
sensors

Article

Sensor and Component Fault Detection and Diagnosis for
Hydraulic Machinery Integrating LSTM Autoencoder Detector
and Diagnostic Classifiers

Ahlam Mallak * and Madjid Fathi

����������
�������

Citation: Mallak, A.; Fathi, M. Sensor

and Component Fault Detection and

Diagnosis for Hydraulic Machinery

Integrating LSTM Autoencoder

Detector and Diagnostic Classifiers.

Sensors 2021, 21, 433. https://

doi.org/10.3390/s21020433

Received: 30 November 2020

Accepted: 6 January 2021

Published: 9 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering and Computer Science, Knowledge-Based Systems and Knowledge
Management, University of Siegen, 57076 Siegen, Germany; fathi@informatik.uni-siegen.de
* Correspondence: Ahlam.mallak@Ymail.com

Abstract: Anomaly occurrences in hydraulic machinery might lead to massive system shut down,
jeopardizing the safety of the machinery and its surrounding human operator(s) and environment,
and the severe economic implications following the faults and their associated damage. Hydraulics
are mostly placed in ruthless environments, where they are consistently vulnerable to many faults.
Hence, not only are the machines and their components prone to anomalies, but also the sensors
attached to them, which monitor and report their health and behavioral changes. In this work,
a comprehensive applicational analysis of anomalies in hydraulic systems extracted from a hydraulic
test rig was thoroughly achieved. First, we provided a combination of a new architecture of LSTM
autoencoders and supervised machine and deep learning methodologies, to perform two separate
stages of fault detection and diagnosis. The two phases were condensed by—the detection phase
using the LSTM autoencoder. Followed by the fault diagnosis phase represented by the classification
schema. The previously mentioned framework was applied to both component and sensor faults
in hydraulic systems, deployed in the form of two in-depth applicational experiments. Moreover,
a thorough literature review of related work from the past decade, for autoencoders related fault
detection and diagnosis in hydraulic systems, was successfully conducted in this study.

Keywords: deep learning; LSTM autoencoder; supervised learning; hydraulic test rig; sensor faults;
component faults

1. Introduction

Mechanical machines are considered a vital part of the industrial operation. Hence,
they play a tremendous role in the production and manufacturing processes. Due to their
major importance in the production line, they are usually placed in tough locations and
tough environments, which make them susceptive to the occurrence of various faults and
malfunctions. Faults in complex sensor systems can be defined as unexpected events that
might occur at a certain point of time, which might trigger bigger events or a series of
other unexpected events. According to Isermann and Balle [1], faults are defined as an
unauthorized or allowed deviation of what is declared as normality of a defined system.

Nowadays, industrial applications are getting more complicated and scalable than
ever, which contributed tremendously to the complexity of fault detection in those systems,
and also made those tasks quite challenging [2]. In the literature, faults can be classified
into three main categories, based on the location of the fault itself in the containing system,
such as sensor faults, actuator faults, and component faults [3].

The study in [4] indicated that 70–90% of the incidents associated to industrial opera-
tions are caused by human workers or operators. Consequently, the need for computer-
aided diagnosis emerged, to ensure highly accurate fault detection, prediction, and diag-
nosis of systems with extreme complexities. Moreover, computer-aided diagnosis might
also contribute to the speed and precision of the recovery actions deployment required

Sensors 2021, 21, 433. https://doi.org/10.3390/s21020433 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21020433
https://doi.org/10.3390/s21020433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020433
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/433?type=check_update&version=2

Sensors 2021, 21, 433 2 of 22

following fault appearance. The main goal of automated fault detection is to accurately
capture the anomalies as soon as they manifest, to ensure deploying the necessary mainte-
nance procedures, and to dodge economical, humanitarian, and environmental tragedies.
Creating a solid fault detection and diagnosis systems contributes to reducing risk and
providing safety to human operators and the environment. They also play a major role
in cutting down costs related to unnecessary maintenance. Thereafter, fault detection and
diagnosis in mechanical devices placed in complex systems like the industry is always a
hot research topic.

Automated Fault Detection and Diagnosis (FDD) [5] algorithms and systems are
usually dependent on the training and analysis of datasets, in which they are extracted
from numerous sensors attached to the industrial equipment and its components. Those
sensors continuously send essential signals to monitor each component of the mechanical
machine. In other words, sensors’ readings are most often the modalities, or the source
of row data associated with automated FDD systems. The health of these sensors is the
key to monitor those components properly, which leads to accurate component diagnosis
results. Although these sensors are substantial for computer-aided diagnosis, they are
mostly ridiculously cheap and perform under extreme environmental conditions as they
are attached to the machinery device. Therefore, sensors in mechanical machines are prone
to malfunctions and variety of faults themselves. Sensor faults are the faults represented by
the sensors and their readings. Usually, these faults are noticed when the sensors produce
incorrect readings, due to a physical fault in the sensor itself, broken wires or a malfunction
in the communication channels between the sensors and the controlling unit. A change
in the sensor’s reading could also be an indicator (symptom) of a component or system
fault. There are several existing classifications and categorical descriptions of sensor faults.
The most sound and interesting one, is the comprehensive study conducted in 2009 [6],
where an extensive approach was taken to provide a clear definition of each fault, their
potential cause(s), the observed duration of each fault in time-series datasets, and the
effect each fault carries on the sensed data. Smart FDD systems should monitor both the
mechanical devices and their components, as well as the sensors’ health status of those
who are responsible for reporting the health indications of mechanical components. Hence,
it is undeniably important to establish sensor FDD systems along with the component FDD
ones, when monitoring industrial operations.

One of the most essential mechanical equipment for industrial processes are hydraulic
systems [7]. The hydraulic system’s data applied to this study was gathered from a
hydraulic test rig. The applied dataset [8–10] represents real measurements of multivariate,
time-series sensors, placed in a hydraulic test rig. The purpose intended for the data
collection was to monitor and assess the hydraulic system health condition. A test rig
could be defined as a piece of mechanical device that is mainly utilized to assess, evaluate,
and test the capacities and performance of other mechanical machines, or just certain
components of these machines. Test rigs can be called by various terminologies, including
test bench or test pay, and testing station. Test rigs are common in a wide range of industrial
fields, from hydraulic systems to aerospace. They have a vast scope of testing methods,
and analytical parameters, such as, manual, cyclical, brake, and burst testing.

Hydraulic systems obtained from a hydraulic test rig were the focus of this study, due
to their importance and limited FDD resources in the past decade, in which a comprehen-
sive FDD system of both component and sensor faults was included.

Recently, an effective FDD framework is trending, which evolves around preforming
the detection and diagnosis phases separately, to ensure detecting rare fault occurrences
in various systems. The first phase is the detection, where it is often represented by a
healthy signal reconstructed schema, using different Machine Learning (ML) and Deep
Learning (DL) methodologies, i.e., autoencoders [11]. The autoencoder is trained using the
fully efficient input of the dataset, which represents the healthy form of the training data.
Eventually, the autoencoding model should be able to reconstruct the healthy version of
the input data at any given point of time. Comparing the reconstructed healthy signal with

Sensors 2021, 21, 433 3 of 22

the given one provides an indication of any fault. The more the given signal is identical
to the healthy reconstructed one, the more likely that it is a healthy signal and lacks the
presence of anomalies, and vice versa. Meanwhile, in the fault diagnosis phase, the faults
or deviations captured in the first phase (detection phase), are then used to train a certain
ML or DL classification model.

Our Contribution

In this work, a comprehensive FDD approach for hydraulic systems is proposed.
where an additional step is added in advance to the diagnosis, using the classification
phase, to overcome the weaknesses of supervised diagnostic approaches in capturing
rare and other faults existing beyond. To overcome this challenge, in this section the
detection and diagnosis phases are performed separately. Where the detection phase is
done by applying a Long Short-Term Memory (LSTM) [12] autoencoder to detect rare and
unprecedented faults. This is followed by the diagnosis phase, which uses the ML and DL
classifiers to analyze the nature of the captured faults in phase one.

This approach already exists in the literature. However, our work is beyond the state-
of-the-art, due to the following. (1) It is the first study to apply this schema to hydraulic test
rigs data. (2) This schema was applied to both sensor and component faults in a hydraulic
test rig, in two separate thorough experiments. (3) In the detection phase represented by
the LSTM autoencoder, we presented a new criterion to calculate the deviation between the
predicted signal and the input one, which proved to be more effective than the traditional
method in computing more accurate diagnostic thresholds. (4) In the fault diagnosis phase
proposed by the classification, we provided a full comparison results between numerous
ML and DL classifiers of different functionality and techniques. (5) In the same phase,
we also provided a behavior analysis of each ML and DL classifiers used in the diagnosis
phase with a bunch of time-domain feature selection methods, to help further research
in the future, to map each classifier with their best or least suitable time-domain features
to achieve either component or sensor FDD in hydraulic systems. (6) In this work, a
comprehensive literature review for FDD in hydraulic systems, based on autoencoders is
thoroughly presented.

The rest of paper is as follows. In Section 2, an in-depth analysis of the related work
is presented, where a list of FDD research in hydraulic systems, based on autoencoding
techniques for the past decade, is discussed. Section 3 explains the overview of the FDD
system utilized in this work. In Section 4, the experimental results are showcased and
analyzed in two main experiments, where one is applied on injected sensor faults, while
the other is conducted to achieve FDD for component faults in hydraulic test rigs. Finally,
the discussion, conclusion, and future work is discussed in Section 5.

2. Related Work
Autoencoder Approaches for FDD in Hydraulic Machinery

The work in [13] shows a combined approach to achieve component fault detection
and diagnosis of rare events occurring in chemical factories. The proposed method joins
LSTM autoencoder as the detection phase, followed by the diagnosis phase using the LSTM
classifier. This approach was used to detect and diagnose faults of the Tennessee Eastman
benchmark [14], which represent a dataset extracted from a simulator of actual chemical
processes that includes various components—reactors, condensers, vapor-liquids, etc. In
the detection phase, the sequence comparison between the reconstructed sequence and
the given one is achieved by applying the traditional signal difference. In the diagnosis
phase, no feature selection or extraction approach is used prior to the classification using
the LSTM classifiers. Moreover, a solo comparison to Convolutional Neural Network
(CNN) [15] was made, but no comparisons with other DL or ML classifiers were conducted.
Lu et al. [16] introduced a novel autoencoder called Stacked Denoised Autoencoder (SDA)
that was used to detect component faults in rotary machineries. The method was applied to
a dataset extracted from a physical simulation of a bearing test-rig. SDA implicitly feature

Sensors 2021, 21, 433 4 of 22

engineer the data, which was compared to Principal Component Analysis (PCA) [17]
and regular stacked autoencoders (SAE). Moreover, the classification results provided by
SDA were then compared to SAE, Support Vector Machines (SVM) [18], Random Forest
(RF) [19], and regular autoencoders. The work proposed in [20] shows a novel approach
of creating a new type of autoencoders, in which it combines stacked autoencoders and
LSTM network. The work was separated into two-phases—(1) feature transformation
using the LSTM-stacked autoencoders, and (2) applying LSTM for fault identification.
The proposed method focused on detecting injected component faults to a Bently Nevada
Rotor Kit RK3, which was designed to physically simulate rotating equipment and its
conditions. The raw vibrational signals were directly collected from the RK3 kit, then
the Wavelet Packet Decomposition (WPD) method was used to select features in both the
time-domain and the frequency-domain, to ensure a wide investigation in both domains,
followed by transforming the selected features using the stacked autoencoders in account
to their mean square error calculated, which helped to generate a threshold for each feature.
Finally, the fault detection accuracy for each feature was validated using a five-fold cross
validation, after classification using the K-Nearest Neighbor (KNN) [21] method. No
comparisons of other feature selection methods to WPD, or additional classifiers besides
KNN were used in the mentioned work. According to [22], a component fault diagnosis
system of rolling bearings using stacked autoencoders was introduced and compared
to two other deep learning schemas—(1) deep Boltzmann machines and (2) deep belief
networks. Four experiments were conducted using various data pre-processing schemas
using the time-domain, frequency-domain, and the time-frequency domain.

As stated in [23], a deep autoencoder was developed to diagnose vibration signals in
both gearboxes and electrical locomotive roller bearings. The novel approach proposed
consisted of two steps—(1) the design of the deep loss function in the autoencoder using
maximum correntropy, and (2) applying the artificial fish swam algorithm to optimize
the autoencoder’s parameters and its ability to extract valuable features. Similarly, the
approach proposed in [24] demonstrates a new method of combining wavelet transform
and stacked autoencoders, to diagnose faults occurring in the roller bearing systems. Fur-
thermore, a deep autoencoder in [25] was used to develop the quality of feature fusion,
which contributes to aiding the diagnosis of faults in rotating machinery. The applied
autoencoder was a collaboration between denoising autoencoders and contractive autoen-
coders. Where the deeply extracted features from both methods were then separately fused
together using locality preserving projection (LPP). The fused features were then applied
to the SoftMax function, to train the diagnosis process. In addition, another architecture of
sparse autoencoders was performed in [26] to monitor and diagnose the component faults
in motors and air compressors. The application of regular ML classifiers, such as SVM, re-
quires intensive understanding and expertise in feature engineering. Thus, the application
of autoencoders can massively facilitate the feature engineering process and perhaps out-
perform the regular feature engineering approaches. For that matter, sparse autoencoders
are compared to other ML fault diagnosis methods, such as SVM and SoftMax regressor,
to classify faults in motors and air compressors. Accordingly, in [27], a multivariant fault
diagnosis and health monitoring approach in rotating machines is introduced. This method
is called “SAE-DBN”, as a combination of a two-layered sparse autoencoder (SAE), to
perform data fusion between the features of multi-sensors, followed by the application
of Deep Belief Networks (DBN) for diagnosis. In [28], another approach using sparse
autoencoders is proposed. The method is applied to induction motors monitoring and
fault diagnosis purposes. The autoencoder application in [29] shows an ensemble, and
deep approach of autoencoders designated to fault diagnosis in rolling bearings. Various
activation functions are deployed at the same time, to create multiple autoencoders that
are going to be combined later, using a novel strategy. Finally, the work in [30] investigates
fault detection and feature extraction schema for motors, using an autoencoding schema of
Recurrent Neural Networks (RNN). The explained schema for fault classification is applied
directly on time-domain vibrational data and then compared to the results conducted by a

Sensors 2021, 21, 433 5 of 22

two-layered Artificial Neural Network (ANN) [31] model. On a different note, the feature
selection capacities of the RNN autoencoder was compared to PCA and Linear Discrim-
inant Analysis (LDA) [32] for dimensionality reduction. The vibrational signals used in
this work were obtained from an actual motor positioned with different accelerometers in
various locations. The Table 1 demonstrated below is created to conclude all autoencoding
FDD approaches in mechanical machinery that was performed in the past decade.

Table 1. Autoencoding-based Methods for FDD in Hydraulic Machinery.

Reference Autoencoding
Method

Mechanical
Equipment Fault Type/Purpose Dataset

[13] LSTM Autoencoder +
LSTM Classifier Chemical Reactor

Component Faults of
Tennessee Eastman

benchmark.

Tennessee Eastman
benchmark [14].

[20] Stacked Autoencoder
LSTM + KNN Rotating equipment Injected Component faults to a

physical simulation

Data collected from Bently
Nevada Rotor Kit RK3 to
simulate rotating device.

[16] Stacked Denoised
Autoencoder Rotary machinery Component faults in a bearing

test-rig
Data extracted from physical

bearing test-rig.

[22] Stacked deep
autoencoders Rolling bearings Component faults in rolling

bearings. Gathered from UPS.

[23] Another architecture
deep autoencoder

Gearboxes and
electrical locomotive

roller bearings

Component faults in rolling
bearings and electrical

locomotive.
From a physical test rig.

[24] Wavelet transform +
stacked autoencoders Roller bearing systems Component faults in rolling

bearings.
From case western reserve

university (CWRU).

[25] Another architecture of
deep autoencoders Rotating machinery Component faults in rotating

machinery

Physical rotor fault test,
CWRU [33] and NASA

datasets [34].

[26] Another architecture of
sparse autoencoders

Motors and air
compressors

Component faults in motors
and air compressors

Actual air compressor and
motor

[27]
SAE-DBN (sparse

autoencoder + Deep
Belief Networks)

Rotating machines Component faults in rotating
machinery

Extracted from an
experimental system.

[28] Another architecture of
sparse autoencoders Induction motors Component faults in induction

motors Fault simulator.

[29] Ensemble deep
autoencoder Rolling bearings Component fault diagnosis in

rolling bearings CWRU [33].

[35] Another architecture of
stacked autoencoders Hydraulic pumps Detect component faults in

hydraulic pumps

Hydraulic pump of type
axial piston pump

(25MCY14-1B).

[30] Autoencoding schema
of RNN networks Motors Component fault detection and

feature extraction in motors Physical motor.

3. Hydraulic System FDD Overview

In this experiment, the data used were collected from a condition monitoring of a
hydraulic test rig, which was designated to test a hydraulic system. Thereafter, the data
were used to conduct two main experiments, one to analyze the provided component
faults at the total failure stage. The other experiment was concerned with sensor faults,
where the fault injection took place to successfully inject three main types of sensor faults;
constant fault that covers constant low, constant high and constant zero faults, as well as
gain faults and bias or offset faults. These injected faults along with the healthy readings
would eventually act as pre-defined classes necessary for fault classification and healthy
signal reconstruction learning, respectively.

Figure 1 shows the two main experiments to detect and diagnose a variety of sensor
faults and severe component failures in the hydraulic test rig readings, as an example of a
hydraulic system’s data. In this work, two comprehensive experiments were conducted
to guarantee performing fault detection and diagnosis for each component and sensor

Sensors 2021, 21, 433 6 of 22

faults in the hydraulic system tested, using a hydraulic test rig. The two experiments
start mutually with applying the necessary data pre-processing steps, to ensure removal
of unnecessary noise in the input signals, and to arrange the inputs in a way suitable for
the LSTM autoencoder. Please note that the data applied, and its pre-processing differed
between the sensor FDD experiment and the component one. Moreover, the data used
for both experiments were filtered and organized differently. The data description and
organization for both experiments are described in detail in the experimental results section
of this work. For Sensor FDD, the available dataset of a hydraulic test rig lacked the
presence of any sensor faults, which necessitated the injection of various sensor faults into
the filtered and pre-processed data. The choice of which types of sensors faults to inject
was decided upon convenience and necessity. For example, stuck-at or constant sensor
fault was chosen to be injected in the data due to its simplicity to apply such an effect on
different periods of time, as compared to other data-centric sensor faults, i.e., outliers or
spikes that were not easily predicted or occurred frequently, or even possessed a regular
pattern in which they could be injected in the data. Gain and bias faults are an example of
system-centric faults, which by definition are complicated to diagnose relying on the data
alone. This is why these sensor faults are significant to study and apply algorithms with
high accuracies to diagnose. Both mentioned faults also had a clear definition and pattern
that made it easier to inject them to the dataset.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 22

would eventually act as pre-defined classes necessary for fault classification and healthy
signal reconstruction learning, respectively.

Figure 1 shows the two main experiments to detect and diagnose a variety of sensor
faults and severe component failures in the hydraulic test rig readings, as an example of
a hydraulic system’s data. In this work, two comprehensive experiments were conducted
to guarantee performing fault detection and diagnosis for each component and sensor
faults in the hydraulic system tested, using a hydraulic test rig. The two experiments start
mutually with applying the necessary data pre-processing steps, to ensure removal of
unnecessary noise in the input signals, and to arrange the inputs in a way suitable for the
LSTM autoencoder. Please note that the data applied, and its pre-processing differed
between the sensor FDD experiment and the component one. Moreover, the data used for
both experiments were filtered and organized differently. The data description and
organization for both experiments are described in detail in the experimental results
section of this work. For Sensor FDD, the available dataset of a hydraulic test rig lacked
the presence of any sensor faults, which necessitated the injection of various sensor faults
into the filtered and pre-processed data. The choice of which types of sensors faults to
inject was decided upon convenience and necessity. For example, stuck-at or constant
sensor fault was chosen to be injected in the data due to its simplicity to apply such an
effect on different periods of time, as compared to other data-centric sensor faults, i.e.,
outliers or spikes that were not easily predicted or occurred frequently, or even possessed
a regular pattern in which they could be injected in the data. Gain and bias faults are an
example of system-centric faults, which by definition are complicated to diagnose relying
on the data alone. This is why these sensor faults are significant to study and apply
algorithms with high accuracies to diagnose. Both mentioned faults also had a clear
definition and pattern that made it easier to inject them to the dataset.

Figure 1. An Overview of the Two Experiments to Achieve FDD in Hydraulic Test Rigs for both
Sensor and Component Faults.

For the component FDD experiments, the instances selected were the ones with full
efficiency, to be fed in the detection phase demonstrated by the LSTM autoencoder.
However, the faults that proceeded to the diagnosis stage were the ones representing total
failure in the hydraulic test rig, which were, cooler total failure, valve total failure, pump
severe leakage, and hydraulic accumulator total failure. In both experiments, the detection
phase was demonstrated by the LSTM autoencoder to reconstruct the healthy form of the
input signal when the FDD was conducted and tested. The LSTM autoencoder was trained

Figure 1. An Overview of the Two Experiments to Achieve FDD in Hydraulic Test Rigs for both
Sensor and Component Faults.

For the component FDD experiments, the instances selected were the ones with
full efficiency, to be fed in the detection phase demonstrated by the LSTM autoencoder.
However, the faults that proceeded to the diagnosis stage were the ones representing total
failure in the hydraulic test rig, which were, cooler total failure, valve total failure, pump
severe leakage, and hydraulic accumulator total failure. In both experiments, the detection
phase was demonstrated by the LSTM autoencoder to reconstruct the healthy form of the
input signal when the FDD was conducted and tested. The LSTM autoencoder was trained
using healthy sensor data that showed full efficiency in both experiments. However, the
data formulation and organization were different between the two experiments, since the
signal subject of reconstruction for sensor FDD was a window of 60 s values that separately
corresponded to each sensor in the hydraulic test rig. However, in the component FDD,
the healthy signal used for training was organized without sliding windows, while each

Sensors 2021, 21, 433 7 of 22

reading represented the values of all eleven sensors at this particular point of time, and
how they altogether contributed to diagnosing the failure.

In the diagnosis phase for both experiments, the faulty data of both systems were
separately fed into a classification process. The choice of traditional ML classifiers for
this experiment was dependent on the selection of various supervised learning methods
of entirely different functionality and mechanism, as possible, to provide a broad and
comprehensive analysis. The classifiers used in this experiment were LDA, Logistic Re-
gression (LR), KNN, Decision Trees (CART), Naïve Bayesian (NB), SVM, and finally RF.
The DL methods chosen for this experiment were CNN and LSTM, both applied in an
interesting manner. The comparison included the application of the chosen ML and DL
approaches using different features extracted or selected via numerous feature extraction
and selection methods, such as manually extracting time domain features for each sliding
window, such as the mean, variance, standard deviation, and signal to noise ratio. PCA
was also applied directly using the raw multivariate time domain sensor data without di-
mensionality reduction, and by using the Recursive k-Means Silhouette Elimination (RkSE)
feature selection and dimensionality reduction algorithm [36]. Finally, the trained models
and saved thresholds from each experiment could be easily used to achieve run-time
predictions of new samples at real-time. The FDD prediction at run-time could be done by
the following. (1) Detection—(a) for predicting the healthy reconstructed sample to the new
sample using the trained model of the LSTM autoencoder; (b) comparing the reconstructed
sample and its original form by applying the suitable sequence difference; (c) comparing
the calculated sequence difference to the threshold computed during the offline training
stage (if the difference was greater than the threshold then a fault has been detected; when
a fault was detected, it needed to be passed to the next stage of fault diagnosis). (2) Fault
diagnosis—this step was done by passing the new sample that was detected as faulty, into
the chosen trained classifier. This was done by taking into consideration and choosing the
best features and the most optimal classifiers, based on the comprehensive training and
comparisons done previously in the model training offline phase.

4. Analysis and Experimental Results
4.1. Experiment One: Sensor FDD Using the Joint LSTM Autoencoder and Classifier Approach

In this section, FDD of sensor faults in hydraulic test rigs using a joint approach
between healthy signal reconstruction to detect sensor faults, followed by fault classification
to diagnose the selected sensor faults was introduced, analyzed, and discussed.

The following subsections elucidate each step of the described approach applied on
sensor faults and showcase their results. Figure 2 shows the steps included in experiment
one, where each step, stated below, is elaborated in comprehensive detail.

The dataset used for the sensor fault detection and diagnosis was the hydraulic test
rig dataset earlier. The mentioned data provided a wide range of component faults that
varied from slightly damaged to total failure. However, the dataset did not provide any
sensor faults. Thus, it was essential to inject sensor faults to build the sensor FDD model.

Although the sensor FDD architecture navigated in this work was meant for multi-
variate time-series data, for simplicity, only one sensor only was considered to show results
for the sensor FDD process. Sensor PS1 (the first pressure sensor) was used to showcase
the sensor FDD results during the fault injection, and sensor FDD was used for the LSTM
autoencoder and the sensor detection classification results.

Sensors 2021, 21, 433 8 of 22

Sensors 2020, 20, x FOR PEER REVIEW 8 of 22

Figure 2. Sensor FDD Comprehensive Framework.

The dataset used for the sensor fault detection and diagnosis was the hydraulic test
rig dataset earlier. The mentioned data provided a wide range of component faults that
varied from slightly damaged to total failure. However, the dataset did not provide any
sensor faults. Thus, it was essential to inject sensor faults to build the sensor FDD model.

Although the sensor FDD architecture navigated in this work was meant for
multivariate time-series data, for simplicity, only one sensor only was considered to show
results for the sensor FDD process. Sensor PS1 (the first pressure sensor) was used to
showcase the sensor FDD results during the fault injection, and sensor FDD was used for
the LSTM autoencoder and the sensor detection classification results.

The sensor fault types, their equations, and some of their recent applications are
mentioned shortly in [6],[37,38] and [39]. The faults chosen to be injected were as follows.
(1) Stuck-at—three main types of stuck at faults was injected, as the stuck-at or constant
faults are the most common form of data-centric faults, and it reflects the severity of the
sensor condition. Moreover, constant faults are extremely easy to inject. Consider the
input sensor signal was (), then the constant fault could be easily injected by following ′() = , where is a constant number representing the stationary condition of the
sensor. Three main types of constant faults were added. Constant zero when the sensor
was stuck at zero, constant high when the sensor was stuck at the highest value in the
window, and constant low when stuck at the lowest point of the sensor readings during
the observed window. We randomly injected 40 windows of size 60 s (because the sensors
in the dataset repeated in a duration of 60 s) with a constant zero fault, 7210 windows of
size 60 readings of PS1 was injected with high and low constant faults, which make the
overall number of windows injected with stuck-at fault to be 7250 windows. (2) Gain
faults; and (3) Bias or offset faults—these faults are a type of system-centric faults; hence
it is hard to observe their pattern through sensor signal’s observation alone. Therefore,
these faults are significant to study and build ML approaches to dynamically detect and
diagnose them. Furthermore, both faults show a clear pattern that makes it easy to inject
these types of faults in the data. Gain fault is also known as amplification, where the
original signal () was amplified with a constant ; ′() = () ∗ . To inject this
fault, a randomly selected amplification number between 0.3–1.3 (equivalent to 30%–130%
of the original signal, was applied as gain or multiplication) was selected each time, to

Figure 2. Sensor FDD Comprehensive Framework.

The sensor fault types, their equations, and some of their recent applications are
mentioned shortly in [6,37–39]. The faults chosen to be injected were as follows. (1) Stuck-
at—three main types of stuck at faults was injected, as the stuck-at or constant faults are the
most common form of data-centric faults, and it reflects the severity of the sensor condition.
Moreover, constant faults are extremely easy to inject. Consider the input sensor signal
was x(t), then the constant fault could be easily injected by following x′(t) = c, where c is
a constant number representing the stationary condition of the sensor. Three main types
of constant faults were added. Constant zero when the sensor was stuck at zero, constant
high when the sensor was stuck at the highest value in the window, and constant low
when stuck at the lowest point of the sensor readings during the observed window. We
randomly injected 40 windows of size 60 s (because the sensors in the dataset repeated in a
duration of 60 s) with a constant zero fault, 7210 windows of size 60 readings of PS1 was
injected with high and low constant faults, which make the overall number of windows
injected with stuck-at fault to be 7250 windows. (2) Gain faults; and (3) Bias or offset
faults—these faults are a type of system-centric faults; hence it is hard to observe their
pattern through sensor signal’s observation alone. Therefore, these faults are significant to
study and build ML approaches to dynamically detect and diagnose them. Furthermore,
both faults show a clear pattern that makes it easy to inject these types of faults in the data.
Gain fault is also known as amplification, where the original signal x(t) was amplified
with a constant w; x′(t) = x(t) ∗ w. To inject this fault, a randomly selected amplification
number between 0.3–1.3 (equivalent to 30%–130% of the original signal, was applied as
gain or multiplication) was selected each time, to regenerate the magnified fault signal. A
total of 7210 samples of 60 PS1 sensor readings were injected with randomly chosen gain
values. Bias or offset fault was another example of calibration system-centric fault, where
the original signal was shifted with a constant value. Consider the original signal to be
x(t), then the manipulated offset signal would be x′(t) = x(t) + b, where b is the constant
number representing the bias or offset added to the signal. The b value can be too small
and hard to notice or observe, or too large and hard to ignore. As a result, it is essential to
inject both cases of b. To achieve this, 3480 windows of size 60 were injected with a random

Sensors 2021, 21, 433 9 of 22

number between 0.1–1 to represent the too tiny bias category, while the remaining 3730
windows of size 60 were injected with the comparatively larger biases that were randomly
chosen between 1.1–50 (it is not possible to show percentages here, because this is an
additive value to the original signal, not a multiplied percentage of it, as in the gain faults).
Finally, the overall PS1 sensor data prepared after the fault inject process, possess many
windows of size 60 readings that consist of the following—(1) 7210 windows representing
fully efficient windows as an example of healthy windows; (2) 7250 windows of constant
faults (zero, high, and low); (3) 7120 windows of gain fault; and (4) 7210 windows of bias
faults (low and high bias).

4.1.1. LSTM Autoencoder for Sensor Signal Reconstruction

To achieve the problem under investigation, the desired neural network should be
able to perform sequence-to-sequence predictions. Hence, the input sequence was the
sliding window of the sensor PS1 and the reconstructed signal was from the same nature
of the input sequence, and they both had the same size of 60. Then, the encoder–decoder
type required to fit the problem was an autoencoder. The choice of LSTM as a type of DL
algorithm was due to its tendency to learn the hidden dependencies between many time
points at once, which make LSTM one of the most suitable forms of DL when it comes to
time-series data, especially sequence-to-sequence (seq2seq) operations.

The LSTM autoencoder created for this experiment, only had one batch of LSTM
sequences. This batch was designed to be sequential in direction and nature, which meant
that the input layer was directly connected to the hidden layers, then the hidden layer
was connected to the output layer. The LSTM hidden layer consisted of a hundred hidden
LSTM neurons. The activation function applied for the designed DL model was ReLU,
based on a trial and error validation. The hidden layer was chosen to be fully connected
by adding the dense layer of output equal to the overall output expected from the LSTM
model. The optimizer chosen for the LSTM layer was the Adam optimization algorithm.

In order to utilize the healthy windows of PS1 for LSTM use, it must go under a
heavy pre-processing and structuring, to fit the LSTM criteria. The pre-processing and
restructuring included the following—(1) flatten the data into a vector; (2) normalize the
flattened data between zero and one that can be used in LSTM; and (3) create the target
sequence y(t) to reconstruct the most important step of all, which determined what to learn
and what to predict. In our case, the input sequence was a sliding window of size 60, while
the target sequence was the next sliding window. The shift or sliding step was assumed
to be only one step to guarantee a higher model accuracy, which meant that if the input
point was x(0), then the target point used to train the prediction model was y(0) = x(1).
Therefore, in general, y(t) = x(t + 1) (4) divide the flattened normalized vectors of x(t)
and y(t) between the training and testing samples, where the training windows were the
80% selected from the overall data, while the remaining 20% was equally divided between
testing and prediction. (5) The next step included converting the flat, normalized vectors
of x(t) and y(t) into a two-dimensional array (number of samples, window size) shape;
followed by (6) converting the training and testing 2D tensor samples into a 3D tensor
suitable for use in LSTM. LSTM units in Keras only accept the training and testing data in
a 3D tensor shape following the size (number of samples, time points, number of features).
Where the z-axis or pages or axis 0 is the number of samples, axis 1 or rows is the number
of time-points to store in the memory of LSTM and learn their dependencies, and finally
axis 2 or columns represents the number of features inserted in the data. The x(train) used
in this experiment were of size (11191, 60, 1), where 11191 of samples were of size (60,1),
which corresponded to one window of 60 only healthy readings of PS1.

The previously designed LSTM model was trained and validated using the intensely
pre-processed healthy data of PS1. In this experiment, the LSTM parameters were set to
one hundred epochs and the verbose equaled one.

The validation results of the LSTM healthy signal reconstruction using the formulated
testing data at the last epoch (number one hundred) had the errors Mean Square Error

Sensors 2021, 21, 433 10 of 22

(MSE) and Mean Absolute Error (MAE) 0.000039871 and 0.0029, respectively, which are
both considered to be exceedingly small loss values.

After training, evaluating, and testing the LSTM autoencoder model, it was time to
start making fault detection decisions aided by the model. However, the question arises
as how to detect faults based on the quality of the reconstructed signal? Which brings up
another important question—how to determine the fault detection threshold?

Taking a glance at the state-of-the-art methods helps answering the previous questions,
e.g., [13]. The approach applied there was similar to ours, as they had separate phases for
both detection using signal reconstruction, and diagnosis by applying fault classification.
To find the difference between the predicted sequence and the input sequence, they used
signal difference that could be easily calculated by taking the amplitude of the subtraction
operation between the two sequences (z(t) = |x(t)− x′(t)|). Although using signal differ-
ence shows accurate results, we propose a different signal similarity measure that showed
more accuracy and performance, when compared to signal difference for fault detection.

The threshold determines what is faulty or healthy, based on the value of the signal
difference. If the value was higher than the designated threshold, then the reconstructed
signal was considered faulty, or else it was healthy. The threshold was best measured by
creating a pool of various threshold values between the minimum and maximum values
of the calculated signal difference. This was followed with making the fault detection
decisions on the prediction samples, based on each threshold in the pool. For each threshold
in the pool, we checked if the prediction’s sample signal difference was higher than the
threshold that was considered faulty; where a lower signal was detected to be healthy.
Finally, the precision, recall, f1-score, and accuracy for all prediction results made by each
threshold in the pool were calculated. The choice of the right threshold for the sensor
fault detection was made by choosing the threshold that guaranteed the best precision
to recall trade-off, also known as the f1-score. In this experiment, a prediction dataset
(500 windows of size 60 readings of PS1) that consisted of various healthy and faulty
samples, was used to determine the fault detection accuracy using the LSTM autoencoder
sequence reconstruction. The 500 windows reconstructed using LSTM were then each
compared to the original sequence to show how much they deviated from the original
window with regards to their health status. The comparisons between the reconstructed
windows and the original ones were made by utilizing two main metrics—(1) signal
difference: z(t) = |x(t)− x′(t)|; and (2) our new metric that used the complement of
Pearson’s autocorrelation.

Pearson’s autocorrelation could be calculated using the formula shown below:

rxy =
n ∑ xiyi − ∑ xi ∑ yi√

n ∑ x2
i − (∑ xi)

2
√

n ∑ y2
i − (∑ yi)

2
(1)

where rxy is the correlation between vectors x, y. Furthermore, x and y were expected to
possess the same length of n. Here the autocorrelation measured the similarity between
two sequences, while subtracting the measured similarity from the highest possible value
of resemblance (+1) represented another way of calculating the difference between two
sequences z(t) = 1− rxy.

The tables demonstrated below show some of the threshold values selected to find the
optimal threshold necessary for the sensor fault detection, corresponding to their precision,
recall, f1-score, and accuracy, using the traditional signal difference, and our proposed
correlation complement.

Based on the values shown in Tables 2 and 3, the optimal threshold from each signal
difference metric could be easily detected by choosing the threshold that provided the best
precision and recall trade-off. It was apparent that the threshold of 0.3 was the optimal
threshold when using the regular signal difference metric, and the accuracy of the LSTM
autoencoding sensor fault detection when using the optimal threshold of 0.3 was 0.62.
On the other hand, the optimal threshold when using the signal difference based on the

Sensors 2021, 21, 433 11 of 22

correlation was 0.5, and the accuracy of the sensor detection given the optimal threshold
was 0.71.

Table 2. Signal Difference Thresholds and Their Metrics.

Threshold 0.1 0.3 0.5 0.7 0.9 1.1

Precision 0.78 0.76 0.74 0.69 0.65 0.79
Recall 0.89 0.77 0.69 0.54 0.33 0.2

F1-Score 0.83 0.76 0.71 0.61 0.43 0.32
Accuracy 0.71 0.62 0.55 0.44 0.32 0.32

Table 3. Signal Difference using the Correlation and Their Metrics.

Threshold 0.1 0.3 0.5 0.7 0.9 1.1 1.3

Precision 0.79 0.8 0.81 0.83 0.84 0.85 0.86
Recall 0.95 0.85 0.82 0.72 0.64 0.55 0.5

f1-score 0.86 0.82 0.81 0.77 0.73 0.66 0.63
Accuracy 0.76 0.71 0.7 0.66 0.61 0.56 0.53

As visualized in Figures 3 and 4. The optimal threshold provided the best precision
and recall trade-off, also known as the f1-score. The optimal threshold could be easily
observed as the intersection point between the three metrics mentioned previously. Based
on the visualization in Figure 3, the threshold selected was 0.3, which provided the detection
with 0.62 accuracy. Compared to the intersection point shown in Figure 4, when the
threshold was chosen to be 0.5, the corresponding accuracy was observed to be higher at
0.71. This concluded the accuracy of the proposed signal difference measure as compared
to the traditional one, to achieve fault detection using the signal reconstruction technique.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 22

precision, recall, f1-score, and accuracy, using the traditional signal difference, and our
proposed correlation complement.

Based on the values shown in Table 2 and Table 3, the optimal threshold from each
signal difference metric could be easily detected by choosing the threshold that provided
the best precision and recall trade-off. It was apparent that the threshold of 0.3 was the
optimal threshold when using the regular signal difference metric, and the accuracy of the
LSTM autoencoding sensor fault detection when using the optimal threshold of 0.3 was
0.62. On the other hand, the optimal threshold when using the signal difference based on
the correlation was 0.5, and the accuracy of the sensor detection given the optimal
threshold was 0.71.

Table 2. Signal Difference Thresholds and Their Metrics.

Threshold 0.1 0.3 0.5 0.7 0.9 1.1
Precision 0.78 0.76 0.74 0.69 0.65 0.79

Recall 0.89 0.77 0.69 0.54 0.33 0.2
F1-Score 0.83 0.76 0.71 0.61 0.43 0.32
Accuracy 0.71 0.62 0.55 0.44 0.32 0.32

Table 3. Signal Difference using the Correlation and Their Metrics.

Threshold 0.1 0.3 0.5 0.7 0.9 1.1 1.3
Precision 0.79 0.8 0.81 0.83 0.84 0.85 0.86

Recall 0.95 0.85 0.82 0.72 0.64 0.55 0.5
f1-score 0.86 0.82 0.81 0.77 0.73 0.66 0.63

Accuracy 0.76 0.71 0.7 0.66 0.61 0.56 0.53

As visualized in Figure 3 and Figure 4. The optimal threshold provided the best
precision and recall trade-off, also known as the f1-score. The optimal threshold could be
easily observed as the intersection point between the three metrics mentioned previously.
Based on the visualization in Figure 3, the threshold selected was 0.3, which provided the
detection with 0.62 accuracy. Compared to the intersection point shown in Figure 4, when
the threshold was chosen to be 0.5, the corresponding accuracy was observed to be higher
at 0.71. This concluded the accuracy of the proposed signal difference measure as
compared to the traditional one, to achieve fault detection using the signal reconstruction
technique.

Figure 3. Optimal Threshold Selection Using Regular Signal Difference. Figure 3. Optimal Threshold Selection Using Regular Signal Difference.

Sensors 2021, 21, 433 12 of 22

Sensors 2020, 20, x FOR PEER REVIEW 12 of 22

Figure 4. Optimal Threshold Selection Using Signal Difference Based on Correlation Complement.

4.1.2. Sensor Fault Diagnosis—Classification Schema
In this section, the experimental results conducting sensor fault diagnosis using a

variety of supervised learning algorithms is demonstrated. As shown in Error! Reference
source not found., the second phase following the detection of existing anomalies
involved applying necessary means to diagnose their nature. The faults detected by the
previous phase using the LSTM autoencoder, were then fed into a fault classification
schema, to determine the type and nature of the detected faults. In other words, to perform
the fault diagnosis, only faulty data were classified.

In this work, the classification results were compared when various feature
engineering approaches were applied. The feature engineering approaches used for this
section were—PCA, feature importance (FI), manually extracted time-domain features,
and a new cluster-based feature selection method called RkSE. Feature selection or
extraction when applied to univariate datasets in the shape of sliding windows, is simply
considered to be a window compression method, to minimize the size of the readings
provided by each window and select the features with most contribution to the learning
process. Therefore, the time and complexity constraints of the ML or DL models could be
managed and minimized with a smarter choice of features. Various ML and DL classifiers
were individually trained, validated, and tested with the selected features, using a
diversity of feature engineering approaches. Then, their results were documented and
compared. The ML approaches used were LR, LDA, KNN, CART, NB, SVM, and RF. The
DL approaches selected to perform the classification tasks were CNN and LSTM.

The following experimental results tackled each of the feature engineering process
and their results when fed into the above-mentioned ML and DL classifiers, to eventually
achieve the FDD for sensor faults, using the PS1 sensor as an example of sensors in the
hydraulic test rig system.

The parameters selection for each classifier was chosen by trial and error, to ensure
the highest possible accuracy when validating using 10-fold cross-validation over the
original data, without any feature engineering applied. The table below describes the
applied ML classifiers and their corresponding parameters using Scikit in Python.
Furthermore, the mean accuracy for the 10-folds and the standard deviation
corresponding to the 10-folds was calculated.

The CNN classifier had the parameters verbose, epochs, and batch size of zero,
hundred, and twenty, respectively. The parameters were chosen by trial and error to
provide the designed deep neural network with the highest 10-fold classification

Figure 4. Optimal Threshold Selection Using Signal Difference Based on Correlation Complement.

4.1.2. Sensor Fault Diagnosis—Classification Schema

In this section, the experimental results conducting sensor fault diagnosis using a
variety of supervised learning algorithms is demonstrated. As shown in Figure 2, the
second phase following the detection of existing anomalies involved applying necessary
means to diagnose their nature. The faults detected by the previous phase using the LSTM
autoencoder, were then fed into a fault classification schema, to determine the type and
nature of the detected faults. In other words, to perform the fault diagnosis, only faulty
data were classified.

In this work, the classification results were compared when various feature engineer-
ing approaches were applied. The feature engineering approaches used for this section
were—PCA, feature importance (FI), manually extracted time-domain features, and a new
cluster-based feature selection method called RkSE. Feature selection or extraction when
applied to univariate datasets in the shape of sliding windows, is simply considered to be a
window compression method, to minimize the size of the readings provided by each win-
dow and select the features with most contribution to the learning process. Therefore, the
time and complexity constraints of the ML or DL models could be managed and minimized
with a smarter choice of features. Various ML and DL classifiers were individually trained,
validated, and tested with the selected features, using a diversity of feature engineering
approaches. Then, their results were documented and compared. The ML approaches used
were LR, LDA, KNN, CART, NB, SVM, and RF. The DL approaches selected to perform the
classification tasks were CNN and LSTM.

The following experimental results tackled each of the feature engineering process
and their results when fed into the above-mentioned ML and DL classifiers, to eventually
achieve the FDD for sensor faults, using the PS1 sensor as an example of sensors in the
hydraulic test rig system.

The parameters selection for each classifier was chosen by trial and error, to ensure the
highest possible accuracy when validating using 10-fold cross-validation over the original
data, without any feature engineering applied. The table below describes the applied ML
classifiers and their corresponding parameters using Scikit in Python. Furthermore, the
mean accuracy for the 10-folds and the standard deviation corresponding to the 10-folds
was calculated.

The CNN classifier had the parameters verbose, epochs, and batch size of zero, hun-
dred, and twenty, respectively. The parameters were chosen by trial and error to provide

Sensors 2021, 21, 433 13 of 22

the designed deep neural network with the highest 10-fold classification accuracy. The
CNN applied was designed as the sequential model (input, hidden layers, and output).
The CNN convolutional layer applied here was a 1-D layer, since the training dataset was
a time-series data and of a one-dimensional nature, unlike the usual application of CNN
where the data are typically of two-dimensional shapes, such as images. The CNN design
included 6 one-dimensional convolutional layers of filter, equaling to 64 and a kernel size of
one. The kernel size that showed the length of the convolution window/masking window
required for the convolution was selected as one. The number of convolution layers was
added to guarantee the highest possible accuracy, and through trial and error, it was set to
6 layers of 1-D convolutional layers. The activation function within the created layers was
ReLU. The next process following each convolution layer was the pooling layer. In this
work, the pooling function was selected as the maximum pooling, which indicated selecting
the maximum entry in the kernel during the pooling phase. Two fully connected layers
were added, following the pooling phase, one of size hundred and their activation function
was ReLU. The second fully connected layer had three outputs to match the number of
classification outputs/faults designated for the training, while its activation function was
selected as SoftMax. Finally, the CNN optimizer chosen was the Adam optimizer. The
LSTM model designed for classification differed from the one used in the previous step, as
this model was a classifier while the previous LSTM model was an autoencoder designed
to solve multi-regression problems and not classification. Only one batch of LSTM neurons
was used, this batch had hundred sequential hidden layers or neurons. The layers were
fully connected using a dense layer of size one hundred with the activation function ReLU,
which was connected to another fully connected dense layer of size three (to match the
number of outputs expected from the LSTM model), with the activation function SoftMax.
The LSTM classifier parameters were represented by verbose, epochs, and batch size, which
were equal to 0, 10, and 20, respectively.

The classification results for ML and DL classifiers when fed with only faulty data,
to perform PS1 fault diagnosis and classification are listed. Table 4 lists nine ML and DL
classifiers that were trained separately using five different features at a time, which were
selected/extracted using PCA, manually extracted time-domain features, FI, RkSE, as well
as the entire faulty dataset without any feature selection. The number of features without
feature selection was equivalent to the window size of 60. Four features were extracted
using PCA, 45 features were selected using FI, compared to 46 features selected using
RkSE. Finally, four time-domain features extracted from each window are represented by
the mean, variance, standard deviation, and signal to noise ratio. The number of features
selected by each method was the one with the highest fault classification mean accuracy.

Table 4. Classification Accuracy for Different ML and DL approaches using various Feature Engi-
neering Methods.

Classifier No Feature
Selection PCA Time-Domain

Features FI RkSE

LR 0.6911 0.6356 0.2425 0.7019 0.6882
LDA 0.7053 0.6535 0.7859 0.7038 0.7068
KNN 0.8747 0.9128 0.9625 0.8758 0.8816
CART 0.8972 0.9818 0.9951 0.9126 0.9116

NB 0.7089 0.6919 0.4821 0.6930 0.6824
SVM 0.9125 0.8827 0.7298 0.9112 0.9142
RF 0.8189 0.8390 0.9402 0.8196 0.8193

CNN 0.8773 0.8486 0.7575 0.8385 0.8562
LSTM 0.8352 0.9568 0.9684 0.7278 0.7499

Mean Feature Accuracy 0.81 0.82 0.76 0.80 0.80

When observing each row with respect to each feature engineering method, the feature
engineering approach giving the highest or lowest 10-fold mean accuracy corresponding
to each classification method are clearly shown. The mean feature accuracy row shows

Sensors 2021, 21, 433 14 of 22

the overall accuracy for each feature engineering approach, with respect to all ML and
DL classifiers combined. PCA had the highest mean feature engineering accuracy when
applied to the nine classifiers, which proved the consistency of PCA and its validity with
different classification techniques. It was also obvious that the time-domain features
selected were the one providing highest accuracy to some ML and DL classifiers, which
were LDA, KNN, CART, RF, and LSTM. However, this feature selection technique did
not provide consistency in the accuracy results, since the LR and NB classifiers showed
exceptionally low performances when applying the four selected time-domain features,
as compared to the rest of the feature engineering methods. This explains why the time-
domain features result in lower overall mean feature accuracy, as compared to PCA, even
though more classifiers have the maximum accuracy when applying time-domain features.

The selection of the suitable feature engineering method was highly dependent on
each classifier type and its functionality. The table above serves the purpose of investi-
gating the behavioral changes of some of the most common ML and DL classifiers, with
respect to various commonly used feature engineering methods with time-series datasets.
Furthermore, finding the best pair of features and classification approach that provides the
most optimal accuracy–complexity trade-off when performing sensor fault detection, is
the number one aim of these comparisons. As a result, the highest measured sensor fault
detection combination was when CART was applied using time-domain features, followed
by LSTM, KNN, and RF, using the same extracted features.

4.2. Experiment Two: Component FDD Using the Joint LSTM Autoencoder and Classifier Approach

In this experiment, the component faults existing in the hydraulic test rig were detected
and diagnosed using a unique approach, in which the detection and diagnosis stages were
carried out separately to ensure more accurate detection of rare occurrences. Figure 5
shows the framework of this experiment.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 22

corresponding to each classification method are clearly shown. The mean feature accuracy
row shows the overall accuracy for each feature engineering approach, with respect to all
ML and DL classifiers combined. PCA had the highest mean feature engineering accuracy
when applied to the nine classifiers, which proved the consistency of PCA and its validity
with different classification techniques. It was also obvious that the time-domain features
selected were the one providing highest accuracy to some ML and DL classifiers, which
were LDA, KNN, CART, RF, and LSTM. However, this feature selection technique did
not provide consistency in the accuracy results, since the LR and NB classifiers showed
exceptionally low performances when applying the four selected time-domain features,
as compared to the rest of the feature engineering methods. This explains why the time-
domain features result in lower overall mean feature accuracy, as compared to PCA, even
though more classifiers have the maximum accuracy when applying time-domain
features.

The selection of the suitable feature engineering method was highly dependent on
each classifier type and its functionality. The table above serves the purpose of
investigating the behavioral changes of some of the most common ML and DL classifiers,
with respect to various commonly used feature engineering methods with time-series
datasets. Furthermore, finding the best pair of features and classification approach that
provides the most optimal accuracy–complexity trade-off when performing sensor fault
detection, is the number one aim of these comparisons. As a result, the highest measured
sensor fault detection combination was when CART was applied using time-domain
features, followed by LSTM, KNN, and RF, using the same extracted features.

4.2. Experiment Two: Component FDD Using the Joint LSTM Autoencoder and Classifier
Approach

In this experiment, the component faults existing in the hydraulic test rig were
detected and diagnosed using a unique approach, in which the detection and diagnosis
stages were carried out separately to ensure more accurate detection of rare occurrences.
Figure 5 shows the framework of this experiment.

Figure 5. Component FDD Comprehensive Framework.

The same steps and parameters created in experiment one (sensor FDD) were
repeated in this experiment, excluding the data pre-processing and structuring, and the

Figure 5. Component FDD Comprehensive Framework.

The same steps and parameters created in experiment one (sensor FDD) were repeated
in this experiment, excluding the data pre-processing and structuring, and the fault injection
schema. The pre-processing step differed from the previous experiment, since this time
it was a multi-variate autoencoding and classification problem, without the application

Sensors 2021, 21, 433 15 of 22

of sliding windows. Moreover, no fault injection was required in this experiment because
the component faults studied were already available in the hydraulic test rig dataset used
for this experiment. In this section, the data used were the hydraulic test rig dataset of
eleven sensors, which indicated that this was a multi-variate FDD experiment. The healthy
data were applied for detection as the first step of the FDD system, represented by the
LSTM autoencoder. While the faulty data contained four main component faults—cooler,
value, hydraulic accumulator total failures, and pump severe leakage fault, were used in
the second stage, which was represented by the fault diagnosis, using the supervised ML
and DL methods.

In both stages, the data were organized as a 2D matrix of samples and features,
expressed by the eleven sensors and their readings, at different time-points.

4.2.1. Component Fault Detection—LSTM Autoencoder

This section had the same procedure as that explained in experiment one for fault
detection in sensors. The LSTM autoencoder for fault detection stage had the following
main steps. (1) Design the LSTM autoencoder to fit the problem. (2) Prepare the data into
a form acceptable in the LSTM. (3) Train and validate the LSTM autoencoder using only
healthy data and calculate the MSE and other error metrics. (4) Predict the samples that
contain the faulty and healthy readings. (5) Calculate the signal difference between the
original samples and the predicted samples, using the regular difference and the Pearson’s
correlation, to establish accuracy comparisons. (6) Find the best threshold of sequence
difference to ensure the best trade-off between precision, recall, and f1-score. (7) Make
component fault detection decisions using the trained, validated LSTM autoencoding
model, and their calculated sequence difference, as compared to the computed threshold.

For training the designed model, 1438 samples of the eleven sensors’ reading were
used to train and validate the model. The data should be normalized between zero and
one, as well as converted to a three-dimensional tensor format (samples, time-points for
LSTM to remember, number of features), before applying to the LSTM model. The LSTM
model designed for component FDD detection was an autoencoder of a sequential hundred
hidden LSTM neurons, using the activation function ReLU, then a fully connected dense
layer of size equal to the number of sensors or features was added. The dense layer
contributed to improving the accuracy of the LSTM model, as well as making sure the
LSTM model generated outcomes equal to the designated input signal, in terms of size.
Finally, the optimizer applied for the LSTM model was Adam. The training parameters of
the LSTM autoencoder were epochs = 100 and batch size = 30.

After training and validating the designed model over a hundred epochs, the MSE
error of the last epoch was 0.00057 and the MAE was equal to 0.0096. Both error metrics
were exceedingly small, which was a high indication of the validity and accuracy of the
created model in reconstructing healthy input sequences.

To select the optimal threshold corresponding to the allowed sequence difference
between the original sequence and the one reconstructed from the LSTM autoencoder,
4800 samples of size eleven were predicted using the autoencoder, to reconstruct 4800 healthy
versions of the prediction samples. The signal difference between each of the correspond-
ing sequences in the original and reconstructed sequences were computed using (1) The
traditional signal subtraction to find the signal difference as a vector, and then to find the
magnitude of this vector. (2) The sequence difference using (1-Pearson’s autocorrelation)
as a measurement created in this work is proposed to be a more accurate measurement for
fault detection than the traditional signal subtraction.

To avoid repeating the explanation of each signal difference methods, we jump right
through the results and their comparisons.

A pool of candidate threshold values was created, then the labels of the 4800 pre-
diction samples were obtained based on each threshold in the pool, if the value of the
signal difference was higher than the threshold a fault was considered to be detected, thus
receiving a label 1, else label 0. The precision, recall, and f1-score were computed for each

Sensors 2021, 21, 433 16 of 22

threshold in the pool, based on the generated labels and the original labels of the given
prediction samples. When applying signal difference using the Pearson’s autocorrelation
complement, the pool of chosen thresholds between the minimum and maximum observed
values are shown in Table 5. Furthermore, for each chosen threshold, the accuracy, preci-
sion, recall, and f1-score were computed. Figure 6 illustrates the process of choosing the
component fault detection threshold based on the precision, recall, and f1-score trade-off
shown in the table below. As clearly shown in Figure 6, the selected threshold was the
intersection between the three curves, which was approximately equal 0.0007 and the
accuracy observed for this threshold value was 0.71.

Table 5. The Thresholds of Pearson’s Correlation Difference and Their Corresponding Fault Detection
Accuracy, Precision, Recall, and F1-Score.

Threshold 0.0001 0.0003 0.0005 0.0007 0.0009 0.001 0.003 0.005

precision 0.63 0.73 0.77 0.78 0.79 0.81 0.95 0.93
recall 1 0.79 0.74 0.74 0.72 0.68 0.25 0.14

F1-Score 0.77 0.76 0.75 0.76 0.75 0.74 0.39 0.24
Accuracy 0.63 0.69 0.7 0.71 0.7 0.69 0.52 0.46

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22

receiving a label 1, else label 0. The precision, recall, and f1-score were computed for each
threshold in the pool, based on the generated labels and the original labels of the given
prediction samples. When applying signal difference using the Pearson’s autocorrelation
complement, the pool of chosen thresholds between the minimum and maximum
observed values are shown in Table 5. Furthermore, for each chosen threshold, the
accuracy, precision, recall, and f1-score were computed. Figure 6 illustrates the process of
choosing the component fault detection threshold based on the precision, recall, and f1-
score trade-off shown in the table below. As clearly shown in Figure 6, the selected
threshold was the intersection between the three curves, which was approximately equal
0.0007 and the accuracy observed for this threshold value was 0.71.

Figure 6. Precision, Recall, and f1-Score trade-off for Threshold selection using Pearson’s
Correlation Difference.

Table 5. The Thresholds of Pearson’s Correlation Difference and Their Corresponding Fault
Detection Accuracy, Precision, Recall, and F1-Score.

Threshold 0.0001 0.0003 0.0005 0.0007 0.0009 0.001 0.003 0.005
precision 0.63 0.73 0.77 0.78 0.79 0.81 0.95 0.93

recall 1 0.79 0.74 0.74 0.72 0.68 0.25 0.14
F1-Score 0.77 0.76 0.75 0.76 0.75 0.74 0.39 0.24
Accuracy 0.63 0.69 0.7 0.71 0.7 0.69 0.52 0.46

On the other hand, the optimal threshold was also calculated when the optimal signal
difference was applied. In Figure 7, the intersection between the three curves is
demonstrated. It is clearly shown that the optimal threshold for component fault detection
using the sequence subtraction, was approximately 0.03, with a fault detection accuracy
of 0.69. The optimal accuracy using signal subtraction of 0.69 was less than the measured
one using the optimal threshold computed by a Pearson’s correlation of 0.71. As a result,
when comparing the accuracy of the optimal thresholds selected using two different
signal deviation measurements, which were the autocorrelation complement and the
traditional subtraction, it could be seen that the proposed method using Pearson’s
correlation complement guaranteed a higher component and sensor fault detection
accuracies, as compared to its commonly used traditional subtraction counterpart, based
on the measured comparisons in experiment one and two.

Figure 6. Precision, Recall, and f1-Score trade-off for Threshold selection using Pearson’s Correlation
Difference.

On the other hand, the optimal threshold was also calculated when the optimal signal
difference was applied. In Figure 7, the intersection between the three curves is demon-
strated. It is clearly shown that the optimal threshold for component fault detection using
the sequence subtraction, was approximately 0.03, with a fault detection accuracy of 0.69.
The optimal accuracy using signal subtraction of 0.69 was less than the measured one using
the optimal threshold computed by a Pearson’s correlation of 0.71. As a result, when com-
paring the accuracy of the optimal thresholds selected using two different signal deviation
measurements, which were the autocorrelation complement and the traditional subtrac-
tion, it could be seen that the proposed method using Pearson’s correlation complement
guaranteed a higher component and sensor fault detection accuracies, as compared to its
commonly used traditional subtraction counterpart, based on the measured comparisons
in experiment one and two.

Sensors 2021, 21, 433 17 of 22

Sensors 2020, 20, x FOR PEER REVIEW 17 of 22

Figure 7. Precision, Recall, and f1-Score trade-off for Threshold Selection Using Signal Subtraction
Difference.

4.2.2. Component Fault Diagnosis—Classification Schema
In this section, the feature engineering methods compared were FI, PCA, and RkSE.

The time-domain extracted features applied for the multi-variate time-series sequences
without the application of sliding windows, were expected to have lower accuracy values,
regardless of the ML or DL classifier used. Hence, it did not make sense to compute the
mean, standard deviation, and variance to a sample of readings extracted from sensors of
different nature. However, the time-domain features were extracted and applied to all
classifiers, to prove the point mentioned earlier.

The optimal number for each feature engineering method was computed for each
method to ensure the best accuracy and complexity trade-off. The overall number of
features in each sample was eleven, corresponding to each sensor in the hydraulic test rig,
the optimal features for FI, PCA, the time-domain features, and RKSE were four, five, four,
and nine, respectively.

The accuracies computed for all ML and DL classifiers were the results of dividing
the fault data with component faults, into training and testing data, with percentages of
80% to 20% of the faulty data, respectively. Followed by applying a 10-fold cross
validation technique for each classifier separately.

The parameters and optimizers for each ML method used in this section, were
identical to the ones used in the sensor FDD experiment earlier in this paper. Moreover,
some minor changes in the CNN and LSTM classifiers’ design and parameters was made
from the previous experiment.

The CNN design consisted of only one 1D CNN layer of filter size 64, and kernel size
of one. The layer was sequential which meant that the input layer was directly connected
to the hidden layer(s) that was connected to the output layer. The activation function used
was ReLU. Followed by the pooling layer that had a pooling size of one, maximum
pooling was applied as the pooling function. Finally, a fully connected dense layer of size
equivalent to the number of expected outputs, with the SoftMax activation function was
created to make the classification process for the extracted features during the
convolutional and pooling layers. The CNN optimizer used was Adam, as a stochastic
gradient descent approach to optimize the network. The LSTM classifier applied had only
one LSTM batch with two hundred hidden neurons that were sequential in order and
nature. Followed by a fully connected dense layer of SoftMax activation function, Adam
was the applied optimizer for the LSTM as well. The verbose, epochs, and batch size

Figure 7. Precision, Recall, and f1-Score trade-off for Threshold Selection Using Signal Subtrac-
tion Difference.

4.2.2. Component Fault Diagnosis—Classification Schema

In this section, the feature engineering methods compared were FI, PCA, and RkSE.
The time-domain extracted features applied for the multi-variate time-series sequences
without the application of sliding windows, were expected to have lower accuracy values,
regardless of the ML or DL classifier used. Hence, it did not make sense to compute the
mean, standard deviation, and variance to a sample of readings extracted from sensors
of different nature. However, the time-domain features were extracted and applied to all
classifiers, to prove the point mentioned earlier.

The optimal number for each feature engineering method was computed for each
method to ensure the best accuracy and complexity trade-off. The overall number of
features in each sample was eleven, corresponding to each sensor in the hydraulic test rig,
the optimal features for FI, PCA, the time-domain features, and RKSE were four, five, four,
and nine, respectively.

The accuracies computed for all ML and DL classifiers were the results of dividing
the fault data with component faults, into training and testing data, with percentages of
80% to 20% of the faulty data, respectively. Followed by applying a 10-fold cross validation
technique for each classifier separately.

The parameters and optimizers for each ML method used in this section, were identical
to the ones used in the sensor FDD experiment earlier in this paper. Moreover, some minor
changes in the CNN and LSTM classifiers’ design and parameters was made from the
previous experiment.

The CNN design consisted of only one 1D CNN layer of filter size 64, and kernel size
of one. The layer was sequential which meant that the input layer was directly connected to
the hidden layer(s) that was connected to the output layer. The activation function used was
ReLU. Followed by the pooling layer that had a pooling size of one, maximum pooling was
applied as the pooling function. Finally, a fully connected dense layer of size equivalent to
the number of expected outputs, with the SoftMax activation function was created to make
the classification process for the extracted features during the convolutional and pooling
layers. The CNN optimizer used was Adam, as a stochastic gradient descent approach to
optimize the network. The LSTM classifier applied had only one LSTM batch with two
hundred hidden neurons that were sequential in order and nature. Followed by a fully
connected dense layer of SoftMax activation function, Adam was the applied optimizer for

Sensors 2021, 21, 433 18 of 22

the LSTM as well. The verbose, epochs, and batch size parameters were applied by testing
various values and their effect on the classification accuracy, and they were set to zero, 10,
and 20, accordingly.

The table below comprehend the component fault classification results when trained
by faulty hydraulic test rig data, applying various ML and DL approaches using numerous
feature engineering methods.

As shown in Table 6, the feature selection approaches worked better than the extrac-
tion ones, such as, PCA and time-domain features, when dealing with traditional ML
classifiers, to classify multi-variate time-series datasets. FI consistently showed the highest
accuracy results as compared to the rest of the feature engineering methods when dealing
with traditional ML classifiers. This was followed by RkSE, which had a slightly lower ac-
curacy than FI for traditional ML approaches, but showed consistency in all ML classifiers.
Moreover, PCA showed the highest accuracy when applying DL classification algorithms,
as compared to other feature selection approaches. FI and RkSE were neck-to-neck when it
came to the classification accuracy using the selected DL approaches. The time-domain
features were the most accurate ones when applied to sliding-windows for univariate
classification, as shown in experiment one. However, as spotted earlier in this experiment,
in terms of extracting time-domain features from multi-variate datasets without applying
sliding windows, this feature extraction method proved to be weaker than the rest of the
approaches, when combined, irrespective of the ML or DL classifiers.

Table 6. Component Fault Diagnosis Using Various Feature Engineering and Classification Approaches.

Method Name FI PCA RkSE Time-Domain Features No Feature Selection

LR 0.9962 0.7300 0.7823 0.37599 0.6832
LDA 0.7634 0.7490 0.7528 0.370521 0.7031
KNN 0.9940 0.9229 0.9320 0.831458 0.8677
CART 0.9932 0.9435 0.9912 0.928594 0.6849

NB 0.9924 0.7510 0.7122 0.39526 0.9035
SVM 0.9859 0.9337 0.9310 0.833281 0.8139
RF 0.9930 0.9013 0.9910 0.871042 0.9042

CNN 0.7343 0.8427 0.7343 0.3971 0.7385
LSTM 0.7375 0.8770 0.7375 0.3981 0.73124
MEAN

ACCURACY 0.910 0.850 0.840 0.600 0.781

In comparison, KNN, CART, RF, and SVM showed a greater consistency in high
accuracy results irrespective of the feature engineering method applied, including time-
domain features irrespective of its weakness. CNN and LSTM had lower accuracies as
compared to the traditional ML approaches mentioned earlier, and their accuracies dropped
radically when the time-domain features were applied.

To conclude experiment two, it was important to know how to apply the trained
models and saved parameters from experiment two at run-time, to make new real-time
predictions. The input vector for prediction should have one readings of each sensor of the
eleven sensors used for the training process, during the offline or training phase. (1) Fault
detection—fault detection for new samples could be done by feeding the new sample into
the trained and validated LSTM autoencoder model, to reconstruct the healthy form of
the sequence. Then, the reconstructed sequence and the original one was compared by
calculating the signal difference using Pearson’s autocorrelation. Finally, when the signal
difference calculated was above or below the trained threshold, this would determine the
existence of faults. (2) Fault diagnosis—in case a fault was detected using the detection step,
the fault should be diagnosed by applying the necessary feature engineering approaches,
then the new processed sample should be fed to the highest accuracy ML or DL trained
classifier, suitable to the features chosen. In our case, based on the results shown in
Table 6, it was more accurate to use RF combined with FI to guarantee better accuracy and
complexity trade-off.

Sensors 2021, 21, 433 19 of 22

5. Conclusion and Discussion

In this section, a two-staged FDD approach is proposed. Where the detection and
diagnosis are separated into two stages to guarantee detecting rare occurrences and events
in hydraulic systems. The detection process is represented by a LSTM autoencoder that
learns only from healthy observations, in an attempt to reconstruct the healthy version of
the given sequences, sensor window readings, or multi-sensors readings. This is followed
by the comparison between the given sequences and their healthy reconstructed version,
to measure the deviation from the healthy state and the given sequences, which is vital
to detect the existence of faults and malfunctions when this deviation exceeds a certain,
learned threshold. The fault diagnosis was represented by a classification process that
could be an ML or DL algorithm, which was trained using only the faulty observations
captured by the detection stage, using an LSTM autoencoder.

The proposed approach is beyond the state-of-the-art methods, in the following ways:

• The proposed method is applied into two entirely different experiments, with different
data pre-processing, acquisition, and structuring; different DL algorithmic designs;
and above all for detecting two different fault types—sensor faults and component
faults. The methods proposed in the literature only focused on one fault type, either
component faults or sensor faults. However, it was rarely seen that any work showed
comprehension in detecting or diagnosing different fault types at once.

• In the detection phase, using the LSTM autoencoder, some changes were made from
the existing related work. The most important addition was using the sequence differ-
ence calculated by subtracting the Pearson’s autocorrelation from one. The detection
results using the complement of Pearson’s autocorrelation comparing to the traditional
signal difference measure applied in the state-of-the-art research was experimentally
proved. In experiment one, to detect sensor faults, the detection accuracy using sig-
nal difference was observed as 62%. As compared to the detection accuracy, when
applying our proposed measurement of signal difference, the detection accuracy was
observed as 71%. Moreover, in experiment two for component fault detection, the
accuracies observed using traditional signal difference and the proposed one were
69% and 71%, respectively. The results of the detection phase in the two conducted
experiments proved to be the superior of the proposed signal difference measurement,
as compared to the traditional subtraction of signals, to provide signal difference.

• Various feature engineering approaches were investigated and paired with numerous
ML and DL methods in the diagnosis phase, to determine the most suitable feature
engineering method, to classifiers of different functionality and design. Furthermore,
this pairing gave the opportunity to see how each classifier reacted with different fea-
ture engineering methods of different procedure, which would help future researchers
to select the best match pair or avoid the worst pair for both data structures, windows
univariate, or no window multi-variate. For example, in experiment one when dealing
with sensor faults in a sliding window data structure, it could be seen that the chosen
time-domain features showed the highest diagnosis accuracy of almost all classifiers,
i.e., LDA, KNN, CART, RF, and LSTM. The mean accuracy of all classifiers using PCA
was computed to be a maximum of 82%, which was justified by the consistency PCA
shows with all the classifiers regardless their functionality. However, time-domain
extracted features showed extremely low diagnosis accuracies when applied to some
classifiers, such as LR and NB, with the detection accuracies of only 24.25% and
48.21%, respectively. This explains why the time-domain extraction technique did
not have the highest mean accuracy, even though it provided the highest accuracy to
the majority of the supervised methods. On the other hand, in experiment two when
the component faults were classified using multi-variate sensor readings without the
application of sliding windows, FI showed the highest diagnosis accuracy for all ML
classifiers, and PCA showed the highest diagnosis accuracy when combined with DL,
such as CNN and LSTM.

Sensors 2021, 21, 433 20 of 22

• In the related work, the diagnosis phase was represented by some chosen type of
classifiers combined with a chosen set of features, without any analysis or investigation
with respect to other classifiers or features. In this work, after careful experimental
observations and calculations, the appropriate features and their suitable classifier was
used to represent the diagnosis phase for our algorithm. In experiment one (univariate
sliding window structure), the diagnosis phase was chosen using the time-domain
extracted features combined with either CART or LSTM classifiers, with diagnosis
accuracies of 99.51% and 96.84%. However, in experiment two, when dealing with
multi-variate features without the application of sliding windows, FI combined with
almost all ML classifiers showed extremely high accuracies exceeding 98%. Thus,
RF combined with FI was the best combo used to perform multi-variate diagnosis,
especially when FI could be done implicitly during the RF training stage, based on the
FI nature, which could help in reducing time and computational complexities.

In conclusion, the proposed approach was used for the first time in the field of industry
4.0, especially when applied to hydraulic test rigs. Although, the proposed work in this
paper had multiple changes and valuable improvements from the state-of-the art, there is
always a place for improvements and further expansions. For future work, it could be a
good challenge to improve experiment one, by designing a LSTM autoencoder that can
learn multiple sequences of multiple windows that belongs to different sensors at a time, by
applying one LSTM autoencoding model. For example, in experiment one, only one sensor
at a time (PS1) was used in a sliding window format to train the LSTM autoencoder to
predict/reconstruct the healthy window of the given PS1 window of size 60. In the current
approach, we must train the LSTM autoencoder for each sensor separately, to learn how to
reconstruct each healthy window. However, a multi-variate approach, multi-sequences,
multi-sensor deep neural network design would be a sophisticated approach in the future,
where several LSTM autoencoder batches could be connected together sequentially or
in parallel, so each could train on different sensor window sequences. Furthermore, the
feature engineering methods applied to the diagnosis phase were all in time-domain.
Investigating the frequency-domain or the combination of time and frequency domains,
such as applying Wavelet Coefficient Packer Decomposition (WPD) would add different
perspective for the future of FDD in mechanical equipment.

Author Contributions: Conceptualization, A.M. and M.F.; methodology, A.M.; software, A.M.;
validation, M.F.; formal analysis, A.M.; investigation, A.M.; resources, M.F.; data curation, A.M.;
writing—original draft preparation, A.M.; writing—review and editing, M.F.; visualization, A.M.;
supervision, M.F.; project administration, M.F.; funding acquisition, M.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the DFG research grants LO748/11-1 and OB384/5-1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Isermann, R.; Ballé, P. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng.

Pract. 1997, 5, 709–719. [CrossRef]
2. Precup, R.-E.; Angelov, P.; Costa, B.S.J.; Sayed-Mouchaweh, M. An overview on fault diagnosis and nature-inspired optimal

control of industrial process applications. Comput. Ind. 2015, 74, 75–94. [CrossRef]
3. Kanev, S.K. Robust Fault-Tolerant Control; FEBO-DRUK: Enschede, Holland, 2004.
4. Wang, P.; Guo, C. Based on the coal mine ’s essential safety management system of safety accident cause analysis. Am. J. Environ.

Energy Power Res. 2013, 1, 62–68.
5. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. Acm Comput. Surv. 2009, 41, 1–58. [CrossRef]
6. Ni, K.; Ramanathan, N.; Chehade, M.N.H.; Balzano, L.; Nair, S.; Zahedi, S.; Kohler, E.; Pottie, G.; Hansen, M.; Srivastava, M.

Sensor network data fault types. ACM Trans. Sen. Netw. 2009, 5, 25:1–25:29. [CrossRef]

http://doi.org/10.1016/S0967-066100053-1
http://doi.org/10.1016/j.compind.2015.03.001
http://doi.org/10.1145/1541880.1541882
http://doi.org/10.1145/1525856.1525863

Sensors 2021, 21, 433 21 of 22

7. Doddannavar, R.; Barnard, A.; Ganesh, J. Practical Hydraulic Systems: Operation and Troubleshooting for Engineers and Technicians;
Elsevier: Amsterdam, The Netherlands, 2005.

8. UCI Machine Learning Repository: Citation Policy. Available online: https://archive.ics.uci.edu/ml/citation_policy.html
(accessed on 4 February 2020).

9. Helwig, N.; Pignanelli, E.; Schütze, A. Condition monitoring of a complex hydraulic system using multivariate statistics.
In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings,
Pisa, Italy, 11–14 May 2015; pp. 210–215. [CrossRef]

10. Schneider, T.; Helwig, N.; Schütze, A. Automatic feature extraction and selection for classification of cyclical time series data.
TM Tech. Mess. 2017, 84, 198–206. [CrossRef]

11. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of
Cognition: Foundations; MITP: Cambridge, MA, USA, 1987; pp. 318–362.

12. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
13. Park, P.; Marco, P.D.; Shin, H.; Bang, J. Fault detection and diagnosis using combined autoencoder and long short-term memory

network. Sensors (Basel) 2019, 19, 4612. [CrossRef]
14. Chen, X. Tennessee Eastman Simulation Dataset. 2019. Available online: https://ieee-dataport.org/documents/tennessee-

eastman-simulation-dataset (accessed on 4 February 2020).
15. Minsky, M.; Papert, S. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 1969.
16. Lu, C.; Wang, Z.-Y.; Qin, W.-L.; Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-

based health state identification. Signal Process. 2017, 130, 377–388. [CrossRef]
17. Pearson, K. LIII. on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2,

559–572. [CrossRef]
18. Cortes, C.; Vapnik, V. Support-vector networks. Mach Learn 1995, 20, 273–297. [CrossRef]
19. Breiman, L. Bagging predictors. Mach Learn 1996, 24, 123–140. [CrossRef]
20. Li, Z.; Li, J.; Wang, Y.; Wang, K. A deep learning approach for anomaly detection based on SAE and LSTM in mechanical

equipment. Int. J. Adv. Manuf. Technol. 2019, 103, 499–510. [CrossRef]
21. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [CrossRef]
22. Chen, Z.; Deng, S.; Chen, X.; Li, C.; Sanchez, R.-V.; Qin, H. Deep neural networks-based rolling bearing fault diagnosis.

Microelectron. Reliab. 2017, 75, 327–333. [CrossRef]
23. Shao, H.; Jiang, H.; Zhao, H.; Wang, F. A Novel deep autoencoder feature learning method for rotating machinery fault diagnosis.

Mech. Syst. Signal Process. 2017, 95, 187–204. [CrossRef]
24. Junbo, T.; Weining, L.; Juneng, A.; Xueqian, W. Fault diagnosis method study in roller bearing based on wavelet transform and

stacked auto-encoder. In Proceedings of the The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China,
23–25 May 2015; pp. 4608–4613. [CrossRef]

25. Shao, H.; Jiang, H.; Wang, F.; Zhao, H. An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl.
Based Syst. 2017, 119, 200–220. [CrossRef]

26. Verma, N.K.; Gupta, V.K.; Sharma, M.; Sevakula, R.K. Intelligent condition based monitoring of rotating machines using sparse
auto-encoders. In Proceedings of the 2013 IEEE Conference on Prognostics and Health Management (PHM), Gaithersburg, MD,
USA, 24–27 June 2013; pp. 1–7. [CrossRef]

27. Chen, Z.; Li, W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network.
IEEE Trans. Instrum. Meas. 2017, 66, 1693–1702. [CrossRef]

28. Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction
motor faults classification. Measurement 2016, 89, 171–178. [CrossRef]

29. Shao, H.; Jiang, H.; Lin, Y.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep
auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [CrossRef]

30. Huang, Y.; Chen, C.-H.; Huang, C.-J. Motor fault detection and feature extraction using RNN-based variational autoencoder.
IEEE Access 2019, 7, 139086–139096. [CrossRef]

31. Medsker, L.; Jain, L.C.; Jain, L.C. Recurrent Neural Networks: Design and Applications; CRC Press: Boca Raton, FL, USA, 1999.
[CrossRef]

32. Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
33. Welcome to the Case Western Reserve University Bearing Data Center Website|Bearing Data Center. Available online: https://

csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website (accessed
on 19 October 2020).

34. NASA|Open Data|NASA Open Data Portal. Available online: https://nasa.github.io/data-nasa-gov-frontpage/ (accessed on
19 October 2020).

35. Hui-jie, Z.; Ting, R.; Xin-qing, W.; You, Z.; Hu-sheng, F. Fault diagnosis of hydraulic pump based on stacked autoencoders.
In Proceedings of the 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao,
China, 16–18 July 2015. [CrossRef]

36. Mallak, A.; Fathi, M. Unsupervised feature selection using recursive K-means silhouette elimination (RkSE): A two-scenario case
study for fault classification of high-dimensional sensor data. Preprints 2020. [CrossRef]

https://archive.ics.uci.edu/ml/citation_policy.html
http://doi.org/10.1109/I2MTC.2015.7151267
http://doi.org/10.1515/teme-2016-0072
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.3390/s19214612
https://ieee-dataport.org/documents/tennessee-eastman-simulation-dataset
https://ieee-dataport.org/documents/tennessee-eastman-simulation-dataset
http://doi.org/10.1016/j.sigpro.2016.07.028
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1007/BF00994018
http://doi.org/10.1007/BF00058655
http://doi.org/10.1007/s00170-019-03557-w
http://doi.org/10.1080/00031305.1992.10475879
http://doi.org/10.1016/j.microrel.2017.03.006
http://doi.org/10.1016/j.ymssp.2017.03.034
http://doi.org/10.1109/CCDC.2015.7162738
http://doi.org/10.1016/j.knosys.2016.12.012
http://doi.org/10.1109/ICPHM.2013.6621447
http://doi.org/10.1109/TIM.2017.2669947
http://doi.org/10.1016/j.measurement.2016.04.007
http://doi.org/10.1016/j.ymssp.2017.09.026
http://doi.org/10.1109/ACCESS.2019.2940769
http://doi.org/10.1201/9781003040620
http://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://nasa.github.io/data-nasa-gov-frontpage/
http://doi.org/10.1109/ICEMI.2015.7494195
http://doi.org/10.20944/preprints202008.0254.v1

Sensors 2021, 21, 433 22 of 22

37. Noshad, Z.; Javaid, N.; Saba, T.; Wadud, Z.; Saleem, M.Q.; Alzahrani, M.E.; Sheta, O.E. Fault detection in wireless sensor networks
through the random forest classifier. Sensors 2019, 19, 1568. [CrossRef]

38. Jan, S.U.; Lee, Y.; Shin, J.; Koo, I. Sensor fault classification based on support vector machine and statistical time-domain features.
IEEE Access 2017, 5, 8682–8690. [CrossRef]

39. Wang, Z.; Anand, D.M.; Moyne, J.; Tilbury, D.M. Improved sensor fault detection, isolation, and mitigation using multiple
observers approach. Int. J. Syst. Sci. 2017, 5, 70–96. [CrossRef]

http://doi.org/10.3390/s19071568
http://doi.org/10.1109/ACCESS.2017.2705644
http://doi.org/10.1080/21642583.2016.1278410

	Introduction
	Related Work
	Hydraulic System FDD Overview
	Analysis and Experimental Results
	Experiment One: Sensor FDD Using the Joint LSTM Autoencoder and Classifier Approach
	LSTM Autoencoder for Sensor Signal Reconstruction
	Sensor Fault Diagnosis—Classification Schema

	Experiment Two: Component FDD Using the Joint LSTM Autoencoder and Classifier Approach
	Component Fault Detection—LSTM Autoencoder
	Component Fault Diagnosis—Classification Schema

	Conclusion and Discussion
	References

