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Abstract: In the current industrial landscape, increasingly pervaded by technological innovations,
the adoption of optimized strategies for asset management is becoming a critical key success factor.
Among the various strategies available, the “Prognostics and Health Management” strategy is able
to support maintenance management decisions more accurately, through continuous monitoring
of equipment health and “Remaining Useful Life” forecasting. In the present study, convolutional
neural network-based deep neural network techniques are investigated for the remaining useful life
prediction of a punch tool, whose degradation is caused by working surface deformations during
the machining process. Surface deformation is determined using a 3D scanning sensor capable of
returning point clouds with micrometric accuracy during the operation of the punching machine,
avoiding both downtime and human intervention. The 3D point clouds thus obtained are transformed
into bidimensional image-type maps, i.e., maps of depths and normal vectors, to fully exploit the
potential of convolutional neural networks for extracting features. Such maps are then processed by
comparing 15 genetically optimized architectures with the transfer learning of 19 pretrained models,
using a classic machine learning approach, i.e., support vector regression, as a benchmark. The
achieved results clearly show that, in this specific case, optimized architectures provide performance
far superior (MAPE = 0.058) to that of transfer learning, which, instead, remains at a lower or slightly
higher level (MAPE = 0.416) than support vector regression (MAPE = 0.857).

Keywords: remaining useful life; deep neural network; convolutional neural network; genetic
optimization; neural network optimization; support vector regression; depth maps; normal maps; 3D
point clouds

1. Introduction

Over recent years, asset maintenance has received increasing attention in the literature.
If considering that appropriate maintenance management has a direct effect on reducing
costs and increasing system reliability, availability, and safety [1], it is easy to understand
how asset maintenance is a critical success factor in the current industrial revolution 4.0 [2].
More specifically, the adoption of optimized maintenance strategies has been proven
to improve tool utilization and productivity, assuring product quality and operational
excellence [3].

With the main objective of reducing unexpected breakdowns and possibly catastrophic
consequences, maintenance strategies can be roughly classified under [4]: (1) corrective
maintenance, (2) preventive maintenance, and (3) prognostics and health management
(PHM). In the case of corrective maintenance, machine tools are operated until the tool
breaks down, and repairs are made at the time of failure. However, on the other hand,
if a critical breakdown occurs, it may cause serious machinery damages. The preventive
maintenance aims to prevent the aforementioned problems by scheduling inspection and
repair interventions at regular time intervals or operation cycles. In this case, the bigger
downside is the waste of time and the replacement costs for components that often are
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still working. Contrary to previous strategies, PHM relies on the continuous monitoring
of equipment health conditions to predict the degradation status, in terms of remaining
useful life (RUL), thus supporting more accurate maintenance management decisions.

The prediction of RUL, definable as the “length from the current time to the end of the
useful life” as suggested in [5], can be achieved by at least three types of approaches [6]:
model-based, data-driven, and hybrid. The model-based approaches (also known as
physics-based) refer to mathematical formulations able to model the physical degradation
process for the purpose of estimating RUL. In the case of data-driven approaches, instead,
RUL is estimated from degradation data collected by monitoring sensors and processed
using traditional statistical or machine learning (ML) techniques or even more “advanced”
ones based on deep neural networks (DNNs) [7]. However, very often the choice of the
appropriate approach depends on the specific problem at hand. Thus, aiming to exploit the
strengths of both approaches, data-driven and model-based, they are combined in hybrid
approaches by using some kind of fusion scheme [6].

Exploiting the laws of nature to model system degradation, model-based approaches
are generally quite accurate. Nevertheless, the implementation of a faithful model for
predicting RUL is an expensive and time-consuming process; it may be feasible for simple
parts, but may not be for complex components or systems due to the limited understanding
of their behavior under all operating conditions. Such disadvantages, combined with the
risk of not achieving the desired results, make model-based approaches definitely less
attractive than data-driven ones [8].

The various data-driven methods revolve around the processing of features obtained
from monitoring sensor data. Consequently, the most important distinction differentiating
such methods lies in the way features are obtained, that is, either by traditional handcrafted
methods or by learned representations. The methods belonging to the first category
utilize representative features, extracted and selected by hand (i.e., handcrafted) on the
basis of expert domain knowledge, which are classified or evaluated via regression using
appropriate statistical or ML techniques.

The disadvantages of these methods are that handcrafted features are representative
only of a specific component or system under certain conditions, while on the other hand,
the process of feature extraction and selection is time-consuming and laborious, relying
often on strong prior domain knowledge [9]. Moreover, as shown by [10], the performance
of ML algorithms is limited by data representation.

In the case of learned representations, on the contrary, representative features of
degradation states can be automatically discovered from sensor data by using deep learning
(DL) techniques [7,11]. Up to now, a lot of fruitful research results involving many different
fields, ranging from image recognition to natural language processing, have been reported
in the DL literature [12]. Although, recently, an increasing number of research studies
exploiting DL has appeared in the RUL literature, there is still less availability of optimized
DL models and architectures compared to other fields.

In the present study, a new DL model based on a convolutional neural network (CNN)
is proposed for the RUL prediction of punching tools. The main contributions are (i) repre-
sentation of punch deformation with depth and normal vector maps (DNVMs) obtained
from 3D scan point clouds; (ii) CNN-based RUL prediction with network architecture
optimized using genetic algorithm (GA); (iii) validation of the proposed method with real
data sets representing three different deformation modes.

2. Related Works

Complex real-world data are very useful in many machine-learning applications,
including RUL prediction, but they are also cumbersome to process, transmit and store,
due to their high-dimensional nature. More effective and low-dimensional features can be
obtained from high-dimensional data by using representation learning techniques. The
year 2006 marked an important turning point in this research area, since earlier widely
used methods such as principal component analysis (PCA) [13,14] and linear discriminant
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analysis (LDA) [15] gave way to more advanced DL methods [16]. DL architectures, in
contrast to shallow ones, are composed of multiple data transformation layers, providing
higher hierarchical abstraction levels, and are thus more useful for classification, detection
and prediction tasks.

One of the most common DL approach is the stacked sparse auto-encoder (SAE),
in which a network of multiple encoder layers is used to transform high-dimensional
data into low-dimensional features and, conversely, a network of multiple decoder layers
recovers the original data. Specifically, the RUL of an aircraft engine was predicted by
Ma et al. [17] by using SAE to extract performance degradation features. Sun et al. [18]
addressed the problem of deep transfer learning with SAE networks for predicting the
RUL of a cutting tool. They investigated three different transfer strategies, i.e., weight
transfer, feature transfer, and weight update, to transfer a trained SAE to a new object tool
under operation without providing supervised training information. The authors claimed
that deep transfer learning improves performance of RUL prediction also in the case of
little historical failure data for training. Ren at al. [19] proposed a DL-based framework
for bearing RUL prediction using deep auto-encoder (DAE) and time-frequency-wavelet
joint features to represent the bearing degradation process. As the authors pointed out, the
advantages offered by the deep autoencoder method were twofold, i.e., automatic feature
selection and over fitting problem prevention thanks to reducing network parameters.

Another neural network class arousing considerable research interest in feature learn-
ing is represented by the restricted Boltzmann machine (RBM). It is an energy-based neural
network with two layers of stochastic binary neurons, one is the visible layer and the other
one is the hidden layer. The main issues when dealing with RBMs (even stacked in multiple
layers) is the model parameter initialization (e.g., learning rate, momentum, number of
hidden units, mini-batch size, etc.) and how to regularize the model to avoid overfitting
and improve the learning process. Liao et al. [20] addressed the regularization problem by
suggesting a new term allowing an RBM to be trained to output a feature space that better
represents degradation patterns in RUL prediction. Although one RBM layer was used,
they pointed out that their method can be extended by stacking multiple RBM layers in
a deeper neural network architecture.

Haris et al. [21] addressed the problem of finding optimal hyperparameters for a deep
belief network (DBN), which is a generative model composed of multiple RMB layers,
with the purpose of predicting the RUL of supercapacitors. To this end, they proposed
a combination of Bayesian and HyperBand optimization and showed the universality of
their model by training it on different degradation profiles with the same hyperparameters.

Aiming to predict the RUL of a complex engineering system whose malfunctions
may be caused by multiple faults, Jiao et al. [22] proposed a RUL prediction framework
for multiple fault modes consisting of three main modules: DBN-based extraction of
degradation features where original data were preprocessed with a gap metric, fault
identification under multiple fault conditions via support vector data description (SVDD)
monitoring, RUL estimation via the particle filter (PF) and adaptive failure threshold.

Ma et al. [23] assessed the health condition of a bearing rig by using a discriminative
DBN model composed of four layers. They obtained the model parameters, i.e., the
number of neurons of the two hidden layers and the learning rate, by using the ant colony
optimization (ACO) algorithm. The data consisted of vibration signals collected at 10 min
intervals with a sampling frequency of 10 kHz. The degradation prediction was formulated
as a classification problem with five classes representing the bearing conditions during the
evolution process.

Zhang et al. [24] proposed a DBN-based ensemble method for RUL prediction in which
multiple DBNs were evolved using a multi-objective evolutionary algorithm integrated
with the traditional DBN training technique. They used DBNs with three hidden layers,
whose optimization parameters were the number of neurons, the weight cost, and learning
rates. They evaluated their method on the turbofan engine degradation problem provided
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by NASA, i.e., the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
data sets [25], composed of multivariate temporal data coming from 21 sensors.

Another DL model recently investigated in RUL prediction is the CNN [26], a type of
multi-layer feed-forward network originally conceived to recognize visual patterns from
images [27], whose feature learning capabilities are enabled through the combination of
multiple convolution and pooling layers. Babu et al. [28] reported the first attempt of
predicting RUL using CNN-based feature learning combined with linear regression from
multi-channel time series data. As the authors pointed out, the multiple layers composing
the DL architecture effectively learned local salience representations of multi-channel
signals (provided as two-dimensional input) also in different scales. They showed good
RUL estimation performance on two publicly available data sets, the NASA C-MAPSS data
set and the PHM 2008 Data Challenge data set [29].

Since sensor data involved in RUL estimation are traditionally arranged in a time-
series form, either uni- or multi-variate, the use of recurrent neural networks (RNNs) has
been suggested to better deal with the sequential nature of these data [30]. However, as
it is well-known, RNNs suffer from a vanishing/exploding gradient in the presence of
long-term time dependency. To overcome this drawback, Zheng et al. [31] suggested that
the RUL be estimated with a long short-term memory (LSTM) network, which is a type
of RNN able to effectively model sequential data, without suffering from long-term time
dependency problems. To validate their LSTM model for RUL estimation, they used the
C-MAPSS data Set, the PHM 2008 Challenge data set, and the Milling data set.

Aiming to exploit the power of CNN to learn discriminative features from two-
dimensional inputs, Li et al. [32] proposed a CNN deep learning architecture based on
a time window approach able to handle multi-variate temporal information. To validate
the effectiveness of their approach, they estimated the RUL of aero-engines using the
NASA C-MAPSS data set. The achieved prediction performance was significantly better
than the CNN approach presented by Babu et al. [28] and was also comparable with the
LSTM approach of Malhotra et al. [33], but employing simpler architecture and lower
computing load.

The approaches reviewed so far receive a time series of sensor data as input (e.g., vibration
signals, engine data, physical properties, etc.), usually organized as 1D arrays, but often
also as 2D arrays in the case of multi-channel data (i.e., multivariate time series). A special
case of 2D representation is image data, traditionally used for visual inspection to assess
component or system conditions. Recently, image data were used to automatically predict
fault or degradation of machine components, with better results for larger data sets [34].

Since large data sets are not always available within PHM applications, the problem of
insufficient images for training CNN models has been addressed through transfer learning
by Marei et al. [35], using microscope images of a cutting tool flank. Essentially, transfer
learning allows knowledge acquired from a similar or different domain to be reused in
a new domain. In practice, DL models pretrained on large general-purpose image data
sets (e.g., ImageNet [36], ILSVRC: ImageNet Large Scale Visual Recognition Challenge [37],
CIFAR-10/CIFAR-100 [38], and so on) can be fine-tuned using available image data to
perform predictions on new problems. However, the underlying assumption for transfer
learning to work well is that the feature distributions across the two domains are the same.

DL models require an accurate setting of multiple DNN architectural parameters,
which is a time-consuming and experience-intensive task. The parameter setting problem
has been tackled by Mo et al. [39], adopting an evolutionary algorithm to find the opti-
mal parameter configuration. Furthermore, they proposed a multi-head CNN structure
followed by a LSTM network, pointing out the superiority of multi-head CNN models
over single-head multi-channel ones, since the former keep the extracted features separate
whereas the latter mix them all together losing specialized features. They demonstrated
the effectiveness of their solution using time series data from the NASA C-MAPSS data set.

In real-world settings, the collection of machinery health information might be chal-
lenging due to some kind of restrictions (e.g., small component size and narrow camera
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field-of-view, component partially hidden inside the machine, and so on), giving rise to
partial or incomplete data. This problem, referred to as the partial observation problem, has
been addressed by Li et al. [40] presenting a supervised attention mechanism for feature
learning based on CNN and LSTM, followed by a regression layer for estimating the RUL
of an industrial cutting wheel from images.

3. Materials and Methods

This section details the materials and methods used in this study to predict the RUL
of a punch tool from 3D scan data. More specifically, the next subsections deal with the
following aspects: (1) the data acquisition system and experimental setup, (2) the 3D
scanning process (i.e., pre-processing of 3D point clouds and feature extraction), (3) the
adopted metrics to evaluate RUL prediction performance, (4) the DNN architectures
generated by genetic optimization, (5) the genetic optimization technique, and (6) the
support vector regression (SVR) approach used as classic ML benchmark. The overview
of this research is provided in Figure 1, the components of which are detailed in the
following subsections.

Figure 1. Overview of this research.

3.1. Experimental Setup and Data Acquisitions

The present study focuses on RUL prediction of punch tools mounted on a punching
machine, such as the one shown in Figure 2, used to process pump workpieces by making
a punch on their upper end. The RUL prediction is based on 3D scan data acquired by
a Gocator® 3210 (LMI Technologies Inc., Burnaby, BC, Canada) [41] sensor, tightly clamped
on the punching machine structure (Figure 2B). The 3D scan sensor, equipped with a stereo
camera of two megapixels and a blue LED projector, provides 3D point clouds in a single
snapshot for accurate noncontact measurements down to 35 µm.
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Figure 2. Punching machinery: (A) punch tool and pump workpiece, (B) Gocator® 3210 3D scan-
ning sensor.

The punch tool consists of two cylindrical ends, of which the one having a larger
diameter serves to clamp it to the machine, while the other is the working region. The 3D
model of the punch tool is provided in Figure 3, in which the working region is highlighted
by a dashed red line (Figure 3A). During the machining cycles, the working surface of the
punch (Figure 3B) undergoes progressive deformations (Figure 3C). Three-dimensional
scans of these surface deformations, suitably processed using ML algorithms, can be
exploited to predict the RUL of the punch tool.

Figure 3. Punch tool 3D model. (A) Full view of the punch tool with working region circled with
a dashed red line. (B) Detail of the working region. (C) 3D point cloud with grayscale patches of the
working region obtained from a 3D scan snapshot.

During the experimentation phase, three identical punch tools were brought to the
end of their life cycle, subjecting them to different loads. The first punch tool, P1, was
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operated with an incremental load ranging from a minimum of 10 kN to a maximum
of 15 kN, obtaining a total of 714 scans performed every 50 pressing cycles. The second
punch tool, P2, was tested with an incremental load ranging from 20 to 28 kN, for a total
of 521 scans performed every 60 pressing cycles. The third punch, P3, was subjected to
an incremental load ranging from 15 to 20 kN, generating a total of 779 scans captured
every 50 pressing cycles. In such a way, a total number of 2014 scans was produced in
approximately six months.

3.2. D Scan Preprocessing

Three-dimensional scans obtained as discussed above were preprocessed in the form
of 3D point clouds. Due to reflections from the metallic surface, raw 3D point clouds
may be corrupted by artefacts, i.e., spurious 3D points. To overcome this issue, the
first preprocessing step was to segment each raw point cloud into clusters, considering
a minimum Euclidean distance between 3D points from different clusters, as represented
in Figure 4. Then, the clusters were filtered based on the number of 3D points, keeping the
two clusters with the greater number of points. The resulting 3D point cloud, provided
in Figure 5, is composed of two main segments. The points located at y < 0.01 form the
working surface, whereas those located at y > 0.03 represent the so-called best-fit surface
used in the following step for point cloud registration. Although the 3D scan system
is firmly clamped to the machine structure, continuous vibrations can produce slight
misalignments between 3D point clouds. A rigid registration step was utilized to correct
such misalignments.

The semi-cylindrical surface with the largest diameter, shown in Figure 5 (i.e., 3D
points with y > 0.03), was used as the best-fit reference surface for registration, since this
surface was the least subject to deformation during punching operations. The iterative-
closest-point (ICP) algorithm, originally suggested by Besl and McKay [42], was used to
register the best-fit surfaces of segmented point clouds.

Figure 4. 3D point cloud segmented using the Euclidean distance between 3D points from different
clusters. Segmented clusters are represented in different colors.
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Figure 5. Filtered 3D point cloud after segmentation. Two main segments are visible.

Substantially, the ICP algorithm is an optimization process whose main goal is to find
the best local (in a least-square sense) rigid transformation by means of singular value
decomposition (SVD) [43]. More specifically, the iterative process consists of the following
main steps: (1) projection of the two point clouds under registration, (2) estimation of the
optimal rigid transformation via SVD, (3) application of the transformation to a subset of
randomly selected points, (4) evaluation of the alignment via least median estimator [44],
(5) if the alignment error is smaller than a prefixed threshold, the rigid transformation is
applied to all the point clouds, otherwise, the above steps are repeated. The pseudocode of
the registration procedure is reported in Algorithm 1.

Algorithm 1. Point cloud registration

1. P0 ←
{

PR
i ∈ R3, i = 1, . . . , N0

}
;//Reference point cloud

2. P←
{

Pi ∈ R3, i = 1, . . . , N
}

;//Data point cloud to be registered (N > N0)
3. ε = 0.01;//Tolerance between consecutive iterations
4. MaxIterations = 100;//Maximum number of iterations
5. for i = 1; i ≤ N0; i ++

6. P̂0
i ← P0

i −
1

N0
∑N0

j=1 P0
j ; //Normalization of P0

7. end for
8. for k = 1; k ≤ MaxIterations; k ++
9. P← Projectiection o f P onto P0 ;//Matching subset (from now |P| = N0)
10. for i = 1; i ≤ N0; i ++

11. P̂i ← Pi − 1
N0

∑N0
j=1 Pj ; //Normalization of P

12. end for
13. Calculate the SVD decomposition of the matrix H = ∑N0

j=1 P̂0
j

(
P̂j

)T
= UΛVT ;

14. R← VUT ;//Rotation matrix

15. T ← 1
N

N0

∑
j=1

P̂j − R 1
N ∑N0

j=1 P̂0
j ;//Translation matrix

16. if ∑N0
j=1 P̂0

j −
(

RP̂j + T
)
≤ ε //Termination condition

17. break;
18. end if
19. end for

Once registered, the point cloud was cropped to take only the working region, thus
highlighting the surface deformation, as shown in Figure 6. In addition, in order to further
highlight the working surface deformations, for each point belonging to the cropped point
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cloud the surface normal vector was considered [45], obtaining the normal representation
shown in Figure 7.

Figure 6. Working surface cropped from registered point cloud.

Figure 7. Surface normal vector representation of the working region obtained from the cropped
point cloud provided in Figure 6.

To exploit most of the DNN feature extraction capabilities, depth and normal vec-
tor representations were transformed into two-dimensional maps, reported in Figure 8,
i.e., depth map (Figure 8A) and normal vector map or normal map (Figure 8B), respectively.

The RUL prediction based on the DNN was compared with that based on tradi-
tional ML methods (e.g., SVR). To do so, alongside the two-dimensional deformation
representations mentioned above, one-dimensional representations were also considered,
i.e., longitudinal profiles of the punch tool. The extraction process of longitudinal profiles,
shown in Figure 9, consisted of three main steps. Firstly, a profile region was selected from
the cropped point cloud by taking points P = (x, y, z) such that x ∈

[
−xp, xp

]
(Figure 9A).

Secondly, the selected point-cloud region was projected onto the YZ plane. Thirdly,
the longitudinal profile was estimated averaging the projected region along the Z-axis
direction (Figure 9B).
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Figure 8. (A) Depth map. It is a false-color image: red color represents short distances and blue long
ones. (B) Normal map. It is a false-color image: dark-red color represents vectors parallel to z-axis
(i.e., pointing out of the image plane) and light-blue perpendicular ones.

Figure 9. Longitudinal profile extraction. (A) Longitudinal point-cloud region (red points) from
which the longitudinal profile is estimated. (B) Estimated longitudinal profile (red curve) from the
point cloud projection on the YZ plane.
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3.3. Evaluation Metrics

Three different evaluation metrics were adopted in this study, i.e., scoring function
(SF), root mean square error (RMSE), and mean absolute percentage error (MAPE). The
first two metrics were selected since they are commonly adopted in the literature on RUL
prediction [32], while the third was considered as it allows for more subtle evaluations
than the other two.

Given a total number N of sampled machining cycles (i.e., 3D scans), let pi be the RUL
at the machining cycle i, p′i the estimated version of pi, and Ei = p′i − pi the prediction
error, the SF is defined as follows:

SF = ∑N
i=1 fi,

where fi =

{
e−

Ei
13 − 1, ii f Ei < 0

e
Ei
10 − 1, ii f Ei ≥ 0

.
(1)

Furthermore, the RMSE is defined as follows:

RMSE =

√
1
N ∑N

i=1 E2
i , (2)

Finally, MAPE is given by:

MAPE =
1
N ∑N

i

∣∣∣∣Ei
pi

∣∣∣∣, for pi > 0. (3)

3.4. DNN Architectures

The DNNs used in this study to capture the representation information from pre-
processed inputs, i.e., depth and normal maps provided as false-color images (Figure 8),
were based on CNN [46]. Both single- and double-head DNNs were investigated, whose
general architectures are shown in Figures 10 and 11, respectively. Basically, they are
composed of an input layer receiving depth or normal maps, resized to 60 × 60 pixels color
(3-channels) images, followed by K0 (K1 and K2 in the double-head case) blocks including
the following four layers: (1) convolution, (2) batch normalization, (3) rectified linear unit
(ReLU), and (4) global average pooling.

CNN feature learning is based on the convolution operation implemented by applying
a kernel to input images (i.e., local receptive field) whose response provides the so-called
feature map. Let I = (I1, I2, I3) be an input image, W a kernel of size (a square kernel was
considered in this study, but in general it may have a rectangular size) whose s2 weights are
adjusted in a feedforward way, the feature map computed at (x, y) ∈ I is given as follows:

F(x, y) = ∑s
i,j=1 Ih(x− i, y− j)W(i, j), with h = 1, 2, 3; (4)

where the summation is the convolution operation as the kernel Q slides over the image
channel Ih.

During the feedforward process, the output of a generic convolution layer at (x, y) is
given as follows:

Oh(x, y) = ϕ
(
∑s

i,j=1 Ih(x− i, y− j)W(i, j) + b
)

, with h = 1, 2, 3; (5)

where ϕ(·) is the activation function used to introduce nonlinearity to feature maps, and b
is the bias term. In this study, the ReLU activation function was used which performs an
element-wise threshold operation, i.e., sets to zero any input value less than zero:

ϕ(ν) =

{
ν, ii f ν ≥ 0
0, ii f ν < 0

. (6)
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Figure 10. Single-head general architecture of CNN-based DNN for processing either depth or
normal maps provided as color image inputs.

Figure 11. Double-head general architecture of CNN-based DNN for processing both depth and
normal maps provided as color image inputs.

The batch normalization layer, inserted between convolution and nonlinear activation
(ReLU) layers, allows training to be sped up and the network to be regularized, reducing
initialization sensitivity, i.e., it facilitates the convergence to good local minima without
cumbersome initial parameter setting. Given an input element zij the batch normalization
layer provides the following normalization:

ẑij =
zij − µ
√

σ2 + ε
, (7)
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where µ and σ are, respectively, mean and variance estimated over spatial, time and
observation dimensions for each channel independently, whereas ε is a constant used to
improve numerical stability if variance is too small.

The average pooling layer performs down-sampling by providing average values of its
input as output and thus reducing the connection number to the next layer, which helps to
mitigate overfitting. The pool size adopted in this study was the same as the corresponding
convolution layer in each CNN block, whereas the stride (i.e., step size with which the
pooling layer scans through the input) was fixed at 2. The effect of the dropout layer is
to turn off (set to zero), with probability p, a certain number of input elements randomly
chosen. Such dropout operation has been shown to help prevent network overfitting [47].
In this study, the dropout layer was adopted only in the double-head case with p = d1 and
p = d2 in the two heads, respectively (Figure 11).

The global average pooling layer provides further down-sampling by fully averaging
the feature map. It is usually used before the final fully connected layer to reduce the size
of activations, i.e., less weights, thus leading to a lower network size. The purpose of fully
connected layers is to combine features to identify larger patterns. Thus, all the neurons in
a fully connected layer are connected to all the neurons of the previous layer.

In case of classification problems, the last fully connected layer provides the features
to perform classification, thus, its output size is equal to the number of classes being classi-
fied. In case of regression problems, the output size is equal to the number of regression
variables, which is one in this study. In both single- and double-head architectures, the
continuous RUL value was finally estimated in the regression layer by minimizing the loss
(i.e., not-normalized half mean squared error), which in the case of this study with only
one regression variable, reduces to E2

i .
Generally, the learning process is cast as an optimization problem of minimizing the

loss function. In this study, the stochastic gradient descent (SGD) [48] was used as an
optimization scheme. In SGD training, a mini-batch is stochastically selected at each time
step, instead of using the entire training set, thus improving computing speed. Two relevant
SGD parameters are initial learning rate η and momentum λ. If η is too low, the training
process takes a long time, whereas if it is too high, the training might result in being
suboptimal or divergent.

The momentum is a technique used in conjunction with SGD that adjusts the contribu-
tion of gradients at previous steps to determine the direction to proceed, instead of using
only the gradient at the current step. If λ is equal to zero there is no contribution from
previous steps, whereas if λ is one the contribution from previous steps is maximal. In this
study, the network hyperparameters (S1, N1, . . . , SK, NK, η, λ) in the single-head case and
(S11, N11, . . . , S1K, N1K, d1, S21, N21, . . . , S2K, N2K, d2, η, λ) were determined using a genetic
optimization algorithm as discussed in the following subsection. Note that the average
polling layer included in each CNN block is optional and its inclusion or exclusion was also
considered among the network hyperparameters subject to optimization through binary
array variables, as detailed in the following subsection.

In addition to the architectures shown in Figures 10 and 11, pretrained networks were
also evaluated. The adoption of pretrained models offers multiple advantages, such as
the possibility to exploit complex models without having to train them from scratch, even
when little training data are available (used to fine-tune the pretrained model) without
running into overfitting problems, commonly found in the presence of small training data
sets. The technique underlying pretrained models is called transfer learning [49] and,
basically, allows the knowledge already learned from one domain to be applied to another.

However, the transfer of knowledge from one domain to another is not always feasible.
When the source domain is not sufficiently related to the destination domain, or when
the transfer methodology is not able to take advantage of relationships between domains,
this can lead to negative transfer [49]. For that reason, in this study, the most popular
state-of-the-art pretrained models reported in Table 1 were evaluated, and their prediction
performance was compared with that of network architectures discussed above. Since
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such pretrained networks are designed for classification problems, they were adapted by
substituting the last three layers, i.e., the global average pooling layer, the softmax layer,
and the classification layer, with a fully connected layer with one output neuron followed
by a regression layer.

Table 1. Pretrained networks evaluated for transfer learning.

Network Input Size Parameters (106)

Squeezenet [50] 227 × 227 × 3 1.2
Googlenet [51] 224 × 224 × 3 7.0

Inceptionv3 [52] 299 × 299 × 3 23.9
Densenet201 [53] 224 × 224 × 3 20.0
Mobilenetv2 [54] 224 × 224 × 3 3.5

Resnet18 [55] 224 × 224 × 3 11.7
Resnet50 [55] 224 × 224 × 3 25.6s× s

Resnet101 [55] 224 × 224 × 3 44.6
Xception [56] 299 × 299 × 3 22.9

Inceptionresnetv2 [57] 299 × 299 × 3 55.9
Shufflenet [58] 224 × 224 × 3 1.4

Nasnetmobile [59] 224 × 224 × 3 5.3
Nasnetlarge [59] 331 × 331 × 3 88.9
Darknet19 [60] 256 × 256 × 3 20.8
Darknet53 [60] 256 × 256 × 3 41.6

Efficientnetb0 [61] 224 × 224 × 3 5.3
Alexnet [62] 227 × 227 × 3 61.0
Vgg16 [63] 224 × 224 × 3 138.0
Vgg19 [63] 224 × 224 × 3 144.0

3.5. Genetic Optimization

The parameters of the network architectures shown in Figures 10 and 11 were op-
timized by means of a genetic optimization technique. GAs are population-based opti-
mization methodologies that take their cue from the evolutionary process of living beings,
i.e., the metaphor of natural biological evolution [64]. GAs iteratively implement a series
of operations to manipulate populations of candidate solutions (i.e., chromosomes) to
produce new solutions by means of genetic functionals such as reproduction, crossover,
and mutation. Ultimately, they are inspired by Darwin’s theory of evolution [65] and
relative principles of reproduction, genetic recombination, and survival of the fittest. The
population of chromosomes (i.e., candidate solutions) is evaluated through the attribution
of a score carried out through a so-called fitness function, the formulation of which depends
on the specific optimization problem.

In this study, the fitness function f built network architectures and evaluated them,
providing as output the MAPE value obtained from testing. Thus, the optimization problem
was formulated as follows:

minimize f (z),
with z = (z1, z2, . . . , zM) such that zL

i ≤ zi ≤ zU
i , i = 1, . . . , M,

(8)

where (z1, z2, . . . , zM) are optimization variables, continuous or integer valued, bounded
between

(
zL

1 , zL
2 , . . . , zL

M
)

and
(
zU

1 , zU
2 , . . . , zU

M
)
, respectively, defining candidate network ar-

chitectures as better explained in the following. The number of optimization variables was
M = 5 for single-head architectures (Figure 10) and M = 10 for double-head architectures
(Figure 11). For both architectures, the number of CNN blocks ranged from four to six,
i.e., Ki ∈ {4, 5, 6}, i = 1, 2, 3.

In the single-head case, the optimization variables were z = (x1, x2, x3, x4, x5), where
x1 ∈ N represented the filter sizes, x2 ∈ N specified the number of filters, x3 ∈ N
the presence or not of average pooling layers, x4 ∈ R the initial learning rate, and
x5 ∈ R the momentum. In the double-head case, instead, the optimization variables were
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z = (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10), and y1, y2, y3 ∈ N represented the filter sizes, num-
ber of filters, and presence or not of average pooling layers for the first head, whereas
y4, y5, y6 ∈ N were the filter sizes, number of filters, and presence or not of average pooling
layers for the second head. y7 ∈ R was the initial learning rate, y8 ∈ R the momentum,
y9 ∈ R the dropout probability for the first head, and y10 ∈ R the dropout probability for
the second head.

Regarding the convolutional filter sizes, i.e., x1 (single-head) or y1 and y4 (double-
head) variables, odd square dimensions ranging from 3 × 3 to 29 × 29 were evaluated
by considering all possible combinations taking Ki (i = 0, 1, 2) at a time. For exam-
ple, in the case of K0 = 4, x1 = 1 corresponded to (S1, S2, S3, S4) = (3, 5, 7, 9), x1 = 2
to (S1, S2, S3, S4) = (3, 5, 7, 11), x1 = 3 to (S1, S2, S3, S4) = (3, 5, 7, 13), etc., and x1001 to
(23,25,27,29); after that, it continued in reverse order, i.e., x1002 corresponded to (29,27,25,23),
x1003 corresponded to (29,27,25,21), and so on. Regarding the number of filters, i.e., x2
(single-head) or y2 and y5 (double-head) variables, power of two between 8 and 256 were
considered in incremental order. Thus, for example, in the case K0 = 5, x2 = 1 gave
(N1, N2, N3, N4, N5) = (8, 8, 8, 8, 8), x2 = 2 gave (N1, N2, N3, N4, N5) = (8, 8, 8, 8, 16),
x2 = 3 gave (N1, N2, N3, N4, N5) = (8, 8, 8, 8, 32), and so on.

Since the average pooling layers, depicted in Figures 10 and 11 with dashed lines,
were optional, their presence or absence were regulated by variables x3 (single-head) or y3

and y6 (double-head), representing the configurations of a binary array {0, 1}Mi , where
1 in j-th position (with j = 1, . . . , Mi) indicated the presence of average pooling layer at
the end of the j-th CNN block. For example, in the case of K0 = 6, x3 = 1 corresponded
to (0, 0, 0, 0, 0, 0), x3 = 2 corresponded to (0, 0, 0, 0, 0, 1), x3 = 3 to (0, 0, 0, 0, 1, 1), and so on.
All previously discussed optimization variables are summarized in Table 2.

Table 2. Lower and upper bounds of all optimization variables.

Variable Mi Lower Bound Upper Bound

Filter size (x1, y1, y4) 4 1 2002
“ 5 1 4004
“ 6 1 6006

Number of filters (x2, y2, y5) 4 1 35
“ 5 1 126
“ 6 1 462

Pooling positions (x3, y3, y6) 4 1 16
“ 5 1 32
“ 6 1 64

Initial learning rate (x4, y7) 4, 5, 6 10−4 0.1
Momentum (x5, y8) 4, 5, 6 0 1

Dropout probability (y9, y10) 4, 5, 6 0 1
“ indicates a field identical to the one above.

In this study, both suggested DNNs (Figures 10 and 11) and pretrained ones (Table 1)
were implemented and evaluated using the MathWorks® Deep Learning Toolbox (v 14.2,
R2021a, MathWorks Inc., Natick, MA, USA) [66]; whereas, genetic optimization was
performed using the MathWorks® Optimization Toolbox (v 9.1, R2021a, MathWorks Inc.,
Natick, MA, USA) [67].

3.6. SVR Based Estimation

As a further comparison, the previously presented DNN-based models were com-
pared with more traditional ML methods such as SVR. Since the presence of irrelevant or
redundant information could slow down or make prediction algorithms less accurate, it
is necessary, before the learning model, to distinguish between relevant and unnecessary
features. For this reason, the first step was to reduce the dimensionality of the profile data
(Figure 9B) using the PCA approach [68].
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The profile data were represented in YZ plane by curves Ψk =
{(

yk
i , zk

i

)
∈ R2, i = 1, . . . , NPk

}
,

k = 1, . . . , N, with NPk typically ranging between 156 to 164 depending on the specific point cloud consid-

ered. After the PCA application, the reduced profile data were given by Ψk =
{(

yk
i , zk

i

)
∈ R2, i = 1, 2

}
,

since the percentage of variance explained by the first two principal components was 100%. Ulti-
mately, profile feature data used to train and test the SVR model was written as follows:

P =


y1

1 z1
1 y1

2 z1
2

...
yN

1 zN
1 yN

2 zN
2

 ∈ RN,4. (9)

To achieve a good compromise between processing speed and accuracy, in this study, the
epsilon-insensitive SVR (i.e., ε− SVR) [69,70] was adopted, in which the epsilon parameter controls

the amount of error allowed in the model. Given training data Pi =
(

yi
1, zi

1, yi
2, zi

2

)T
∈ R4, the goal is

to find a function g(Pi) that deviates from RUL values pi ∈ R by an amount no greater than ε while
at the same time being as flat as possible.

In the linear case, assuming that the training data set is composed of NT < N profiles Pi and
corresponding RUL values pi with i = 1, . . . , NT , the linear function takes the form g(Pi) = 〈π·Pi〉+ b,
where 〈·〉 is the dot product, and π ∈ R4 such that 〈π·π〉 is minimum to ensure flatness. The
problem can be stated in term of convex optimization as follows:

minimize ‖ π ‖2, subject to
∀i = 1, . . . , NT : |pi − (π·Pi + b)| ≤ ε.

(10)

Since a function f satisfying these constraints for all points may not exist, in practice, slake
variables

(
ξi, ξ∗i

)
are introduced, analogously to the concept of “soft margin” in SVM. With the

addition of the slake variables problem (9) becomes [66]:

minimize π2 + C ∑NT
i=1
(
ξi + ξ∗i

)
, subject to

∀i = 1, . . . , NT :


pi −π·Pi − b ≤ ε + ξi
π·Pi + b− pi ≤ ε + ξ∗i

ξi ≥ 0
ξ∗i ≥ 0

,
(11)

where the positive parameter C controls the penalty imposed on observations that fall outside the ε

margin, playing a regularizing role to prevent overfiting.
In the nonlinear case, the dot product is replaced with a kernel function G(·, ·) which maps

training data to a high-dimensional space. Some popular kernel functions evaluated in this study are
reported in Table 3.

Table 3. Kernel functions evaluated in this study.

Kernel G(x,y)

Linear 〈x·y〉
Gaussian e− ‖ x− y ‖2

Polynomial (1 + 〈x·y〉)q with q ∈ N\{0, 1}

4. Results
The performance results of the genetically optimized network architectures are provided in

Table 4. In the single-head case, the convention used for the model name is a prefix “go” which
stands for genetically optimized, followed by the number of CNN blocks and the suffix “normal”
or “depth” depending on the type of map the model was tested on. Thus, for instance, the name of
the model genetically optimized with four CNN blocks and tested on normal maps is “go4normal”.
Instead, in the double-head architectures, since they were tested on both normal and depth maps, the
naming convention consists of the suffix “go” followed by the number of blocks for the two heads, for
example, “go4+4” indicates a model with four blocks for each head. In addition to the three metrics
defined in (1), (2), and (3), the last column of Table 4 provides the time required to train each model.
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Table 4. RUL prediction performance obtained with genetically optimized networks tested on both
depth and normal maps.

Model No. Model Name MAPE RMSE SF TT (Sec)

1 go4normal 0.063 0.036 0.301 63.793
2 go5normal 0.065 0.037 0.313 18.351
3 go6normal 0.083 0.035 0.282 16.928
4 go4depth 0.102 0.063 0.513 13.647
5 go5depth 0.083 0.049 0.393 18.603
6 go6depth 0.058 0.036 0.312 13.410
7 go4+4 0.097 0.039 0.349 31.233
8 go4+5 0.141 0.057 0.493 125.250
9 go4+6 0.154 0.064 0.569 33.631

10 go5+4 0.123 0.048 0.427 96.948
11 go5+5 0.162 0.062 0.545 58.817
12 go5+6 0.129 0.053 0.469 58.204
13 go6+4 0.158 0.067 0.593 37.651
14 go6+5 0.237 0.082 0.762 196.594
15 go6+6 0.251 0.085 0.812 35.540

The population size was 50 in single-head architectures (5 optimization variables) and 200 in
double-head ones (10 optimization variables), for a total number of 10,000 and 40,000 iterations,
respectively. For each candidate architecture, the model was trained for 100 epochs, randomizing
the validation data set to each epoch. To achieve the final performance, the results of the top
100 architectures based on the fitness function (i.e., the MEPA metric) were averaged.

The pretrained models (Table 1) tested on normal and depth maps are provided in Tables 5 and 6,
respectively. The last columns of these tables report the fine-tuning time (FTT), i.e., the time elapsed to
fine-tune each pretrained model for 30 epochs. Also in this case, performance results were averaged
by repeating training and testing 100 times for each model.

Table 5. RUL prediction performance obtained with pretrained networks tested on normal maps.

Model No. Model Name MAPE RMSE SF FTT (Sec)

16 squeezenet 2.080 0.363 4.044 32.875
17 googlenet 0.452 0.112 1.077 18.947
18 inceptionv3 3.402 0.367 3.839 121.734
19 densenet201 1.802 0.559 5.453 758.300
20 mobilenetv2 2.692 0.608 6.471 94.666
21 resnet18 3.053 0.638 6.719 48.073
22 resnet50 1.854 0.426 4.086 140.182
23 resnet101 1.193 0.432 4.095 270.903
24 xception 1.825 0.365 1.550 833.500
25 inceptionresnetv2 2.691 0.555 5.365 755.150
26 shufflenet 2.673 0.905 9.534 73.828
27 nasnetmobile 1.597 0.412 4.276 352.860
28 darknet19 1.623 0.340 1.332 108.202
29 darknet53 1.384 0.485 1.870 565.150
30 efficientnetb0 1.408 0.338 3.306 195.668
31 alexnet 1.048 0.160 1.482 37.516
32 vgg16 0.615 0.311 1.177 310.489
33 vgg19 0.698 0.484 1.821 405.430
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Table 6. RUL prediction performance obtained with pretrained networks tested on depth maps.

Model No. Model Name MAPE RMSE SF FTT (Sec)

34 squeezenet 3.789 0.321 3.175 36.501
35 googlenet 0.416 0.114 1.142 56.326
36 inceptionv3 2.200 0.312 3.067 267.350
37 densenet201 1.657 0.527 5.387 785.250
38 mobilenetv2 2.108 0.452 4.768 104.493
39 resnet18 1.602 0.448 4.576 48.366
40 resnet50 1.181 0.312 2.963 147.724
41 resnet101 1.838 0.633 7.828 283.090
42 xception 1.790 0.409 1.725 915.500
43 inceptionresnetv2 1.530 0.266 2.519 745.000
44 shufflenet 2.062 0.694 7.401 74.328
45 nasnetmobile 1.309 0.324 3.329 345.805
46 darknet19 9.471 3.291 14.630 126.012
47 darknet53 0.878 0.423 1.557 580.700
48 efficientnetb0 0.870 0.274 2.761 183.381
49 alexnet 0.822 0.311 2.921 35.722
50 vgg16 1.095 0.616 2.476 312.283
51 vgg19 0.648 0.452 1.683 409.718

As regards the classical approaches based on SVR, three kernels, i.e., linear, Gaussian and
polynomial of order 3, 4, 5, and 6, were tested. The performance results obtained with the approaches
based on SVR are reported in Table 7. In this study, SVR was considered as a benchmark for evaluating
the goodness of DNN-based models.

Table 7. RUL prediction performance obtained with SVR algorithms tested on surface profiles.

Model No. Model Name MAPE RMSE SF TT (Sec)

52 linear 1.073 0.135 1.444 4.667
53 gaussian 1.190 0.182 1.673 4.117
54 polynomial3 1.107 0.165 1.502 5.053
55 polynomial4 0.909 0.124 1.180 5.726
56 polynomial5 0.862 0.113 1.134 5.734
57 polynomial6 0.857 0.120 1.179 5.807

A comprehensive overview of all achieved results is shown in Figure 12. As can be seen from
this figure, the models that performed best are the genetically optimized ones (numbers from no.
1 to 15), while most of the pretrained models (from no. 16 to 51) performed worse than the SVR
algorithms (from no. 52 to 57), with the exception of the pretrained models, googlenet (no. 17), vgg16
(no. 32), vgg19 (no. 33), on maps of normal vectors and the pretrained models, googlenet (no. 35),
alexnet (no. 49), and vgg19 (no. 51), on depth maps.

Figure 12 also reports training times (TTs) of genetically optimized and SVR-based models and
FTTs of pretrained models, revealing on average longer times for the pretrained models (from no. 18
to 51), on average shorter times for the genetically optimized models (from no. 1 to 15), and very
short times for the SVR models (from no. 52 to 57). Note that, to facilitate reading, the numbering
reported on the x-axis in Figure 12 matches the model numbers reported in the first column of the
tables from Tables 1–9, for a total of 57 examined models.
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Figure 12. Performance measures (left y-axis) and TTs/FTTs (right y-axis) of all evaluated models.

Table 8. Network configuration of genetically optimized single-head DNN architectures.

Model No. Model Name Network Architecture Parameters (106)

1 go4normal

S = (29,25,19,17)

1.39
N = (32,32,32,32)

P = (0,0,0,0)
ILR = 0.0059
M = 0.8634

2 go5normal

S = (5,7,19,23,29)

4.95
N = (32,32,32,64,64)

P = (1,0,0,0,0)
ILR = 0.0068
M = 0.8049

3 go6normal

S = (29,25,23,19,11,7)

1.72
N = (16,32,32,32,64,64)

P = (1,1,1,1,0,0)
ILR = 0.0047
M = 0.7572

4 go4depth

S = (29,23,21,15)

0.347
N = (16,16,16,16)

P = (1,1,1,1)
ILR = 0.0074
M = 0.6636

5 go5depth

S = (29,27,15,11,3)

1.19
N = (32,32,32,32,32)

P = (1,1,1,0,0)
ILR = 0.0054
M = 0.6893

6 go6depth

S = (3,5,15,21,23,27)

7.93
N = (32,64,64,64,64,64)

P = (1,0,0,0,0,0)
ILR = 0.0077
M = 0.7702
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Table 9. Network configuration of genetically optimized double-head DNN architectures.

Model No. Model Name Network Architecture Parameters (106)

7 go4+4

S1 = (5,15,21,29),
S2 = (29,27,25,17)
N1 = (16,16,16,32),
N2 = (16,16,16,16)

P1 = (1,1,1,1),
P2 = (1,1,1,1)

d1 = 0.6791, d2 = 0.2646
ILR = 0.0086
M = 0.6499

1.06

8 go4+5

S1 = (27,23,19,3),
S2 = (29,25,23,13,7)
N1 = (32,32,32,32),

N2 = (16,64,64,64,64)
P1 = (1,0,0,0),

P2 = (0,0,0,0,0)
d1 = 0.2452, d2 = 0.2494

ILR = 0.0084
M = 0.5046

4.73

9 go4+6

S1 = (5,23,27,29),
S2 = (27,25,23,17,13,9)

N1 = (16,32,32,32),
N2 = (16,16,16,32,64,64)

P1 = (1,0,0,0),
P2 = (0,0,0,0,0,0)

d1 = 0.2659, d2 = 0.4718
ILR = 0.0069
M = 0.6599

7.76

10 go5+4

S1 = (27,25,23,21,17),
S2 = (29,25,11,5)

N1 = (16,32,32,32,64),
N2 = (32,32,32,32)

P1 = (0,0,0,0,0),
P2 = (0,0,0,0)

d1 = 0.598, d1 = 0.282
ILR = 0.008
M = 0.804

2.81

11 go5+5

S1 = (25,21,19,15,7),
S2 = (29,21,15,13,3)

N1 = (64,64,64,64,64),
N2 = (16,32,32,64,64)

P1 = (1,1,1,0,0),
P2 = (0,0,0,0,0)

d1 = 0.1296, d2 = 0.1075
ILR = 0.0089
M = 0.4570

5.41

12 go5+6

S1 = (9,11,13,25,27),
S2 = (7,11,17,19,21,27)
N1 = (16,16,32,64,64),

N2 = (16,32,64,64,64,64)
P1 = (1,0,0,0,0),

P2 = (0,0,0,0,0,0)
d1 = 0.425, d1 = 0.355

ILR = 0.006
M = 0.464

11.32
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Table 9. Cont.

Model No. Model Name Network Architecture Parameters (106)

13 go6+4

S1 = (5,15,19,21,23,29),
S2 = (11,17,19,25)

N1 = (16,16,32,32,32,32),
N2 = (16,16,32,32)
P1 = (1,0,0,0,0,0),

P2 = (1,1,0,0)
d1 = 0.7385, d2 = 0.5250

ILR = 0.0039
M = 0.1515

3.00

14 go6+5

S1 = (29,27,19,17,13,5),
S2 = (7,17,21,27,29)

N1 = (64,64,64,64,64,64),
N2 = (16,32,32,32,32)

P1 = (0,0,0,0,0,0),
P2 = (1,0,0,0,0)

d1 = 0.8581, d2 = 0.5764
ILR = 0.0074
M = 0.5507

8.82

15 go6+6

S1 = (3,13,15,21,25,29),
S2 = (3,11,13,17,21,25)

N1 = (16,16,16,32,64,64),
N2 = (16,16,64,64,64,64)

P1 = (1,0,0,0,0,0),
P2 = (1,0,0,0,0,0)

d1 = 0.7867, d2 = 0.6495
ILR = 0.0046
M = 0.6290

10.81

Finally, the network configurations of genetically optimized single- and double-head
DNN architectures are reported in Tables 8 and 9, respectively. The reported parameters
refer to best-fit models resulting from the genetic optimization process. The last columns
show the number of learned parameters (learnables) of each architecture. The genetic
optimization process lasted an average of 53 h for each single-head architecture and
approximately 632 h for each dual-head architecture. The total duration of the genetic
optimization process was approximately 250 days on a computer system equipped with
a graphics processing unit (GPU) and configured as follows: Intel® Core™ i7-5820K CPU
@ 3.30 GHz, 16 GB DRAM, and NVIDIA GeForce GTX TITAN X GPU (Maxwell family)
with 12 GB GRAM.

5. Discussion

The use of profilometric scanning sensors allows surface deformations to be appreci-
ated with micrometric precision in the form of 3D point clouds. On the other hand, the
organization of 3D point clouds into bidimensional image-like maps, as proposed in this
study, enables us to make the most of the potential of CNN-based DNN architectures,
originally designed to process image data. Furthermore, in the case of RUL depending
on surface deformations, two-dimensional maps offer the advantage of representing the
state of system (i.e., punch tool in this study) deterioration in a cumulative way. Therefore,
under such conditions, the RUL can be reliably estimated from a single image, that is from
a single depth or normal map.

Pretrained networks with transfer learning are advantageous since they allow small
training data sets to be dealt with and the often-cumbersome process of generating problem-
specific networks to be overcome. However, they are not always suitable, especially when
data distributions are very dissimilar between source and target domains.
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The definition of the most suitable DNN architecture for the problem under consider-
ation, however, is not an easy task. In general, it involves identifying various configuration
parameters (hyperparameters) through a trial-and-error process. The transfer learning
method offers the indisputable advantage of simplifying this often cumbersome process of
generating ad-hoc DNN architectures. In addition, pretrained models require the use of
a small amount of training data for fine-tuning, allowing the additional problem of reduced
amount of training data to be addressed [35].

Keeping in mind the aforementioned advantages, in this study, the transfer learning
technique was evaluated in correspondence with the main pretrained models, as reported
in Table 1, with both depth and normal maps. However, the performance results ob-
tained were generally lower than the more traditional SVR approach taken as a reference
(Figure 12). Only the pretrained models googlenet (MAPE equal to 0.452 with normal maps
and 0.416 with depth maps), vgg16 (MAPE = 0.615 with normal maps), vgg19 (MAPE
equal to 0.698 with normal maps and 0.648 with depth maps), and alexnet (MAPE = 0.822
with depth maps) performed slightly better than the SVR approach (MAPE = 0.857 with
polynomial kernel of order 6), but requiring on average 35 times more time for fine-tuning
than SVR requires for training.

In this study, the problem of defining ad-hoc (problem-specific) architectures was ad-
dressed by resorting to genetic optimization. In this way, a total amount of 15 architectures
were optimized, of which 6 were single-headed (three for each type of map), shown in
Tables 8 and 9 double-headed, as shown in Table 9. The performance results reported in
Figure 12 (see the magnification in the upper left corner) confirm the superiority of the
genetically optimized architectures over the pretrained ones. The drop in performance
found with the transfer learning method can be explained by the fact that feature distribu-
tions across the two domains, source and target, were very different from each other. The
pretrained models (Table 1), in fact, were pretrained using mostly “natural” images, while
the images proposed in this study were obtained by mapping 3D point clouds in order
to represent depths and normal vectors to the punch tool surface, resulting in “artificial”
images with false colors.

Among the genetically optimized architectures, the single-headed models performed
better than double-headed ones, with a slight predominance of models trained and tested
on depth maps over those evaluated with normal maps. These results indicate that the use
of two-headed models is not beneficial, and it is probably explained by poor correlations
between features extracted from the two different types of maps, depth and normal, in
representing deformation-induced degradation.

The results achieved in this study are in line with the state of the art in the literature.
In particular, regarding CNN-based studies with image datasets; one of the best results
presented in the literature was reported by Wu et al. [34]. In their study, the authors
reported an average MAPE of 0.0476, which, however, was obtained with a very large data
set consisting of 8400 images, while the TT was between 1.8 and 32.6 h (the authors have not
provided specifications of used computing system). On the other hand, in the case of small
data sets, one of the best results reported in the literature is that of Marei et al. [35] who
achieved an average RMSE of 0.1654 with the Resnet18 pretrained model on a data set of
327 images, requiring 3358.4 s for fine-tuning on an NVIDIA GPU with 8GB Ram. However,
it should be kept in mind that images of deteriorating components or parts of them (i.e., real
world images, often obtained under a microscope and by stopping the machining system)
were used in those studies. Therefore, the adaptation (or transfer learning) of pre-existing
(or pretrained) CNN models was feasible, considering the similarity of feature distributions
between domains. In the case, instead, of data sets consisting of time-series sensor data,
Mo et al. [39] reported an average RMSE of 11.28 with the NASA C-MAPSS data set.
A comparison between the results achieved in this study and the best results reported in
the related literature is provided in Table 10.
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Table 10. Comparison between related studies and this study.

Study Dataset Degradation Approach MAPE RMSE TT/FTT

Wu et al. [32] 8400 camera images Tool wear Transfer learning 0.0476 - 2 ÷ 333 h

Marei et al. [33] 327 camera images Tool wear Transfer learning - 0.1654 3358 s

Mo et al. [37] 21 time series
(engine sensors) Turbofan engine Genetically optimized - 11.28 -

Ren et al. [19] 15 time series
(vibration sensor) Bearing wear Manually engineered - 0.2 -

This study 2014 scans Punch tool Transfer learning 0.416 0.112 19 ÷ 916 s

This study 2014 scans Punch tool Genetically optimized 0.058 0.035 13 ÷ 125 s

The proposed system has been conceived to be versatile, working in a completely
automatic way. There is no need to disassemble the punch tool or stop the punch machine
to capture scans. The used 3D sensor, attached to the punching machine, scans at regular
intervals of pressing stops. Furthermore, it is important to note that both depths, normal
maps and longitudinal profiles, allow the punch tool RUL to be estimated in a single shot,
i.e., a single profile or map accounts for all deformations that have occurred up to that
moment. This allows the processing of long sequences of profiles or maps to be avoided,
reducing computational load and network architecture complexity.

Although the optimization process takes a long time, it only needs to be performed
once for the type of punch tool used. In this study, three different punch tools were tested,
characterized by different deformation modes, using the same network architectures.
An aspect that deserves further investigation concerns the verification of whether the
proposed architectures are also valid for predicting the RUL of other systems than the
studied punch tool, but whose degradation still depends on the work surface deformation.

6. Conclusions

In this study, a DNN-based RUL prediction framework for a punch tool, whose deteri-
oration is due to surface deformation, was investigated. The RUL prediction is part of PHM
maintenance strategies, in which the continuous monitoring of equipment health conditions
allows the degradation state to be predicted, improving strategic maintenance decisions
and thus avoiding late or too premature corrective actions. In the case of deformation-
related degradations represented by DNVMs, the findings of this research show that the
development of ad-hoc DNN models, driven by genetic optimization, provides better
performance than pretrained models, indicating that the use of “transfer learning” is not
always the best route.

The main results achieved are threefold, as indicated below. Firstly, the surface
deformation of the punch tool was represented through the definition of DNVMs, obtained
from point clouds of 3D scans. Secondly, the RUL prediction was estimated considering
the main pretrained models, obtaining lower or slightly higher performance than SVR-
based classic ML, due to the different distribution of features between the transfer learning
domains. Thirdly, genetically optimized architectures based on a variable number of CNN
blocks, both single- and double-headed, were generated, achieving superior performance
to pretrained models and in line with the state of the art in the literature. Furthermore, the
advantage of the proposed solution lies in its non-invasiveness and continuous operation.
In fact, the monitoring is carried out by means of a 3D scan sensor placed outside the
machinery, whose high degree of precision allows point clouds to be captured without
stopping the punching process.

Ongoing and future research focuses on experimentation of DNVMs in combination
with genetically optimized DNN architectures for the RUL prediction of other systems
whose deterioration depends on surface deformations. More specifically, mechanical
systems having geometry and material different from those of the punch tool will be the
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object of future investigations. This will allow verification of the degree of dependence of
the DNN architecture on the characteristics of the mechanical system subject to degradation.
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