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Abstract: Water environmental Internet of Things (IoT) system, which is composed of multiple moni-
toring points equipped with various water quality IoT devices, provides the possibility for accurate
water quality prediction. In the same water area, water flows and exchanges between multiple moni-
toring points, resulting in an adjacency effect in the water quality information. However, traditional
water quality prediction methods only use the water quality information of one monitoring point,
ignoring the information of nearby monitoring points. In this paper, we propose a water quality
prediction method based on multi-source transfer learning for a water environmental IoT system,
in order to effectively use the water quality information of nearby monitoring points to improve
the prediction accuracy. First, a water quality prediction framework based on multi-source transfer
learning is constructed. Specifically, the common features in water quality samples of multiple nearby
monitoring points and target monitoring points are extracted and then aligned. According to the
aligned features of water quality samples, the water quality prediction models based on an echo
state network at multiple nearby monitoring points are established with distributed computing, and
then the prediction results of distributed water quality prediction models are integrated. Second,
the prediction parameters of multi-source transfer learning are optimized. Specifically, the back
propagates population deviation based on multiple iterations, reducing the feature alignment bias
and the model alignment bias to improve the prediction accuracy. Finally, the proposed method is
applied in the actual water quality dataset of Hong Kong. The experimental results demonstrate
that the proposed method can make full use of the water quality information of multiple nearby
monitoring points to train several water quality prediction models and reduce the prediction bias.

Keywords: water quality prediction; multi-source transfer learning; echo state network; adjacency
effect; distributed computing; environmental IoT system

1. Introduction

As an important part of the natural environment, water environment plays a vital
role in human life. With the rapid development of industry, the discharge of industrial
wastewater has increased day by day [1], leading to the deterioration of water environment,
and water environment protection is facing severe challenges. Accurate water quality pre-
diction is the basis for water environment protection. The monitoring points are equipped
with various water quality Internet of Things (IoT) devices to build the water environmen-
tal IoT system [2], which can collect water quality information in real time, making the
prediction of accurate water quality possible.

Traditional methods of water quality prediction can be classified into three types:
regression analysis, grey systems, and neural networks [3]. Water quality prediction
method based on regression analysis is derived from mathematical statistics. It determines
the relationship between the dependent variable and the independent variable through
the analysis of statistical data, and calculates the correlation coefficient through a certain
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algorithm, thereby constructing a regression equation to predict water quality information.
Ratko et al. [4] proposed a water temperature prediction method based on Gaussian
process regression to predict the daily average water temperature of the river. Anja et al. [5]
proposed a water quality prediction method based on partial least square regression
analysis to predict the water quality information of mining wastewater. Mohammad
et al. [6] proposed a prediction method based on M5 model tree and multiple adaptive
regression to predict the daily river flow. Water quality prediction method based on grey
systems regards the water environment system as a grey system. After that, a strong regular
series for water quality prediction is generated by identifying the relationships of system
factors. Zhang et al. [7] constructed a grey prediction model to predict the chemical oxygen
of industrial wastewater. Yang et al. [8] constructed a GM (1,1) model to predict the water
quality information of the lake. Xue et al. [9] constructed a grey prediction model to predict
the mineralization of groundwater. Xiao et al. [10] applied grey theory to construct a model
to predict the affecting factors of water bloom. Water quality prediction method based on
neural networks forms an adaptive nonlinear system through the connection of neurons,
using the neural networks to adaptively learn the trend of water quality information.
With the emergence of cloud computing, edge computing and other technologies [11–13],
neural networks requiring complex computation were gradually applied to water quality
prediction. Dawood et al. [14] constructed an artificial neural network to predict the water
quality information. Zhou et al. [15] proposed a water quality prediction method based on
improved grey relational analysis and long-short term memory (LSTM) neural network
to predict the dissolved oxygen. Dong et al. [16] proposed a water quality prediction
method based on Savitzky-Golay and LSTM to predict the water quality information. Hu
et al. [17] constructed a deep LSTM to predict pH and water temperature. Considering
the temporality and the nonlinearity of water quality information, neural networks have
more advantages and better prediction performance than the other two types of methods
but require a large number of training samples. If the target monitoring point has too few
training samples, the accuracy of water quality prediction will be reduced.

Water flows and exchanges between multiple monitoring points [18] in the same
water area result adjacency effect in their water quality information. The prediction
accuracy of neural networks can be improved if the adjacency effect is used for neural
networks. Traditional transfer learning methods, such as transfer component analysis
(TCA) [19], are usually used for single-source transfer, which can transfer the features
of water quality samples from a single nearby monitoring point to a target monitoring
point [20]. However, TCA does not consider the bias between the features of water quality
samples of multiple nearby monitoring points, which makes it not applicable for the
transfer of water quality samples of multiple nearby monitoring points. Target monitoring
points are often surrounded with multiple nearby monitoring points in practice. Compared
with traditional transfer learning methods, which can only effectively use one source
domain, multi-source transfer learning (MSTL) [21,22] can make full use of multiple source
domains. Therefore, we proposed a water quality prediction framework based on MSTL,
effectively using the water quality information of multiple nearby monitoring points with
distributed computing.

The water quality information changes periodically along with time, so it has the
nature of temporality. By using the temporality, the accuracy of water quality prediction
can be effectively improved. Echo state network (ESN) [23], as an improved model of
recurrent neural network (RNN) [24], retains the information left at the last moment
through the internal connections of reservoir, which can effectively use the temporality.
Moreover, ESN only needs to use the linear regression algorithm to train the output weights,
which can solve the problem of slow convergence speed of traditional RNN. Therefore,
we establish the distributed water quality prediction models based on ESN at multiple
nearby monitoring points in the framework, effectively using the temporality of water
quality information.
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Bias [25] exists not only in the feature alignment of nearby monitoring points and
target monitoring points, but also in the model alignment of the water quality prediction
models at multiple nearby monitoring points. Therefore, we optimize the prediction
parameters of MSTL to improve the prediction accuracy of the models.

In this paper, we propose a water quality prediction method based on MSTL, for
the purpose of making full use of the adjacency effect of water quality information. The
contributions of this paper are listed as follows.

(1) We construct a water quality prediction framework based on MSTL. In particular,
the common features of water quality samples of multiple nearby monitoring points
and the target monitoring point are extracted and then aligned. Afterwards, accord-
ing to the aligned features of water quality samples, the water quality prediction
models based on ESN at multiple nearby monitoring points are established with
distributed computing, and then the prediction results of distributed water quality
prediction models are integrated. This framework successfully solves the problem of
an insufficient number of training samples of the target monitoring point.

(2) We optimize the prediction parameters of MSTL. In particular, the back propagates
the population deviation based on multiple iterations and can reduce the feature
alignment bias and the model alignment bias to improve the prediction accuracy of
the models.

(3) We perform experiments in the actual water quality dataset of Hong Kong. The
experimental results demonstrate that the proposed method can train multiple water
quality prediction models by using the adjacency effect, and thus reduce the prediction
bias and improve the prediction accuracy compared with other similar methods.

The rest of this paper is organized as follows. Section 2 gives the details of the
proposed method, including the water quality prediction framework based on MSTL, the
prediction parameters optimization of MSTL, and the overall process. Section 3 gives the
experimental results and analyses. Section 4 is the summary of this paper.

2. Methods
2.1. Water Quality Prediction Framework Based on MSTL

We construct a water quality prediction framework based on MSTL, as shown in
Figure 1. First, we use the feature extraction network based on the residual network [26] to
extract the water quality features of nearby monitoring points and the target monitoring
point into the same feature space, to obtain the common features of water quality samples
of nearby monitoring points and the target monitoring point. Second, we use the feature
alignment networks based on a bottleneck layer [27] to align the common features of
water quality samples in the same feature space, to obtain the aligned features. Third, we
establish the water quality prediction model based on ESN at every nearby monitoring
point with distributed computing and predict the water quality information at the next
moment according to the aligned features of water quality samples. Finally, we integrate
the results of distributed water quality prediction models to reduce the prediction bias.
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Figure 1. Water quality prediction framework based on MSTL.

If there are v nearby monitoring points around the target monitoring point, respec-
tively construct the features of water quality samples of the j-th nearby monitoring point
and the target monitoring point at the previous n moments as

Csj =
{

csj(d + 1), csj(d + 2), · · · , csj(h), · · · , csj(n)
}

(1)

Ct = {ct(d + 1), ct(d + 2), · · · , ct(h), · · · , ct(n)} (2)

where csj(h) = {xsj(h− 1), xsj(h− 2), · · · , xsj(h− d)} and ct(h) = {xt(h− 1), xt(h− 2),
· · · , xt(h− d)} represent the features of water quality samples of the j-th nearby monitoring
point and the target monitoring point at the h-th moment, respectively. In particular, d
represents the size of the sliding window, xsj(h− 1) and xt(h− 1) represent the water
quality information of the j-th nearby monitoring point and the target monitoring point at
the (h− 1)-th moment, respectively.

First, we construct the feature extraction network based on residual network (F),
for the purpose of extracting the common features of water quality samples of v nearby
monitoring points and the target monitoring point. The structure of this network is shown
in Figure 2.

Figure 2. Structure of feature extraction network based on residual network.

In Figure 2, ConvF is the convolution kernel, BatchNorm is the normalization algo-
rithm, Rule is the activation function, and MaxPool is the max pooling layer. The features
of water quality samples extracted from the j-th nearby monitoring point and the target
monitoring point are respectively C∗sj and C∗t , and they are calculated by

C∗sj = F
(
Csj
)

(3)

C∗t = F(Ct) (4)
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Second, we construct the feature alignment networks based on the bottleneck layer
(
{

H1, H2, · · · , Hj, · · · , Hv
}

) at v nearby monitoring points, for the purpose of aligning the
common features extracted from the nearby monitoring point with the features extracted
from the target monitoring point. In particular, Hj is the feature alignment network at the
j-th nearby monitoring point, and its structure is shown in Figure 3.

Figure 3. Structure of the feature alignment network based on the bottleneck layer at the j-th nearby
monitoring point.

In Figure 3, ConvH
j is the convolution kernel, Rule is the activation function, and

AvgPool is the average pooling layer. The aligned features of water quality sample of the
j-th nearby monitoring point and the target monitoring point are respectively C′sj and C′tj,
and they are calculated by

C′sj = Hj

(
C∗sj

)
(5)

C′tj = Hj(C∗t ) (6)

After aligning the common features of water quality samples, construct the water
quality sample sets of the j-th nearby monitoring point and target monitoring point as
Usj =

{
usj(d + 1), usj(d + 2), · · · , usj(h), · · · , usj(n)

}
and Utj = {utj(d + 1), utj(d + 2),

· · · , utj(h), · · · , utj(m), respectively. In particular, usj(h) =
{

c′sj(h), ysj(h)
}

and utj(h) ={
c′tj(h), yt(h)

}
respectively represent the water quality samples of the j-th nearby moni-

toring point and the target monitoring point at the h-th moment, where c′sj(h) and c′tj(h)
are the aligned feature of water quality sample of the j-th nearby monitoring point and
the target monitoring point at the h-th moment. ysj(h) and yt(h) are the real water quality
information of the j-th nearby monitoring point and the target monitoring point at the
h-th moment.

We combine Usj and Utj to obtain the water quality sample set Utrain
j = Usj ∪Utj ={

utrain
j (d + 1), utrain

j (d + 2), · · · , utrain
j (h), · · · , utrain

j (m + n− d)
}

, where utrain
j (h) ={

ctotal
j (h), ytotal

j (h)
}

is the water quality sample at the h-th moment, ctotal
j (h) is the fea-

ture of water quality sample at the h-th moment, and ytotal
j (h) is the real water quality

information at the h-th moment. Utrain
j will be used to train the following water quality

prediction model.
Afterwards, we construct the water quality prediction models based on ESN at v

nearby monitoring points (
{

ESN1, ESN2, · · · , ESNj, · · · , ESNv
}

), where ESNj is the dis-
tributed water quality prediction model at the j-th nearby monitoring point, and its struc-
ture is shown in Figure 4. The model consists of an input layer with d neurons, a reservoir
with r neurons, and an output layer with one neuron. Besides, the input of the model is
the feature of water quality sample at the h-th moment (ctotal

j (h)), and the output is the

predicted water quality information at the h-th moment (ypre
j (h)).
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Figure 4. Structure of water quality prediction model based on ESN.

The calculation of the water quality prediction model based on ESN at the j-th nearby
monitoring point is as

sj(h) = Tanh
(

Wr
j sj(h− d) + Win

j ctotal
j (h)

)
(7)

ypre
j (h) = Wout

j sj(h) (8)

where Tanh is the activation function, and sj(h) is the internal state vector of the reservoir.
Win

j is the input layer weight, Wr
j is the reservoir weight, and Wout

j is the output weight. In

particular, Wout
j is trained by the ridge regression algorithm [28] according to Utrain

j , Wr
j

and is scaled by

Wr
j = α

1
|ρ|W0 (9)

where α is the scaling range and 0 < α < 1. ρ is the spectral radius of Wr
j , and W0 is a

sparse matrix which is randomly generated.
Finally, we integrate the prediction results of distributed water quality prediction

models at multiple nearby monitoring points to obtain the final prediction result (ypre(h))
by using the arithmetic average. ypre(h) is calculated by

ypre(h) =
1
v

v

∑
j=1

ypre
j (h) (10)

2.2. Prediction Parameters Optimization of MSTL

We optimize the prediction parameters of MSTL to reduce the feature alignment
bias between nearby monitoring points and the target monitoring point, and to minimize
the model alignment bias between the water quality prediction models. Specifically, to
minimize the overall bias (ltotal), CONVF, CONVH

j and Wout
j are updated by the stochastic

gradient descent (SGD), since Wout
j affects the prediction results of the water quality

prediction model, CONVF and CONVH
j affect the aligned features obtained by the feature

alignment networks. The smaller ltotal is, the better the prediction accuracy is. ltotal is
calculated by

ltotal = lmse + λ(lmmd + ldisc) (11)

where λ is the trade-off parameter, which is used to measure the importance of lmmd and
ldisc. λ is calculated by

λ =
2

1 + e
10i
iter
− 1 (12)

where iter is the total number of iterations, and i is the current number of iterations.
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lmse is the model prediction bias of the water quality prediction models at the v nearby
monitoring points. The smaller lmse is, the smaller the model prediction bias is. lmse is
calculated by

lmse =
1
v

v

∑
j=1

Mse
(

ypre
j (h), ytrue(h)

)
(13)

where ypre
j (h) is the predicted water quality information of the prediction model at the j-th

nearby monitoring point, ytrue is the real water quality information, and Mse is the mean
square error function.

lmmd is the feature alignment bias between nearby monitoring points and the target
monitoring point. The smaller lmmd is, the smaller the feature alignment bias is. lmmd is
calculated by

lmmd =
1
v

v

∑
j=1

MMD
(

C′sj(h), C′tj(h)
)

(14)

where MMD is the maximum mean discrepancy function [29], which is used to measure
the distance between the aligned features of water quality samples of nearby monitoring
points and the target monitoring point after mapping to the same feature space.

ldisc is the model alignment bias between the water quality prediction models at
multiple nearby monitoring points. The smaller the ldisc is, the smaller the model alignment
bias is. ldisc is calculated by

ldisc =
2

(v− 1)v

v−1

∑
j=1

v

∑
i=j+1

(∣∣∣ypre
i (h)− ypre

j (h)
∣∣∣) (15)

2.3. Process of Water Quality Prediction Method Based on MSTL

The overall process of the water quality prediction method based on MSTL is summa-
rized in Figure 5. The specific steps are as follows:

Step 1: Use the feature extraction network based on residual network to extract the
common features of water quality samples of the j-th nearby monitoring point and target
monitoring point (C∗sj and C∗t ).

Step 2: Use the feature alignment network based on the bottleneck layer of the j-th
nearby monitoring point to align the common features of water quality samples of the j-th
nearby monitoring point and the target monitoring point (C′sj and C′tj).

Step 3: Construct the training set Utrain
j , and train the distributed water quality

prediction model based on ESN at the j-th nearby monitoring point.
Step 4: Repeat Steps 1–3 to obtain the common features and the aligned features of

water quality samples of all nearby monitoring points, and train distributed water quality
prediction models based on ESN at all nearby monitoring points.

Step 5: Calculate the overall bias (ltotal) according to the aligned features of water
quality samples of all nearby monitoring points and the prediction results of distributed
water quality prediction models based on ESN.

Step 6: Judge whether ltotal meets the accuracy requirements. If the requirements are
met, go to step 8. Otherwise, go to step 7.

Step 7: For every nearby monitoring point, update CONVF, CONVH
j , and Wout

j
through multiple iterations and back-propagating ltotal ,. After that, go to step 1.

Step 8: At the j-th nearby monitoring point, input the water quality information of the
previous d moments of the current time of the target monitoring point into the optimized
water quality prediction framework based on MSTL, then obtain the prediction result
through distributed computing. In the same way, the prediction results of distributed water
quality prediction models of all nearby monitoring points are obtained.

Step 9: Integrate the prediction results of distributed water quality prediction models
at all nearby monitoring points to obtain the final prediction result (ypre(h)).
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Figure 5. Overall process of water quality prediction method based on MSTL.

3. Experimental Results and Analyses

The proposed method is implemented by Python and Torch. First, we describe the
specific dataset of the experiments. Second, we select the prediction parameters of MSTL.
Afterwards, MSTL is compared with other transfer methods. Finally, we compare ESN
with other prediction models.

We set 20% samples of the target monitoring point as the test sample set and 20%
as the validation sample set. Thus, the training sample set is composed of the remaining
60% samples of the target monitoring point and the samples transferred from nearby
monitoring points. The mean squared error (MSE) is chosen as the indicator measuring the
prediction bias. The smaller MSE is, the smaller the prediction bias is. Specifically, MSE is
calculated by

MSE =
1
q

q

∑
t=1

(
ytrue(t)− ypre(t)

)
(16)

where q is the number of samples, ytrue is the real water quality information, and ypre is the
predicted water quality information.

3.1. Datasets

We performed two experiments. In the first experiment, we set Oxtail Sea as the target
monitoring point. Oxtail Sea has only 3193 pieces of water quality information, which is
slightly insufficient. The spatial location of monitoring points in the first experiment is
shown in Figure 6. Tolo Harbour, Mirs Bay and Southern District are close to Oxtail Sea in
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water area, and they have the adjacency effect. As a result, we consider these three locations
as nearby monitoring points. Afterwards, we use the framework based on MSTL to align
the features of water quality samples of these three nearby monitoring points with Oxtail
Sea, and then use the samples of these three nearby monitoring points to train three water
quality prediction models. Among them, Tolo Harbour has 3192 pieces of water quality
information, Mirs Bay has only 758 pieces of water quality information, and Southern
District has 4467 pieces of water quality information. The water quality indicators of Oxtail
Sea include dissolved oxygen (DO), phosphate, water temperature (WT), and nitrite. The
data of these indicators are collected by the sensors and transmitted back approximately
every fifteen days. The purpose of the experiment is to predict the DO of Oxtail Sea at the
next moment.

Figure 6. Spatial location of Oxtail Sea and nearby monitoring points.

In the second experiment, we set the Western Buffer District as the target monitoring
point. Western Buffer District has only 1440 pieces of water quality information, which is
also slightly insufficient. The spatial location of monitoring points in the second experiment
is shown in Figure 7. Figure 7 shows the Northwestern District, the Southern District and
the Victoria Harbour are close to Western Buffer District in water area and they have the
adjacency effect. As a result, we consider these three locations as nearby monitoring points.
The experimental procedure is the same as the first experiment. Among them, the North-
western District has only 1630 pieces of water quality information, the Southern District
has 4467 pieces of water quality information, and the Victoria Harbour has 4158 pieces of
water quality information. The water quality indicators and the prediction purpose of the
Western Buffer District are the same as the first experiment.

3.2. Parameters Selection

In order to improve the prediction accuracy, we select the parameters including the
size of sliding window (d), the size of reservoir (r) and the size of spectral radius (ρ) in
the water quality prediction models based on ESN. In the experiment of Oxtail Sea, ltotal
converges when the number of iterations is 300. Table 1 shows the prediction results
of distributed water quality prediction models based on ESN with different parameters
in Oxtail Sea. When d = 3, r = 500, and ρ = 0.7, the prediction result of Oxtail Sea
is the best (ltotal = 0.085, MSE = 0.0060). Similarly, in the experiment of the Western
Buffer District, ltotal converges also when the number of iterations is 300. Table 2 shows
the prediction results of distributed water quality prediction models based on ESN with
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different parameters in the Western Buffer District. When d = 3, r = 500, and ρ = 0.6, the
prediction result of the Western Buffer District is the best (ltotal = 0.0111, MSE = 0.0106).
The optimal parameters mentioned above are used in the subsequent experiments.

Figure 7. Spatial location of Western Buffer District and nearby monitoring points.

Table 1. Prediction results with different parameters in Oxtail Sea. The bold numbers are the best
parameters.

d r ρ ltotal MSE

2

250 0.6 0.092 0.0062
250 0.7 0.093 0.0064
250 0.8 0.092 0.0062
250 0.9 0.091 0.0061
500 0.6 0.092 0.0063
500 0.7 0.093 0.0062
500 0.8 0.092 0.0061
500 0.9 0.095 0.0065
750 0.6 0.092 0.0062
750 0.7 0.093 0.0063
750 0.8 0.094 0.0064
750 0.9 0.093 0.0062

3

250 0.6 0.089 0.0063
250 0.7 0.088 0.0062
250 0.8 0.088 0.0062
250 0.9 0.087 0.0062
500 0.6 0.087 0.0061
500 0.7 0.085 0.0060
500 0.8 0.088 0.0063
500 0.9 0.086 0.0061
750 0.6 0.087 0.0062
750 0.7 0.089 0.0063
750 0.8 0.089 0.0064
750 0.9 0.088 0.0063
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Table 1. Cont.

d r ρ ltotal MSE

4

250 0.6 0.093 0.0066
250 0.7 0.089 0.0062
250 0.8 0.092 0.0063
250 0.9 0.090 0.0061
500 0.6 0.092 0.0063
500 0.7 0.094 0.0065
500 0.8 0.093 0.0062
500 0.9 0.092 0.0061
750 0.6 0.092 0.0062
750 0.7 0.093 0.0063
750 0.8 0.094 0.0064
750 0.9 0.089 0.0062

Table 2. Prediction results with different parameters in the Western Buffer District. The bold numbers
are the best parameters.

d r ρ ltotal MSE

2

250 0.6 0.0113 0.0108
250 0.7 0.0114 0.0108
250 0.8 0.0112 0.0107
250 0.9 0.0115 0.0110
500 0.6 0.0114 0.0108
500 0.7 0.0114 0.0109
500 0.8 0.0115 0.0111
500 0.9 0.0114 0.0109
750 0.6 0.0115 0.0110
750 0.7 0.0116 0.0109
750 0.8 0.0115 0.0108
750 0.9 0.0115 0.0109

3

250 0.6 0.0116 0.0111
250 0.7 0.0116 0.0110
250 0.8 0.0115 0.0109
250 0.9 0.0115 0.0108
500 0.6 0.0111 0.0106
500 0.7 0.0113 0.0108
500 0.8 0.0114 0.0109
500 0.9 0.0115 0.0109
750 0.6 0.0115 0.0110
750 0.7 0.0114 0.0109
750 0.8 0.0114 0.0108
750 0.9 0.0115 0.0109

4

250 0.6 0.0113 0.0107
250 0.7 0.0114 0.0108
250 0.8 0.0114 0.0108
250 0.9 0.0115 0.0110
500 0.6 0.0116 0.0112
500 0.7 0.0115 0.0111
500 0.8 0.0114 0.0109
500 0.9 0.0113 0.0108
750 0.6 0.0114 0.0110
750 0.7 0.0115 0.0111
750 0.8 0.0114 0.0109
750 0.9 0.0113 0.0108
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3.3. Comparison of Transfer Methods

We compare MSTL with non-expansion, TCA [20] and the joint class proportion and
optimal transport (JCPOT) [30]. In particular, non-expansion uses only the water quality
information of the target monitoring point. TCA transfers the features of water quality
samples from a single nearby monitoring point to the target monitoring point, and selects
the high-quality samples based on similarity and time sequence. JCPOT predicts the
water quality information by using the optimal transport to correct and align the feature
alignment bias between multiple source domains and target domain. MSTL extracts and
aligns the features of water quality samples of multiple nearby monitoring points and the
target monitoring point and trains the model through the aligned samples. The prediction
results of different transfer methods in the Oxtail Sea and the Western Buffer District
locations are shown in Table 3.

Table 3. Prediction results of different transfer methods in the Oxtail Sea and the Western Buffer District.

Monitoring Points Method Nearby Monitoring Point MSE

Oxtail Sea

non-expansion non 0.0167

TCA
Tolo Harbour 0.0118

Mirs Bay 0.0144
Southern District 0.0120

JCPOT Tolo Harbour, Mirs Bay, Southern District 0.0133
MSTL Tolo Harbour, Mirs Bay, Southern District 0.0048

Western Buffer District

non-expansion non 0.0128

TCA
Northwestern District 0.0120

Southern District 0.0125
Victoria Harbour 0.0118

JCPOT Northwestern District, Southern District, Victoria Harbour 0.0125
MSTL Northwestern District, Southern District, Victoria Harbour 0.0104

From Table 3, we can observe that the prediction bias of MSTL is lower than that
of non-expansion either in the Oxtail Sea or in the Western Buffer District. Besides, the
prediction bias of MSTL is lower than that of TCA and JCPOT, because TCA can only use
the water quality information of a single nearby monitoring point and JCPOT does not
consider the effect of the feature alignment bias between different source domains. The
prediction results show that MSTL can effectively use the water quality information of
nearby monitoring points to train multiple water quality prediction models, which can
reduce the model prediction bias and improve the prediction accuracy.

3.4. Comparison of Prediction Models

In the water quality prediction framework based on MSTL, we compare the water
quality prediction models based on ESN with the water quality prediction models based
on back propagation (BP) network, and the water quality prediction models based on
gated recurrent unit (GRU) network. Like ESN, both BP and GRU have only one hidden
layer. As a widely used basic neural network, BP has the advantages of simple structure
and small calculation. As an improvement of LSTM, GRU adds a gating mechanism to
make it have a memory ability. Compared with BP, the training of GRU is more complex.
Partial prediction results of different prediction models in the Oxtail Sea and the Western
Buffer District are shown in Figures 8 and 9, respectively. The comparisons of different
water quality prediction models in terms of prediction bias and training time are shown in
Figures 10 and 11.
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Figure 8. Partial prediction results of different prediction models in Oxtail Sea.

Figure 9. Partial prediction results of different prediction models in Western Buffer District.

Figures 8 and 9 show that the accuracy of BP is poor, and the prediction results
fluctuate greatly. The prediction results of GRU and ESN are close when the data fluctuate
slightly. Overall, ESN has better prediction ability than that of GRU either in the peak or in
the valley part of the data. Figures 10 and 11 show that ESN has the smallest prediction
bias and the shortest training time in the Oxtail Sea or the Western Buffer District, because
ESN has a special reservoir structure and use only a simple linear regression algorithm
for training.

To further illustrate the prediction accuracy of the proposed method, Figure 12 gives
the box-plot comparison of the predicted water quality information and the real water
quality information in the Oxtail Sea and the Western Buffer District. As seen in the
figure, there exists a nearly uniform presentation through the observations of the measures,
including the upper and lower quartiles, the upper and lower bound, the median and
the outliers.
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Figure 10. Comparison of prediction bias of different water quality prediction models.

Figure 11. Comparison of training time of different water quality prediction models.

Figure 12. Box-plot comparison of predicted water quality information and real water quality
information.

4. Conclusions

Water environmental IoT system, which can collect water quality information in
real time, provides the possibility for accurate water quality prediction. In this paper,
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we propose a water quality prediction method based on MSTL for water environmental
IoT system, to effectively use the water quality information of nearby monitoring points,
and then improve the prediction accuracy of water quality. First, a water quality predic-
tion framework based on MSTL is constructed, which establishes multiple water quality
prediction models based on ESN at multiple nearby monitoring points with distributed
computing. Second, the water quality prediction parameters of MSTL are optimized. Specif-
ically, the back propagates population deviation based on multiple iterations reducing
the feature alignment bias and the model alignment bias. Finally, the proposed method is
compared with other similar methods in the actual water quality dataset of Hong Kong.
The experimental results demonstrate that the proposed method can effectively align the
features of water quality samples of multiple nearby monitoring points through MSTL
and use the aligned samples of multiple nearby monitoring points to train multiple water
quality prediction models, which can effectively reduce the prediction bias. It should
be noted that the same type of sensors needs to be used at different monitoring points
to collect the data of the same water quality indicators, so that the prediction models at
different monitoring points have the same input parameter. In the following work, we will
study to break through this limitation.
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