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Abstract: This paper proposes a cloud-based software architecture for fully automated point-of-care
molecular diagnostic devices. The target system operates a cartridge consisting of an extraction
body for DNA extraction and a PCR chip for amplification and fluorescence detection. To facilitate
control and monitoring via the cloud, a socket server was employed for fundamental molecular
diagnostic functions such as DNA extraction, amplification, and fluorescence detection. The user
interface for experimental control and monitoring was constructed with the RESTful application
programming interface, allowing access from the terminal device, edge, and cloud. Furthermore,
it can also be accessed through any web-based user interface on smart computing devices such as
smart phones or tablets. An emulator with the proposed software architecture was fabricated to
validate successful operation.

Keywords: fully automated molecular diagnostic system; point-of-care; cloud-based; web-based
user interface

1. Introduction

Infectious diseases are a major burden to global health and the economy, especially
in developing countries [1–5]. Despite the significant efforts to enhance global health
along with the advancement in health care technologies, reducing the number of deaths
occurring annually in resource-limited settings remains a challenge [6]. Viruses such as
Zika, Chikungunya, Dengue Fever, Malaria, HIV, Ebola, COVID-19, and other emerging
pathogens are of significant threat, in particular owing to their high infectivity and lethality.
To prevent global spread of such highly contagious pathogens, early diagnosis through
consistent monitoring is crucial. Furthermore, a diagnostic equipment to identify specific
pathogens and its strain is required [7]. Deploying point-of-care (POC) diagnostic equip-
ment to developing countries can help overcome the economic burden that rises from
scarce resources, which will enhance the medical care.

In general, viral culture, serological diagnosis, and nucleic acid detection are used for
POC diagnosis [2,8,9]. Viral culture diagnosis is difficult to conduct in resource-limited
settings since it requires highly skilled professional and expensive equipment with a long
turnaround time for the results. Similarly, serological cultures are also restricted since
it requires a complex antibody engineering step. Nucleic acid diagnosis, especially the
polymerase chain reaction (PCR), is favored over the other two methods owing to the
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accurate and relatively rapid diagnosis time. Through PCR, the unique target sequence of
each pathogen in the ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) is replicated
to a billion fold [10,11]. Therefore, PCR provides the most accurate results, making it the
gold standard in detecting pathogenic markers. The COVID-19 pandemic outbreak further
highlights the advantages of PCR, where real-time PCR (qPCR), which detects fluorescence
signals during amplification, is used as the official diagnosis method [12,13]. However,
commercially available qPCR equipment is yet to be portable and cost-effective, requiring
professionals to transport the device. Therefore, patient samples are transported to central
laboratories or hospitals, prolonging the turnaround time and restricting the ability to be
used at POC in resource-limited settings [2,14–19]. In addition, POC qPCR devices can
not only benefit developing countries, but also in any emergency rooms. For example,
patients admitted to emergency rooms suspecting a Gram-negative bacteria infection,
respiratory diseases, and tuberculosis require rapid, on-site diagnosis to determine the
appropriate antibiotic and treatment [20]. In some cases of influenza, Tamiflu needs to be
administered within 48 h of observing the first symptom [2,21]. Evidently, the development
of portable, user-friendly, and cost-effective qPCR equipment is critical in promoting global
health [16,22].

The World Health Organization (WHO) set the criteria ‘ASSURED’ for ideal POC
diagnostic devices [23,24]. To meet these criteria, recent studies working on POC devices
aim to develop a device that is Affordable, Sensitive, Specific, User-friendly, Rapid and
robust, Equipment-free, and Deliverable (ASSURED). This is represented in the device
by being cost-effective, having portability, requiring less sample volume, and producing
rapid results [25–27]. Another factor that is studied for POC devices is the automation of
the process from DNA extraction to PCR and detection, which will achieve the goal of
sample-to-answer [28].

The transformation of biomedical instrument platforms to big data platforms is specu-
lated from the example of the platform change that occurred following the expansion of
the graphical user interface (GUI). The implementation of GUI in devices that started in
the early 1990s has now also spread to embedded systems [29–33]. This innovation led to
the increase in research and funding towards improving the user interface instead of the
performance enhancement of the equipment. Especially, a strong hardware and software
platform and numerous programming personnel are required to maintain the performance
of the GUI as well as meet the demand of the users. To address this issue, many embedded
systems divide the system into a host-local structure, using standard computing devices
such as a common personal computer (PC) as the host. With the rapid advancement in
smart devices since the 2000s, it is speculated that the host will soon be smart devices, and
the standard link between the host and local systems will be achieved through wireless
internet (WiFi) or Bluetooth.

Current biomedical equipment can be connected to the cloud to construct a big data
platform, in which a top-level application will extract the data to be uploaded to the cloud.
However, this structure has limitations in simultaneous monitoring and control between
the data and the equipment itself as seen in ‘industrial internet of things.’ Considering
the product lifetime management, employing a cloud server for equipment maintenance,
aging analysis, and user interaction will be much simpler if the abstraction layer from the
hardware to the end software is in a distributed structure.

This paper proposes a cloud-based software architecture for an automated POC-qPCR
device considering all the factors aforementioned that emerged from the advancement in
technology. The distributed structure was selected instead of the top-down structure that is
observed in current equipment, and the communication between distributed functions was
achieved using a network to allow access to detailed functions via the cloud. In addition,
the representation state transfer (REST) application programming interface (API) server
was implemented to allow web-based GUI access. The nucleic acid diagnosis process was
divided into DNA extraction and qPCR, which can be controlled and monitored separately
via the cloud. The qPCR control and monitoring includes both the PCR amplification and
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fluorescence detection as in commercial qPCR equipment. An emulator was manufactured
to evaluate the applicability of the proposed software architecture. Functional verification
was performed through individual and simultaneous access by implementing not only
a web-based GUI that performs full automatic molecular diagnosis, but also a GUI that
monitors and controls extraction and that for qPCR functions. The experimental results
confirmed that the software architecture proposed in this paper can be used to successfully
control the entire molecular diagnostic process including DNA extraction and qPCR, as
well as to simultaneously monitor the operation in real time.

2. Materials and Methods
2.1. Target Hardware Architecture
2.1.1. Microfluidic Cartridge

The cloud-based software architecture was built to automate DNA extraction and
qPCR using the cartridge shown in Figure 1 (LabGeniusTM Cartridge, Biomedux, Suwon,
Korea). The cartridge consists of an extraction body that extracts DNA with magnetic
beads, and a PCR chip where amplification and fluorescence detection occur (Figure 1a). It
has already been shown in many pieces of research that magnetic bead DNA extraction
results in higher concentration and less contamination in the extracted DNA compared
to the method using silica membranes [34]. The cartridge has several isolated chambers
that contains reagents necessary for each step of magnetic bead DNA extraction, which
involves cell lysis, DNA adsorption, washing, and DNA desorption (Figure 1b). Once the
patient sample is loaded in the sample chamber, the sample will be transported to each
chamber by the rotating valve at the bottom of the cartridge and the syringe in the middle
for DNA extraction (Figure 1c). For full automation of this cartridge, control and operation
of the syringe stepper motor, rotation valve stepper motor, and the magnet position servo
motor is required.

The extracted DNA is then transported to the PCR reaction chamber of the PCR chip
through the microchannels between the two bodies. The structure of the PCR chip has
been previously reported [35]. Briefly, the reaction chamber is made of polycarbonate
and attached to the PCB substrate with a heater pattern and thermistor (Figure 1d). For
a successful amplification, temperature monitoring via the thermistor and operating the
heater pattern and fan during thermal cycle is crucial.

As the PCR cycle starts, the fluorescence is detected concurrently from the transparent
side of the PCR chip as can be seen in Figure 1a. The fluorescence detection system consists
of four LEDs and excitation filters closely placed at 45◦ to the reaction chamber, and an
objective lens, an emission filter wheel, and an ocular lens that is aligned to direct the
fluorescence to a photodiode. In fluorescence detection, the software needs to be able to
operate the filter wheel to correctly position the emission filter, turn on the LED, and read
the photodiode in sequential order.

2.1.2. Driving System for the Cartridge

The overall system structure of the target hardware is illustrated in Figure 2. A
Raspberry Pi computer was selected for the single board computer (SBC), which is the
main controller in this system, for ease of maintenance and versatility. In particular, the
Pi3A+ model was chosen considering the size, power, processing speed, and performance.
A separate microcontroller (PIC18F4553, Microchip technology Inc., Chandler, AZ, USA)
was incorporated to control the temperature of the PCR chip since frequent control of 2 ms
is required.

The motors involved in DNA extraction and the emission filter wheel for fluorescence
detection was controlled directly by the SBC. In detail, the syringe, rotation valve, and the
filter wheel stepper motor were controlled by a motion controller (L6470, STMicroelectron-
ics, Geneva, Switzerland) wired to the SBC with an Inter-Integrated Circuit (I2C) interface.
Because this motion controller only provides a Serial Peripheral Interface (SPI), the protocol
was converted using an I2C-bus to SPI bridge chip (SC18IS602B, NXP Semiconductors,
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Eindhoven, The Netherlands). By doing so, the number of wires required can be reduced
from four (SPI) to two (I2C). The magnet servo motor was wired directly to the SBC since it
is controlled only with a pulse width modulation (PWM) signal.

The cooling and heating of the PCR chip was achieved by controlling the fan and heater
pattern on the PCB substrate with PWM through the general purpose input output (GPIO)
port of the microcontroller (Figure 3). The selected microcontroller is able to measure
the resistance of the thermistor and also read the photodiode output since it includes a
12 bit analog to digital converter (ADC). Turning the excitation LEDs on and off was also
controlled by this microcontroller to maintain consistency between fluorescence detection
and excitation. The microcontroller measures the thermistor’s resistance and converts
it to temperature every 2 ms as commanded by the SBC, then performs proportional–
integral–derivative (PID) temperature control using the heater pattern and a fan. When
the SBC commands the return of the photodiode value at a set fluorescence filter, the
microcontroller turns on the respective LED and reads the photodiode value to return.
The SBC and microcontroller is connected by a universal serial bus (USB), exchanging
information every 50 ms using a 64 byte IN/OUT packet.
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Figure 4. Software architecture block diagram. 

Figure 3. Schematic of the microcontroller and its peripheral. The connection between the microcon-
troller and excitation LEDs and PCR chip is also illustrated.

2.2. Software Architecture

Figure 4 shows the block diagram of the proposed software architecture. Operation of
hardware related to DNA extraction including syringe and rotation valve movement and
magnet positioning is managed by the extractor controller, whereas hardware related to
qPCR is managed by the PCR controller. Both modules were constructed as a zero message
queue (ZMQ) socket server, allowing the main server to access from any nodes in the
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cloud hierarchy. In this study, the main server is in the SBC, which can be regarded as the
terminal device in the cloud hierarchy. The protocol manager creates, reads, updates, and
deletes the extraction and PCR protocols in the SQLite database (DB) according to the user
interface. The extraction and PCR interface reads and executes the protocol sent by the
protocol manager line by line. The hardware controllers and the protocol manager were
established with the REST-API as shown in the ‘main server’ block in Figure 4.
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The Python Flask web server was used for the user interface, and the front-end was
divided with a React framework. The web server receives the user request and controls the
protocol manager, and the PCR and extractor interfaces through REST-API. The extractor
interface requests a service to the extractor controller, which operates the magnet servo,
rotation valve motor, and syringe motor. Similarly, the PCR interface will request a service
to the PCR controller, which then controls the microcontroller and L6470 connected to the
PCR chip and filter wheel, respectively.

2.3. Operation Example

The interaction between the modules during DNA extraction and PCR detection is
elucidated in this section. Table 1 displays the set of the high-level commands by means
of which the main server and extractor controller communicate during DNA extraction,
where each command can have a maximum of two parameters. The following explains only
the commands related to the operation example shown in Figure 5. The ‘home’ command
moves the rotation valve and syringe to the home position. The ‘goto’ command receives
the first parameter, the integer ‘n’, and transports the sample to the ‘n’th chamber of the
extraction body. For the ‘pumping’ command, the first parameter can be ‘sup’, ‘sdown’,
‘up’, or ‘down’, which commands the syringe to slowly go up, slowly go down, go up
at normal speed, and go down at normal speed, respectively. Stopping the ‘pumping’
command is determined by the second parameter, where if it is an integer ‘n’ it commands
to stop at n milliliters, and ‘full’ commands to pull up or push down the syringe all the way.

Figure 5 shows an example of a simple interaction scenario. The extractor interface
reads the first line of the extraction protocol ‘home’ and transmits the command to the
extractor controller. The extractor interface will only proceed to the next line after the
command ‘home’ has been completely processed. Since the second line starts with ‘%’, the
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extractor interface will skip to the third line ‘goto 5’. The process is repeated line by line
until the end of the protocol.

Table 1. High-level command set for DNA extraction.

Command Param1 Param2

home
waiting n

goto n
pumping sup/sdown/up/down n or full
magnet on/off

getStatus
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Next, we observe the interaction between modules during qPCR. Each row of the
PCR protocol shown in Table 2 can be written as a unit action A(i), represented by a
3-component tuple of (Label, Temperature, Duration). Then, the protocol can be regarded
as the sequence of the unit action Q as follows;

Q = {A(i)|A(i) = (L, T, D), i = 1 ∼ n} (1)

where n is the number of the actions, that is, the rows. The unit action label ‘SHOT’
commands to measure the fluorescence with the photodiode, and ‘GOTO’ commands to
jump D times to a unit action with the label T. Defining the unit action as such allows a
uniform equation for the sequence Q, as in Equation (1). The component L for each unit
action can be a positive integer, ‘GOTO’, or ‘SHOT’. T can either be a temperature or a
label, and D can be time in seconds or quantity of jumps. The PCR interface executes the
sequence Q as shown in the Algorithm 1 ‘RealTimePCRproc’ procedure.

The sixth line of the procedure depicts what happens when the first ‘Label’ compo-
nent is ‘SHOT’, where the Shot() function returns the fluorescence intensity through the
photodiode. Lines 8 to 13 instructs the operation when the ‘Label’ component is ‘GOTO’.
Here, ‘Duration’ is the number of jumps commanding a jump to A(i).T unless the value
is ‘0’. Unit action A(i).D decreases by 1 every jump, and the operation moves on to the
next unit action once this values reaches zero. Lines 15 and 16 orders what happens when
‘Label’ component is neither ‘GOTO’ nor ‘SHOT.’ The 15th line instructs to wait until
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the temperature difference between the target (Tc) and chip temperature is less than the
predefined threshold ε ◦C. The ‘SecTimer(A(i).D)’ function at the 16th line initializes the
timer as A(i).D seconds and returns the decremented time every second.

Algorithm 1 RealTimePCRproc.

1.n = no. of lines in the protocol
2.i = 1
3. do while i <= n
4. fetch A(i)
5. if A(i).L == SHOT
6. wait shot () % read photodiode
7. else if A(i).L == GOTO
8. if A(i).D != 0
9. i = A(i).T % label where jump to
10. A(i).T– % no. of jumps
11. else
12. i++
13. endif
14. else
15. Send target temperature Tc to PCR controller and wait until |Tc-A(i).T| < ε

16. wait SecTimer(A(i).D) == 0
17. endif

Table 2. PCR protocol example.

Label Temperature (◦C) Duration (s)

1 95 30
2 95 30
3 55 30
4 72 30

SHOT
GOTO 2 39

5 72 180

Figure 6 illustrates the interaction scenario in which the PCR interface, the PCR
controller, and the web GUI module communicate every 100 ms. The PCR interface
requests the status of the PCR controller and stores the information every 100 ms. The web
GUI sends an http request to the PCR interface every 100 ms independently, and updates
the web GUI with the status received from the PCR controller.
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The interaction scenario during the whole molecular diagnosis, which includes DNA
extraction, PCR, and the detection, is shown in Figure 7 sequentially. The extraction
protocol starts by the user clicking the start button at the web GUI, which will send a
request to the main server by REST-API. When the main server receives the request, it will
read the stored protocol and start communicating with the controllers. The main server
and extractor controller communicate every 100 ms until the extraction protocol is done,
at which point the main server will start communicating with the PCR controller every
100 ms. During this process, the main server will send the ‘Run’ command and unit action
of the PCR protocol sequentially to the PCR controller until PCR is complete.
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In this software architecture, it is possible to pause/stop while the protocol is running
even though it is not shown in Figure 7. The user can request to stop the operation through
the main GUI, which will transmit the request to the main server through the stop API.
When the main server receives this request, it will send the ‘stop’ command to whichever
controller it was communicating with at the moment.

Figure 8 shows the protocol manager interaction scenario. When the web GUI requests
a list from the protocol manager, it will read the protocol list from the database and upload
to the web GUI. To create a new protocol, the user requests a ‘new’ request through the
REST-API from the web GUI and sends the new protocol data. The new protocol data
received is then saved at the SQLite DB by the protocol manager. Updating and deleting
an existing protocol is also requested through the REST-API, where both the protocol data
and index is sent to the protocol manager. It will locate the protocol with the same index
from the SQLite DB and either update or delete the protocol according to the request sent.
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2.4. Emulator

An emulator was constructed to evaluate the performance of the proposed software
architecture (Figure 9). The ‘SBC module’ at the left bottom of the figure shows the
Raspberry Pi 3A+ and the hat board with power and I2C connectors. The ‘motion controller
module’ is linked to the SBC hat board with an I2C cable consisting of three pairs of an
I2C-bus to SPI bridge chip and a motion controller, where one of the motion controllers is
connected to a stepper motor that emulates all of the syringe, rotation valve, and filter wheel
motor. An RC servo motor was used as the ‘servo motor’ in this emulator and operates by
accessing the magnet servo. To emulate the PCR and detection operation shown in Figure 3,
ICP12-USB stick (iCircuit Technologies, www.piccircuit.com) denoted as ‘microcontroller
module’ was selected. This has the PIC18F2553 (Microchip technology Inc., Chandler, AZ,
USA), which only differs in the number of GPIO ports with the microcontroller employed
in the target system. The firmware is exactly the same as that of the microcontroller of
the target system, but is programmed to compile as an emulator mode and generates the
photodiode and temperature to be sent to the PCR controller, disregarding the ADC.

2.5. Validation of the Proposed System Architecture

Three types of web GUIs were established to operate the emulator to demonstrate the
validity of the proposed software architecture. A web GUI was constructed to evaluate
the whole molecular diagnostic process with the protocol for detection of Chlamydia tra-
chomatis (CT) and Neisseria gonorrhoeae (NG). We made separate web GUIs for the extractor
controller and the PCR controller to make sure there were no problems with cloud control
and monitoring.

www.piccircuit.com
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3. Results
3.1. Whole Molecular Diagnostic Process

To validate the proposed software architecture for the whole molecular diagnostic
process, a three-page web GUI was made using React library and Bootstrap framework.
Clicking the ‘setup’ button on the main page that manages the overall protocol will redirect
the page to the setup page. From there, users can go to the editor page by clicking the ‘add’
or ‘edit’ button.

The main page consists of six groups with bootstrap components and one plot
(Figure 10). The ‘Connection’ group includes html label elements for the serial number of
the target hardware and the connection status. The ‘Progress’ group contains the name of
the protocol, status of operation, and remaining time until the protocol is complete. The
‘Device’ group has a label element to provide the current temperature of the PCR chip.
The ‘Protocol’ group includes a select element with the list of stored protocols, a button
element to start or stop the operation, and another button element to go to the setup page.
The ‘Cq Value’ group has the image button element that allows the users to select which
fluorescence value to be shown in on the plot, and a label element that displays the cycle
quantification value (Cq) after PCR is complete. Finally, the ‘Result’ group consists of a
table element showing the fluorescence name and positive/negative result of the PCR. The
plot is shown as a 2D plot, where the x-axis of the plot represents the PCR cycle, and the
y-axis represents the fluorescence intensity received from the PCR controller.
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At the setup page, the users will see the ‘Protocol Manager’ and ‘History’ group. The
‘Protocol Manager’ consists of the data list element that shows the list of protocols, and a
button element ‘Add’, ‘Edit’, and ‘Delete’ to update the protocols. The ‘History’ group is
shown in a table element that lists the records of protocols that were run previously.

The editor page has the ‘Filter (Label, CT)’, ‘PCR Protocol’, and ‘Extractor Protocol’
text areas, ‘Protocol name’ input element to enter the protocol name, ‘Save’ and ‘Cancel’
button elements. ‘Filter (Label, CT)’ group has input elements to enter the target DNA
names and set the cycle thresholds for detecting Cq and image button elements to select the
fluorescence dyes to use is displayed. Both the PCR protocol and the extraction protocol
are entered into ‘PCR Protocol’ and ‘Extraction Protocol’ text areas, respectively. ‘Save’
button element is for saving the protocol with the name in ‘Protocol name’ and data in the
‘Filter (Label, CT)’, ’PCR Protocol’, and ‘Extraction Protocol’, and returns the user to the
setup page. The ‘Cancel’ button element returns to the setup page without saving any of
the data that was input.

Using the web GUI and emulator described above, the protocol for multiplex de-
tection of CT and NG is tested. Precise operation of the stepper motor was observed in
the DNA extraction step, and accurate temperature and fluorescence readout from the
microcontroller was displayed during PCR. The 2D plot and the positive/negative table of
the result group shows the emulated diagnostic results. The 2D plot was for the emulated
RFU’s stored in the microcontroller module. As both RFU’s emulate the positive results,
the results for both of CT and NG were positive, as shown in Figure 10b.

3.2. Extractor Controller Monitoring

The extractor monitoring web GUI to evaluate the extractor controller was constructed
using a Vue.js framework to have the ‘Protocol Command’ group to operate DNA extraction,
‘Register’ group that can observe and set the registers of the motion controller, and ‘Motion
test’ group to control the motor. Commands ‘home’, ‘goto’, ‘waiting’, and ‘pumping’ can
be done in the ‘Protocol Command’ group. The ‘Register’ group consists of input elements
to set the register value of the motion controller (L6470) to control the position, speed,
acceleration, and current of the motor. The ‘Motion test’ group has radio button elements
allowing the user to select the motor to be tested between the rotation valve and syringe
motor, and button elements to test basic stepper motor motions such as ‘jog’, ‘home’, ‘go
until’, and ‘move’.

The operation of the extractor controller was investigated using the functions of the
extractor monitoring web GUI for the emulator. The experimental results verified the
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normal operation of the extractor controller over the internet, evidencing the cloud-based
control of the extractor controller.

3.3. PCR Controller Monitoring

Python and a Jupyter notebook were utilized to demonstrate the PCR controller con-
trollability over the internet. Accurate temperature and remaining time were displayed
by the PCR controller while running the example PCR protocol with four color multiplex.
Precise movement of the stepper motor to the four respective filters and back to the home
position was observed while running ‘SHOT’ command in the protocol. Furthermore,
successful monitoring of the protocol progress including current chip temperature, flu-
orescence intensity, cycle number, and remaining time was achieved when running the
molecular diagnostic protocol. The experimental results verified the normal operation of
the PCR controller over the internet.

4. Discussion

This paper proposes a cloud-based software architecture for a fully automated POC
molecular diagnostic system. The two fundamental steps of molecular diagnosis, DNA
extraction and qPCR, were stablished as socket servers to allow easy access via cloud. The
management and operation of the protocol was executed with a REST-API server that can
be accessed at any node of the cloud hierarchy covering the terminal device, edge, and
cloud. Since this server also includes the user interface, users can access the system through
a web-based UI on any smart computing device. Note that the web-based user interfaces
are very helpful for close collaboration between UX designers and software developers
because basic functional development and design development are separated.

The proposed software architecture holds high potential of being integrated into
various biomedical instruments since it can be used to perform any physical sensing such
as temperature and fluorescence, and also manages controls that standard actuators can do
such as controlling the position, temperature, and fluidic quantity. Furthermore, additional
modification can lead to the implementation of this cloud-based software architecture to
various cyber-physical systems in other fields. The architecture proposed in this paper will
be ported to the target system currently under development, and it is expected that it will
be more refined and verified in this porting stage.

Raspberry Pi was determined to be the main controller system among the many open
platforms considering the user population. However, once the equipment is integrated to
the cloud and only functions for sensors and actuators, a microcontroller can replace the
Raspberry Pi (SBC). In addition, given that the proposed software architecture is written
with Python, we speculate that it can easily be employed to any equipment with a rapidly
advancing WiFi microcontrollers programmable in Python.
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