
are two types of features, distance-based features, and angle-based features. Results after
applying SVM and light GBM are illustrated in Table 8. From Table 8, it can be observed
that when used alone, the angle-based features gave better results. In ASL, there are
letters that have the same shape but different inclinations to express different characters.
The distance-based features may be able to determine the shape but not the inclination.
Therefore, the performance increased when angle-based features are used that can also
determine the degree of inclination. Next, from Table 8 it can also be observed that the
results are better when both distance-based and angle-based features are used than when
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used individually. Although the shape of the hand can be imagined from the inclination, it
is still possible to estimate the shape of the hand more clearly with the distance features.
Therefore, combining the two features led to further improvement in the accuracy which
can be observed in Table 8. In addition, Table 9 presents average hand pose estimation
time, average feature extraction time, prediction time per sample, recognized frames per
second, and required memory to load final trained model for all three datasets using
SVM while considering both distance-based and angle-based features. Here, all times
are measured in seconds. It can be seen that the proposed system can recognize at least
62 samples per second which indicates that the proposed system is suitable for real-time
gesture recognition. A Kaggle CPU environment, i.e., 2 CPU cores, 16 Gigabytes of RAM,
20 Gigabytes of disk space, was utilized while all experimentation.

Table 8. Obtained experimental results for considered datasets by using SVM and light GBM.

Classifier Dataset All Distance All Angle Both Distance and
Features (190) Features (630) Angle Features (820)

SVM ASL Alphabet 81.20% 87.06% 87.60%
Massey 98.56% 99.23% 99.39%

Finger Spelling A 96.97% 97.63% 98.45%

Light GBM ASL Alphabet 79.11% 86.01% 86.12%
Massey 96.51% 97.25% 97.80%

Finger Spelling A 94.50% 96.06% 96.71%

Table 9. Average hand pose estimation time (Average HPET), average feature extraction time
(Average FET), prediction time per sample (PTPS), recognized frames per second (RFPS), and
required memory to load final trained model (Req. Memory) for all three datasets using SVM. All
times are measured in seconds.

Dataset Samples Avg. HPET Avg. FET PTPS RFPS Req. Memory

Massey 1815 0.011 0.003 0.014 71 4.04 MB
Finger Spelling A 65,774 0.01 0.002 0.015 66 47.97 MB

ASL Alphabet 780,000 0.011 0.002 0.016 62 115.14 MB

4.3. Comparison with Previous Studies

In this section, the comparison between this study and previous studies will be
discussed. There are two datasets that we are comparing in this study, one is the Massey
dataset and the other one is the finger spelling A dataset as these two datasets have been
used in previous studies. As can be seen from Table 10, the two datasets in this study
showed better results than the previous studies. Specifically, the obtained accuracy of
the Massey dataset is 99.39% and the accuracy of the finger spelling A dataset is 98.45%,
which is higher than the previous studies. Then, 87.60% accuracy was achieved on the
ASL alphabet dataset, which is considered to be a difficult dataset to classify. By using the
coordinate estimation method used in this study, it is possible to obtain 3D information
that cannot be obtained from 2D images, and this 3D information is important because
it allows to easily identify important features regarding joint points that are difficult to
identify in 2D. For example, if a person is grasping his or her hand, 3D information is much
more useful in identifying the hand because it holds the information more clearly.

There are cameras that can obtain 3D information, such as leap motion and cameras
equipped with depth sensors. However, in this research, we used images captured by
a webcam, a camera that does not provide three-dimensional information like a depth
camera. The reason why we considered webcam inputs is that it has the advantage of being
easier to use than the above-mentioned cameras. Moreover, leap motion and depth sensors
are more expensive. Web cameras, on the other hand, are inexpensive, and since even
laptops are equipped with them, it is not difficult to get and use one. Therefore, we believe
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that obtaining good recognition rates even with a web camera can be highly beneficial for
ASL recognition which will have a great impact on future research.

Table 10. Comparison with other existing works.

Dataset Approach Accuracy

Massey Dataset
CNN [53] 72.00%
RBM [26] 99.31%
Proposed 99.39%

Finger Spelling A Dataset

Random Forest [33] 90.00%
InceptionV3 [34] 90.00%

DNN with Squeezenet [40] 83.28%
ANN [43] 79.58%
CNN [44] 93.00%
RBM [26] 98.13%
Proposed 98.45%

4.4. Necessity of Distance-Based Features, Angle-Based Features, and Both

In this study, two types of features are used for character recognition. One is the
features using the distance between joints, and the other one is angles. Distance-based
features can imagine the shape of the hand more clearly whereas angle-based features can
imagine the tilt along with the shape. Normally, the recognition rate would be higher for
the distance-based features if the classes of ASL solely depended on the shape of the hand.
However, in ASL, some signs have the same shape but different inclinations to represent
different letters. For example, the I and J have the same shape but different inclinations.
Hence, specifically for ASL recognition, the angle-based features achieved better perfor-
mance than the distance-based features. Figures 7 and 8 illustrate the confusion matrices
for distance-based features and angle-based features, respectively. A clear difference in
performance can be seen here. Specifically, I and J also showed a difference in character
recognition accuracy. When only distance-based features were used, the recognition rate
of I was 74% and that of J was 78%. However, when angle information was used, the
recognition rate of I improved to 87% and that of J to 92%. This phenomenon indicates the
importance of the inclusion of angle-based features.

However, it is also true that distance-based features can imagine the hand shape
more clearly than the angle-based features. As in ASL, many letters have different hand
shapes, distance-based features can often be highly useful. For example, sometimes the
hand may tilt to some degrees on the left or right unintentionally where tilting is not
necessary. For those cases, the angle-based features can face problems in classification.
However, this problem can be tackled by distance-based features. Therefore, the better
choice seemed to combine both the distance-based and angle-based features. It turned out
that combining both features indeed can boost the performance which has been reported
beforehand. Table 8 illustrates the difference between using these features individually
and in combination.
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Figure 7. Confusion matrix for distance-based features.



Sensors 2021, 21, 5856 16 of 19

Figure 8. Confusion matrix for angle-based features.

5. Conclusions

In this study, we used images obtained from a web camera to recognize sign characters
in ASL. However, instead of just using the images, we estimated the coordinates of the
hand joints from the images and used the estimated coordinates for recognition. Then,
features were generated from the estimated coordinates, and character recognition was
performed based on these features. The features we created were based on the distance
between the joints and the angle between the direction between the two joints and the X, Y,
and Z-axis. By using these features, it was expected that the complex shape of the hand
could be easily represented and that the results would be better than using the images
themselves. The results were as expected, and the method used in this study performed
very well for sign language recognition in ASL. The experiments also showed that the
accuracy of our method was better than that of previous papers. We believe this will be
a great contribution to the field of character recognition. So far, there has been a great
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demand for systems that can input text without touching things, as is currently being
researched for contactless text input systems. We hope this research will have a great
impact on this field and will contribute to it. Another difference between this research
and existing research is that, as mentioned earlier, this research considered webcam inputs
which is not expensive and easier to get. In the future, we are thinking of recognizing not
only ASL but also sign characters from other languages. In addition, the system used in
this study can be applied not only to sign language recognition but also to air writing,
which is the recognition of characters by writing them in the air. This indicates the diverse
applications of this study and the potential to contribute greatly to future researches.
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