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Abstract: Remote sensing of vital signs has been developed to improve the measurement environment
by using a camera without a skin-contact sensor. The camera-based method is based on two concepts,
namely color and motion. The color-based method, remote photoplethysmography (RPPG), measures
the color variation of the face generated by reflectance of blood, whereas the motion-based method,
remote ballistocardiography (RBCG), measures the subtle motion of the head generated by heartbeat.
The main challenge of remote sensing is overcoming the noise of illumination variance and motion
artifacts. The studies on remote sensing have focused on the blind source separation (BSS) method
for RGB colors or motions of multiple facial points to overcome the noise. However, they have still
been limited in their real-world applications. This study hypothesized that BSS-based combining of
colors and the motions can improve the accuracy and feasibility of remote sensing in daily life. Thus,
this study proposed a fusion method to estimate heart rate based on RPPG and RBCG by the BSS
methods such as ensemble averaging (EA), principal component analysis (PCA), and independent
component analysis (ICA). The proposed method was verified by comparing it with previous RPPG
and RBCG from three datasets according to illumination variance and motion artifacts. The three
main contributions of this study are as follows: (1) the proposed method based on RPPG and RBCG
improved the remote sensing with the benefits of each measurement; (2) the proposed method was
demonstrated by comparing it with previous methods; and (3) the proposed method was tested in
various measurement conditions for more practical applications.

Keywords: heart rate measurement; remote HR; remote PPG; remote BCG; blind source separation

1. Introduction

Remote sensing of vital signs has been studied to improve the measurement burden.
In particular, camera-based methods allow one to measure heart rate using a smartphone
both anywhere and anytime. Despite the potential of camera-based methods, they have still
been limited in their applications in daily life due to the noise generated by illumination
variance and motion artifacts [1].

The camera-based method is based on two concepts, i.e., color and motion. First, the
color-based method uses the principle of photoplethysmography (PPG), and thus it is called
remote PPG (RPPG). RPPG measures the color variation generated by reflectance of blood
due to the cardiac cycle from the heart and the head through the carotid arteries [2]. The
color variance is most clearly measured at the green wavelength (i.e., 510~560 nm) since the
pulsations of the arteries are able to be monitored through elastic-mechanical interaction of
deep arteries with the superficial dermis [3]. However, the illumination variance of various
frequency ranges that occur in daily life distorts the color variance caused by the heartbeat,
so it is difficult to remove the noise using only green color. The studies on RPPG have
focused on the blind source separation (BSS) method from the RGB colors to overcome the
noise of illumination variance. Poh et al. [4] first proposed RPPG, which extracts the color
variation from the RGB colors and estimates the plethysmographic signal by using the BSS
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method based on independent component analysis (ICA). Xu et al. [5] reduced the noise
of illumination variance using the partial least squares (PLS) method and multivariate
empirical mode decomposition (MEMD). They evaluated their method in illumination
changing conditions and showed more improved accuracy than the ICA-based method.
Zhang [6] applied the separation of the luminance on RPPG by converting from RGB color
space to LAB color space. They demonstrated that the luminance separation is resistant to
natural, motion-induced, and artificial illumination variances. Although RPPG has been
improved to overcome the noise of illumination variance, it is still difficult to apply in daily
life since all RGB colors are affected by lighting at the same time and most proposed noise
removal methods were validated in limited scenarios.

Second, the motion-based method uses the principle of ballistocardiography (BCG),
so it is called remote BCG (RBCG). The RBCG measures the subtle motion generated
by the contraction of the heart and the ejection of the blood from the ventricles into the
vasculature [7]. The subtle motion is sensitive to measurement since its displacement is
small at about 0.5 mm [8]. Thus, the major motion such as head movement and facial
expression makes the measurement of subtle motion difficult. The studies on RBCG have
developed by applying the BSS method to the subtle motions extracted from as many
feature points as possible. Balakrishnan et al. [8] first proposed RBCG which extracts
the subtle motions from feature points of the forehead and nose regions and applied
the BSS method based on principal component analysis (PCA). Shan et al. [9] extracted
the subtle motion from one feature point of the forehead region and applied the ICA on
the displacement calculated in both the x-axis and y-axis. Haque et al. [10] increased
the number of feature points by combining good features to track (GFTT) with facial
landmark detection based on the supervised descent method (SDM). They demonstrated
that increasing the number of feature points overcomes the tracking noise for extracting the
subtle motion. Hassan et al. [11] improved the subtle motion extraction by the skin color-
based foreground segmentation and the motion artifact removal by the BSS method based
on singular value decomposition (SVD). Despite the improvement of RBCG, it is difficult
to apply this method in daily life due to the limitation of computational performance in
real time on the measurement device and of noise removal on irregular motion artifacts.

Recent studies on remote sensing have focused on the combining of RPPG with
RBCG. Shao et al. [12] developed the simultaneous monitoring of RPPG and RBCG. They
demonstrated that it potentially provides a low-cost solution based on a single camera in
daily life, but did not consider combining them together. Liu et al. [13] combined RPPG
with BCG measured using an additional motion sensor, not a camera. They corrected the
tracking noise caused by motion artifacts in RPPG by referring to BCG. They only used
BCG to remove motion artifacts in RPPG and did not consider their combination. Thus, it
is still necessary to develop the fusion method of RPPG and RBCG by considering their
interaction effect.

In summary, the BSS method has been developed to overcome the noise of illumi-
nation variance and motion artifacts in both RPPG and RBCG. Also, the fusion method
of RPPG and RBCG need to be further developed by considering their interaction effect.
Thus, this study hypothesized that the BSS-based combining of RPPG and RBCG can
improve the accuracy and feasibility of remote sensing in daily life. This study examined
the BSS methods using ensemble averaging (EA), PCA, and ICA to estimate heart rate
based on combining RPPG with RBCG. The proposed method was compared with the
previous methods, which only used the color variation (i.e., RPPG) or the subtle motion (i.e.,
RBCG). The contributions of this study can be summarized as follows: (1) the proposed
method based on RPPG and RBCG improved the remote sensing with the benefits of each
measurement; (2) the proposed method was demonstrated by comparing it with previous
methods; and (3) the proposed method was tested in various measurement conditions for
a more practical application.
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2. Proposed Method

This study proposed a fusion method to estimate heart rate based on RPPG and RBCG
by their ensemble averaging. Figure 1 depicts the procedure of the proposed method.
First, the face was detected and tracked from the consequence frame of facial video. Then,
photoplethysmographic and ballistocardiographic signals were extracted from the face by
RPPG and RBCG, respectively. These signals were combined with each other to minimize
noise and to maximize cardiac components. Finally, the heart rate was estimated from the
combined signal in the frequency domain.

1. Face Detection 2. PPG Signal Extraction 4. Signal Combining
and Tracking

—

3. BCG Signal Extraction

Sondbmtin )| e on | HR=60bpm
» A » max(PS)
SNR

S b it o = T PS — max(Ps)

Figure 1. Overview of proposed method.

2.1. Face Detection and Tracking

To extract color variation and subtle motion, the face was detected and tracked from
facial video. This study focused on low misdetection and fast inference time for practical
application. The Viola-Jones algorithm [14] is a basic and widely known face detection
using AdaBoost with Haar features. AdaBoost selected the candidates from an image
using simple Haar features and detected the face from the candidates using complex Haar
features to improve inference time. It is easy to use since it is implemented in the OpenCV
library [15], but it frequently mis-detected the face. Histogram of oriented gradients (HOG)
algorithm [16] is also a representative face detection algorithm implemented in the DLIB
library [17]. It computed the spatial gradients from an image and detected the face using
histogram of gradient orientation. Although it has less misdetection than the Viola-Jones
algorithm, it can detect only the frontal face and has a slow inference time.

Recently, face detection methods using deep learning have been proposed and have
shown more enhanced performance than the Viola-Jones and HOG algorithms. Although
their algorithm was complex and difficult to implement, they are easier to use than before
by development of open-source framework such as Tensorflow [18]. Thus, this study
employed the single shot detector (5SD) [19] with ResNet [20] trained by WIDER FACE
dataset [21]. The ResNet extracted a high dimensional feature map which has facial features
such as contrast or facial contour from an image. The SSD detected the face from the feature
map by extracting image pyramids of various sizes. It has been implemented and available
in OpenCV library [22] recently.

In addition, face tracking is important to extract the same facial region from successive
frames. The facial region was divided into sub-regions by cropping the middle 50% of the
width and top 20% of the height (i.e., forehead) and the middle 50% of the width and middle
25% of height (i.e., nose). Then, 80 facial points were determined within the sub-regions by
dividing the forehead region into 32 cells and the nose region into 48 cells, respectively. The
facial points were tracked on xy-coordinates by the Kanade-Lucas-Tomasi (KLT) tracker [23].
By empirically considering tracking accuracy and computing cost, the window size of the
small subarea cells was determined as the detected face size divided by 10. If the tracked
facial points suddenly moves more than 10 pixels, the facial points were re-defined in
the forehead and nose regions as described above. Then, the similarity transformation
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Face Detection

Facial Point Extraction

matrix was extracted from locations of the facial points on the previous and next frames
to estimate the transformation of the facial region. The similarity transformation matrix
hypothesized three characteristics (i.e., translation, rotation, and scaling). Finally, the facial
region on next frame was tracked from previous frame by the similarity transformation
matrix. Figure 2 shows the procedure of face detection and tracking.
Transformation Matrix

Facial Point Tracking Face Tracking

Translation 2
Rotation

Scaling
Figure 2. Procedure of face detection and tracking.

2.2. Photoplethysmographic Signal Extraction

Color variation caused by the heartbeat was prominent in the cheek area [24], so that
the photoplethysmographic signal was extracted by the RGB spectrums on the middle 50%
of the width and middle 25% of height (i.e., nose), on the left 20-35% of width and top
45-70% of height (i.e., left cheek), 220-35% of width and top 45-50% of height (i.e., right
cheek). Each RGB signal was normalized by subtracting its mean since the mean indicates
melanin components (i.e., skin color) [25]. Then, RBG signals were combined with each
other based on pulse blood-volume vector (PBV) modeling [26] for each face area. The
combined signals were filtered by a second order Butterworth bandpass filter with a cut-off
of 0.75-2.5 Hz corresponding to 45-150 bpm. Finally, the photoplethysmographic signal
was extracted by applying the ICA on the filtered signals and selecting the signal with the
highest signal to noise ratio (SNR) from three components. The SNR was calculated from
the frequency domain of each component as:

SNR = max(PS)/(}_PS — max(PS)), 1)

where SNR is a signal to noise ratio and PS is a power spectrum of the signal. Figure 3
depicts the procedure of photoplethysmographic signal extraction.

Color Variance Extraction
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Figure 3. Procedure of photoplethysmographic signal extraction.

2.3. Ballistocardiographic Signal Extraction

Ballistocardiographic head movements were generated up and down by the heartbeat
so that the ballistocardiographic signal was extracted by the y-coordinate of each facial
point on successive frames. In this study, the 80 ballistocardiographic signals were extracted
from the 80 facial points and were normalized by subtracting its mean to make the unit
the same as RPPG. The normalized signals were filtered by a second order Butterworth
bandpass filter with a cut-off of 0.75-2.5 Hz. Voluntary head movements distorted the
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signals to have a large amplitude, so that the signals were corrected as the mean if the
amplitude is larger than twice the standard deviation. Also, facial expressions distorted
the signals extracted from specific muscles (e.g., smile moves the cheek and eye muscles).
Thus, the SNR was calculated from each signal and the signals which have lower SNR
than mean SNR were removed in the next step. Finally, the ballistocardiographic signal
was extracted by applying the PCA on the filtered signals and selecting the signal with the
highest SNR from five components. Figure 4 shows the procedure of ballistocardiographic
signal extraction.

Subtle Motion Extraction
Pl

Time (Second)

Signal Filtering PCA Signal Selection
P1 ( <,"“\' 1| ' \ u I " ” I l Comp 1 N
P2 S £ Tomp 2
»‘ a * g * > M[V\'A'M-vw««w
"o s &5 4
P80 Comp § B oy 5 OB
VWMMA_
0 s g 30 0 30 0.75 25
T'ime (Second) Time (Second) Frequency (Hz)

Figure 4. Procedure of ballistocardiographic signal extraction.

2.4. Signial Combining

This study hypothesized that RPPG are robust to the motion artifacts and sensitive
to the illumination variance, whereas RBCG are robust to the illumination variance and
sensitive to the motion artifacts. Thus, the photoplethysmographic signal and the ballis-
tocardiographic signal had combined with each other to improve robustness to both the
illumination variance and the motion artifacts. This study tested three BSS methods (i.e.,
EA, PCA, and ICA) to combine RPPG and RBCG. EA was hypothesized to reduce the
random noise by averaging repetitive signals and has verified its enhancement as a fusion
method in a previous BCG study [27]. EA was calculated as:

EA = (RPPG + RBCG)/2, @)

where RPPG is a signal extracted by RPPG and RBCG is a signal extracted by RBCG. In ad-
dition, PCA and ICA are the representative BSS methods to reduce the various noise. PCA
and ICA were applied on PPG signal and BCG signal extracted from Sections 2.2 and 2.3
and two components were extracted because the BSS applied on two signals. Then, the
combined signal was selected from two components by highest SNR, respectively. Figure 5
depicts the procedure of signal combining.

2.5. Heart Rate Estimation

The heart rate estimated from the frequency domain of the signal. The power spectrum
was converted from the combined signal by fast Fourier transform (FFT). This study
extracted the band of power spectrum between the ranges of 0.75 and 2.5 Hz corresponding
to the ranges of 45 and 150 bpm. The dominant frequency was identified with the highest
power from the band of power spectrum. The heart rate was calculated by multiplying by
the dominant frequency and 60 as:

HR =60 X freq, (©)]
where HR is a heart rate and freq is a dominant frequency. The heart rate for RPPG (i.e.,
HRRrppg) was estimated from the PPG signal extracted by Section 2.2, whereas the heart
rate for RBCG (i.e., HRrpcg) was estimated from the BCG signal extracted by Section 2.3.
The heart rates for proposed methods (i.e., HRps, HRpca and HRjc4) were estimated
from the combined signals based on RPPG and RBCG extracted Section 2.4.
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Figure 5. Procedure of signal combining.

3. Experiments

The experiments were conducted to evaluate the proposed method according to
three measurement conditions in this study. The measurement conditions were determined
by illumination and motion artifacts (i.e., normal, facial expressions, and human computer
interactions). The experimental procedure was approved by the Institutional Review Board
of the Sangmyung University, Seoul, Korea (BE2018-35).

3.1. Experiment 1: Normal

This experiment is to collect the normal dataset without illumination variance and
motion artifacts. The participants consisted of 20 persons (12 males) and were asked to sit
1 m away from a camera for 3 min with a stationary state. The facial video was recorded
by an RGB webcam (Logitech Webcam C270) with 640 x 360 resolution at 30 fps. Also, the
ECG signal was simultaneously measured by an ECG measurement system with Lead-I
(BIOPAC Systems Inc., Goleta, CA, USA) at a sampling rate of 500 Hz. It was employed as
a ground-truth for the evaluation of the proposed methods.

3.2. Experiment 2: Facial Expressions

This experiment is to collect the dataset with facial expressions. The 20 persons who
participated in experiment 1 were also asked to sit in front of a camera for 3 min with a
stationary state. They then followed the six basic facial expressions (i.e., happiness, sadness,
surprise, anger, disgust, and fear), which were displayed on the monitor for 30 s in random
order to minimize the ordering effect. The facial video and the ECG signal were recorded
and measured at the same manner in experiment 1.

3.3. Experiment 3: Human Computer Interactions

This experiment is to collect the dataset including illumination variance and motion
artifacts occurred in human computer interactions. The 17 persons (8 males) were partic-
ipated and asked to watch the four videos to cause to some emotions. Then, they wrote
their emotions on self-report by two-dimensional model [28]. While watching the videos
and writing the self-report, they asked to freely express the facial expressions and move
their head. Also, the illumination on the face was changed by reflecting the light from the
video. The facial video was recorded by an RGB webcam (Logitech Webcam C270) with a
1920 x 1080 resolution at 30 fps. The ECG signal was also measured at the same manner in
experiment 1.
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4. Results

This study demonstrated the improvement of proposed fusion methods by comparing
them with previous RPPG and RBCG methods. The heart rate of ECG was calculated by
the QRS detection algorithm [29] and determined as the ground-truth for evaluation of the
proposed methods. The proposed method was verified by calculating the four metrics and
by representing the one plot as follows: mean absolute error (MAE), standard deviation of
absolute error (SDAE), root mean squared error (RMSE), Pearson’s correlation coefficient
(CC), and the Bland-Altman plot. MAE, SDAE, and RMSE describes the difference of mean
heart rate and variation, respectively. CC determines the statistical similarity of heart rates
over time, so that the coefficient value indicates a strong positive similarity if it is approach-
ing to the one. The Bland-Altman plot represents graphically the statistical differences by
assigning the mean (x-axis) and difference (y-axis) between the two measurements. The
line on the plot is indicated the 95% limits of an agreement based on mean difference and
the +£1.96 standard deviation of the differences. The statistical parameters were calculated
from the heart rates for RPPG (i.e., HRrppg), RBCG (i.e., HRrppg), and the proposed
methods (i.e., HRgpa, HRpca and HRjc ) by comparing them with ECG.

4.1. Experiment 1: Normal

Table 1 shows the estimation of heart rates from the normal dataset using RPPG,
RBCG, and the proposed fusion methods (i.e., EA, PCA, and ICA). All fusion methods
were more accurate than RPPG and RBCG. In addition, the ICA-based fusion method
showed the lowest errors in the normal dataset (MAE = 1.04, SDAE = 0.91, RMSE = 1.39,
CC =0.999).

Table 1. Estimation of heart rates from the normal dataset without illumination variance and motion

artifacts.

Methods MAE (bpm) SDAE (bpm) RMSE (bpm) CC (v
RPPG 1.84 1.66 2.49 0.981 **
RBCG 2.56 2.26 3.48 0.927 **

Fusion (EA) 1.05 0.93 142 0.996 **
Fusion (PCA) 1.08 0.99 1.49 0.996 **
Fusion (ICA) 1.04 0.91 1.39 0.999 **

MAE, mean absolute error; SDAE, standard deviation of absolute error; RMSE, root mean square error; CC,
Pearson’s correlation coefficient. Two asterisk represents significant correlation levels at p-value < 0.01. The lowest
error and highest correlation values are bolded.

The Bland-Altman plots of estimated heart rates from the normal dataset without
illumination variance and motion artifacts using RPPG, RBCG, and the proposed fusion
methods are shown in Figure 6. The mean errors were 2.19 with 95% limits of agreement
(LOA) in —3.43 to 7.81 (RPPG), —1.93 with 95% LOA in —8.35 to 4.49 (RBCG), 0.37 with
95% LOA in —1.19 to 1.93 (EA), 0.34 with 95% LOA in —1.26 to 1.94 (PCA), and 0.18 with
95% LOA in —0.63 to 0.98 (ICA). The heart rates estimated using the ICA-based fusion
method showed the lowest mean difference and variances.

4.2. Experiment 2: Facial Expressions

The heart rates were estimated from the dataset with facial expressions using RPPG,
RBCG, and the proposed fusion methods as shown in Table 2. All fusion methods showed
lower errors than RPPG and RBCG. In addition, the errors of the PCA-based fusion method
were lower than one of other methods (MAE = 2.76, SDAE = 2.34, RMSE = 3.23, CC = 0.968).

Figure 7 shows the Bland-Altman plots of the heart rates estimated from the dataset
with facial expressions using RPPG, RBCG, and the proposed fusion methods. The mean
errors were 5.54 with 95% limits of agreement (LOA) in —6.39 to 17.48 (RPPG), —2.48 with
95% LOA in —8.56 to 3.59 (RBCG), 2.48 with 95% LOA in —4.59 to 9.55 (EA), 2.20 with
95% LOA in —4.04 to 8.45 (PCA), and 1.87 with 95% LOA in —4.12 to 7.86 (ICA). The heart
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rates estimated using the PCA-based fusion method showed the lowest mean difference
and variances.

Table 2. Estimation of heart rates from the dataset with facial expressions.

Methods MAE (bpm) SDAE (bpm) RMSE (bpm) CC (v)
RPPG 3.13 2.59 4.09 0.947 **
RBCG 3.94 4.07 5.71 0.920 **

Fusion (EA) 3.06 2.56 453 0.955 **
Fusion (PCA) 2.76 2.34 3.23 0.968 **
Fusion (ICA) 2.99 2.53 4.17 0.972 **

MAE, mean absolute error; SDAE, standard deviation of absolute error; RMSE, root mean square error; CC,
Pearson’s correlation coefficient. Two asterisk represents significant correlation levels at p-value < 0.01. The lowest
error and highest correlation values are bolded.
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Figure 6. Bland-Altman plots of heart rates estimated from the normal dataset without illumination variance and motion
artifacts using interactions using (a) RPPG, (b) RBCG, (c) EA, (d) PCA, and (e) ICA. The lines are the mean errors and
95% LOA.

4.3. Experiment 3: Human Computer Interactions

Table 3 shows the estimation of heart rates from the dataset in human computer
interactions using RPPG, RBCG, and the proposed fusion methods. All fusion methods
showed lower errors than RPPG and RBCG. Unlike the other datasets, the EA-based fusion
method showed lowest errors in this dataset (MAE = 4.79, SDAE = 2.13, RMSE = 5.181,
CC =0.629).

Figure 8 shows the Bland-Altman plots of the heart rates estimated from the dataset
in human computer interactions using RPPG, RBCG, and the proposed fusion methods.
The mean errors were 6.05 with 95% limits of agreement (LOA) in —9.71 to 21.81 (RPPG),
—12.35 with 95% LOA in —32.88 to 8.18 (RBCG), —0.09 with 95% LOA in —15.49 to 15.32
(EA), —0.49 with 95% LOA in —15.14 to 15.16 (PCA), and 0.25 with 95% LOA in —16.15
to 16.65 (ICA). The heart rates estimated using the EA-based fusion method showed the
lowest mean difference and variances.
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Table 3. Estimation of heart rates from the dataset in human computer interactions.
Methods MAE (bpm) SDAE (bpm) RMSE (bpm) CC (v
RPPG 5.68 2.93 6.53 0.713 **
RBCG 14.06 6.75 15.86 0.051
Fusion (EA) 4.79 2.13 5.81 0.629 **
Fusion (PCA) 5.42 4.2.84 6.13 0.622 **
Fusion (ICA) 5.66 3.59 6.48 0.617 **
MAE, mean absolute error; SDAE, standard deviation of absolute error; RMSE, root mean square error; CC,
Pearson’s correlation coefficient. Two asterisk represents significant correlation levels at p-value < 0.01. The lowest
error and highest correlation values are bolded.
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Figure 7. Bland-Altman plots of heart rates estimated from the dataset with facial ex-pressions interactions using (a) RPPG,
(b) RBCG, (c) EA, (d) PCA, and (e) ICA. The lines are the mean errors and 95% LOA.
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5. Discussion

In this study, the fusion method based on RPPG and RBCG was developed to enhance
the heart rate estimation using EA, PCA, and ICA. This study evaluated the proposed
method on three datasets according to illumination variance and motion artifacts as follows:
(1) normal, (2) facial expressions, and (3) human computer interactions. The proposed
method was more accurate than the previous RPPG and RBCG in all datasets. This result
indicated that with the advancement of fusion methods based on RPPG and RBCG, ECG
could eventually be replaced by remote sensing in daily life. Thus, this study strongly
encourages the fusion method based on RPPG and RBCG as a requirement to estimate
heart rate using a camera more accurately.

Overall, this study has drawn four significant findings. First, PCA and ICA were
better than EA in the datasets including less noise such as normal and facial expressions.
It indicated that the BSS algorithms can be improved if RPPG and RBCG are enhanced
by reducing the noise. On the other hand, EA was better than PCA and ICA in daily life
not yet.

Second, experiment 3 evaluated the proposed method and the previous RPPG and
RBCG in human computer interactions environment which is similar to daily life. As
shown in the Bland-Altman plots (Figure 7), the previous RPPG and RBCG estimated
the heart rate higher (LOA in —9.71 to 21.81) and lower (LOA in —32.88 to 8.18) than the
ground-truth (i.e., ECG), respectively. It indicated that RPPG has high frequency noise
whereas RBCG has low frequency noise. The illumination variance has high frequency
because it appears at a high rate that humans cannot perceive. On the other hand, the
motion artifacts have low frequency because they occur instantaneously and briefly. RPPG
and RBCG are sensitive to the illumination variance and motion artifacts, respectively, so
that the result is acceptable. Note that the proposed method reduced both illumination
variance and motion artifacts (LOA in —15.49 to 15.32) since it has low frequency and high
frequency noise evenly and little.

Third, this study showed significant results compared to other fusion methods. Par-
ticularly, Liu et al. [13] developed a fusion method, combined RPPG with BCG measured
using an additional motion sensor, and showed MAE of 6.20 bpm in motion state. Although
the measurement condition is different, our proposed method showed MAE of 4.79 bpm in
experiment 3 including illumination variance and motion artifacts. Note that it indicates
possibility of combining PPG and BCG with only a camera without an additional sensor.

Finally, this study presented the fusion method based on RPPG and RBCG to enhance
the heart rate estimation using a camera. Although it should be more improved, a novel
approach was developed for the possibility of practical use of remote sensing in daily life.
Many studies have been presented before, but it has not been developed as a product
for real users due to restrictions on the use environment. The product for real users
should be developed and tested to minimize the measurement burden and to improve the
use environment, so that it can be used in practical domains such as self-driving cars or
non-face-to-face communication.

6. Conclusions

This study developed a fusion method to estimate heart rate from facial videos based
on RPPG and RBCG. The proposed methods using EA, PCA, and ICA had compared them
with the previous RPPG and RBCG. As a result, the proposed methods showed enhanced
accuracy from three datasets according to illumination variance and motion artifacts.
The findings are a significant step toward ensuring the enhanced development of RPPG
and RBCG. This study is expected to contribute to enhanced heart rate measurement by
overcoming noise of illumination variance and motion artifacts and consequently improve
the possibility of applications of remote sensing in daily life.



Sensors 2021, 21, 6764 11 of 12

Author Contributions: H.L. and M.W. conceived and designed the experiments; H.L. and A.C.
performed the experiments; H.L. analyzed the data; H.L. and M.W. wrote the paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2021R111A1A01052752) and by
Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government.
[21Z51100, Core Technology Research for Self-Improving Integrated Artificial Intelligence System].

Institutional Review Board Statement: This study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of the Sangmyung
University, Seoul, Korea (BE2018-35).

Informed Consent Statement: Written informed consent has been obtained from the patients to
publish this paper.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rouast, PV.; Adam, M.T.P; Chiong, R.; Cornforth, D.; Lux, E. Remote heart rate measurement using low-cost RGB face video: A
technical literature review. Front. Comput. Sci. 2018, 12, 858-872. [CrossRef]

2. Hertzman, A.B.; Dillon, J.B. Applications of photoelectric plethysmography in peripheral vascular disease. Am. Heart ]. 1940, 20,
750-761. [CrossRef]

3. Kamshilin, A.A.; Nippolainen, E.; Sidorov, L.S.; Vasilev, P.V.; Erofeev, N.P.,; Podolian, N.P.; Romashko, R.V. A new look at the
essence of the imaging photoplethysmography. Sci. Rep. 2015, 5, 1-9. [CrossRef] [PubMed]

4. Poh, M.Z.; McDuff, D.J.; Picard, R.W. Non-contact, automated cardiac pulse measurements using video imaging and blind source
separation. Opt. Express 2010, 18, 10762-10774. [CrossRef] [PubMed]

5. Xu, L,; Cheng, J.; Chen, X. lllumination variation interference suppression in remote PPG using PLS and MEMD. Electron. Lett.
2017, 53, 216-218. [CrossRef]

6.  Zhang, Y,; Dong, Z.; Zhang, K; Shu, S.; Lu, F; Chen, ]. lllumination variation-resistant video-based heart rate monitoring using
LAB color space. Opt. Lasers Eng. 2021, 136, 106328. [CrossRef]

7. Starr, I; Rawson, A.J.; Schroeder, H.A; Joseph, N.R. Studies on the Estimation of Cardiac Output in Man, and of Abnormalities in
Cardiac Function, from the heart’s Recoil and the blood’s Impacts; the Ballistocardiogram. Am. J. Physiol. Leg. Content 1939, 127,
1-28. [CrossRef]

8.  Balakrishnan, G.; Durand, F; Guttag, J. Detecting pulse from head motions in video. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23-28 June 2013; pp. 3430-3437.

9.  Shan, L.; Yu, M. Video-based heart rate measurement using head motion tracking and ICA. In Proceedings of the 2013 6th
International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16-18 December 2013; pp. 160-164.

10. Haque, M.A_; Nasrollahi, K.; Moeslund, T.B.; Irani, R. Facial video-based detection of physical fatigue for maximal muscle activity.
IET Comput. Vis. 2016, 10, 323-330. [CrossRef]

11. Hassan, M.A.; Malik, A.S.; Fofi, D.; Saad, N.M.; Ali, Y.S.; Meriaudeau, F. Video-Based Heartbeat Rate Measuring Method Using
Ballistocardiography. IEEE Sens. J. 2017, 17, 4544-4557. [CrossRef]

12.  Shao, D.; Tsow, F; Liu, C.; Yang, Y.; Tao, N. Simultaneous monitoring of ballistocardiogram and photoplethysmogram using a
camera. IEEE Trans. Biomed. Eng. 2016, 64, 1003-1010. [CrossRef] [PubMed]

13. Liu, Y; Qin, B,; Li, R,; Li, X,; Huang, A.; Liu, H.; Liu, M. Motion-Robust Multimodal Heart Rate Estimation Using BCG Fused
Remote-PPG With Deep Facial ROI Tracker and Pose Constrained Kalman Filter. IEEE Trans. Instrum. Meas. 2021, 70, 1-15.

14. Viola, P; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8-14 December 2001; pp. 511-518.

15.  OpenCV: Cascade Classifier. Available online: https://docs.opencv.org/4.2.0/db/d28/tutorial_cascade_classifier.html (accessed
on 28 May 2020).

16. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20-26 June 2005; pp. 886-893.

17.  Dlib: Face Detector. Available online: http://dlib.net/face_detector.py.html (accessed on 28 May 2020).

18. Abadi, M.; Barham, P; Chen, J.; Chen, Z.; Davis, J.; Kudlur, M. Tensorflow: A system for large-scale machine learning. In
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, USA,
2-4 November 2016; pp. 265-283.

19. Liu, W,; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8-16 October 2016; pp. 21-37.


http://doi.org/10.1007/s11704-016-6243-6
http://doi.org/10.1016/S0002-8703(40)90534-8
http://doi.org/10.1038/srep10494
http://www.ncbi.nlm.nih.gov/pubmed/25994481
http://doi.org/10.1364/OE.18.010762
http://www.ncbi.nlm.nih.gov/pubmed/20588929
http://doi.org/10.1049/el.2016.3611
http://doi.org/10.1016/j.optlaseng.2020.106328
http://doi.org/10.1152/ajplegacy.1939.127.1.1
http://doi.org/10.1049/iet-cvi.2015.0215
http://doi.org/10.1109/JSEN.2017.2708133
http://doi.org/10.1109/TBME.2016.2585109
http://www.ncbi.nlm.nih.gov/pubmed/27362754
https://docs.opencv.org/4.2.0/db/d28/tutorial_cascade_classifier.html
http://dlib.net/face_detector.py.html

Sensors 2021, 21, 6764 12 of 12

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Yang, S.; Luo, P; Loy, C.C.; Tang, X. Wider face: A face detection benchmark. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 5525-5533.

OpenCV: Face Detector by SSD in DNN Module. Available online: https://github.com/opencv/opencv/tree/master/samples/
dnn/face_detector (accessed on 28 May 2020).

Bouguet, ].Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corp. 2001,
5,4.

Lempe, G.; Zaunseder, S.; Wirthgen, T.; Zipser, S.; Malberg, H. ROI selection for remote photoplethysmography. In Proceedings
of the Bildverarbeitung fiir die Medizin, Heidelberg, Germany, 3-5 March 2013; pp. 99-103.

De Hann, G.; Jeanne, V. Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878-2886. [CrossRef]
[PubMed]

De Haan, G.; Van Leest, A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol. Meas.
2014, 35, 1913. [CrossRef] [PubMed]

Lee, H.; Lee, H.; Whang, M. An enhanced method to estimate heart rate from seismocardiography via ensemble averaging of boy
movements at six degrees of freedom. Sensors 2018, 18, 238. [CrossRef] [PubMed]

Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [CrossRef]

Pan, ].; Tompkins, W.]J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 3, 230-236. [CrossRef] [PubMed]


https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector
https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector
http://doi.org/10.1109/TBME.2013.2266196
http://www.ncbi.nlm.nih.gov/pubmed/23744659
http://doi.org/10.1088/0967-3334/35/9/1913
http://www.ncbi.nlm.nih.gov/pubmed/25159049
http://doi.org/10.3390/s18010238
http://www.ncbi.nlm.nih.gov/pubmed/29342958
http://doi.org/10.1037/h0077714
http://doi.org/10.1109/TBME.1985.325532
http://www.ncbi.nlm.nih.gov/pubmed/3997178

	Introduction 
	Proposed Method 
	Face Detection and Tracking 
	Photoplethysmographic Signal Extraction 
	Ballistocardiographic Signal Extraction 
	Signial Combining 
	Heart Rate Estimation 

	Experiments 
	Experiment 1: Normal 
	Experiment 2: Facial Expressions 
	Experiment 3: Human Computer Interactions 

	Results 
	Experiment 1: Normal 
	Experiment 2: Facial Expressions 
	Experiment 3: Human Computer Interactions 

	Discussion 
	Conclusions 
	References

