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Table S1: Overview of extracted features. All features were extracted over x-, y-, z-, axes, 
and signal vector magnitude signals. Literature source shows first author name, see 
reference list for full reference. 
 
Feature name Source/ literature 

Temporal domain  

Maximum acc Griffiths1 

Interquartile range of acc Griffiths1 

90th percentile of acc Rispens 2 

median of acc Hoff 3, Keijsers 4 

mean of acc Hoff 3, Keijsers 4 

standard deviation of acc Shawen 5 

coefficient of variation Shawen 5 

variance of acc Shawen 5 

acceleration range Mahadevan 6 

low acc peaks (n) Balasubramanian 7 

high acc peaks (n) Balasubramanian 7 

time spent above 1g acc (%) Keijsers 4, Salarian 8 

acc entropy Mahadevan 6, Lonini 9 

jerkiness ratio/ smoothness Mahadevan 6, Lonini 9 

root mean square (RMS) Mahadevan 6 



Ratio of x/y/z-RMS compared to vector magnitude-RMS Sekine 10 

Axial cross-correlation (X-Y; (X-Z,; Y-Z) Mahadevan 6, Lonini 9 

    

Spectral domain   

spectral power < 3.5 Hz Griffiths1, Evers 11 

spectral power 0.7 < 1.4 Hz Griffiths1, Evers 11 

spectral power 1.4 < 2.8 Hz Griffiths1, Evers 11 

spectral power 2.8 < 3.5 Hz Griffiths1, Evers 11 

spectral flatness Mahadevan 6 

spectral entropy Mahadevan 6 

spectral variance Balasubramanian 7, Beck 12 

spectral smoothness Balasubramanian 7 

spectral low/high peaks Balasubramanian 7 

Dominant frequency magnitude Mahadevan 6, Lonini 9 

Dominant frequency ratio Mahadevan 6 

Dominant frequency flatness Mahadevan 6 

Dominant frequency entropy Mahadevan 6 

 
 

  



Figure S1: Schematic visualization of data splitting method for individual models.  
Pre- and post-medication features were balanced in number.  
During every fold in individual-model training and testing, ⅕ of pre-medication data and ⅕ of 
post-medication data (two times 10% of total data leads to 20% of total data), were selected 
as ‘test data’ for the validation of the model which was trained using the ‘training data’. For 
the training data selection, blocks of 2% of data adjacent to the test data were excluded, to 
decrease the temporal dependence of the training and test data.  
Due to the expected difference in activities between blocks of 10% of data, we repeated 
model training and testing with every consecutive block of 10% of data. This led to 41 
different training and testing folds. This figure visualizes folds 1, 2, 3, 18, 32, 40, and 41 as 
examples. 
 

 
  



Figure S2: Visualization of activity filter performance versus the parallel raw signal vector 
magnitude.  
 

 
 
Y-axes represent the vector magnitude of the raw tri-axial accelerometer signal (in blue). 
The accelerometer vector magnitudes are individually normalized with a maximum of 1.0 for 
visualization purposes since maximum acceleration vectors vary between individuals. 
X-axes represent time in minutes, where the first half consists of pre-medication recordings, 
and the second half of post-medication recordings. 
The background color-shading represents whether the activity filtered classified the data 
epoch as activity present (purple), or not present (yellow). 
 
  



Table S2: Predictive metrics for all models and approaches 
 

     
All 
features 

All 
features   

4 
features 4 features 

CLASSIFIER  
n=20, 
mean (sd) 

All 
minutes 

Activity 
filtered   

All 
minutes 

Activity 
filtered 

SUPPORT 
VECTOR 

INDIVIDUAL 
MODEL auc 

0.682 
(0.15) 

0.696 
(0.18)   

0.499 
(0.12) 

0.533 
(0.16) 

    
auroc, n 
sign  16 13    2  4  

    accuracy 
0.632 
(0.12) 

0.651 
(0.14)   

0.490 
(0.11) 

0.509 
(0.14) 

    
accuracy, n 
sign  15  14    5  10 

                

  
GROUP 
MODEL auroc 

0.669 
(0.10) 

0.703 
(0.10)   

0.590 
(0.11) 

0.633 
(0.13) 

    
auroc, n 
sign  16  17   10   11 

    accuracy 
0.624 
(0.09) 

0.640 
(0.08)   

0.560 
(0.11) 

0.597 
(0.08) 

    
accuracy, n 
sign  11 12     9 12  

                
RANDOM 
FOREST 

INDIVIDUAL 
MODEL auroc 

0.649 
(0.13) 

0.656 
(0.17)   

0.586 
(0.12) 

0.619 
(0.14) 

    
auroc, n 
sign 15   10   6   11 

    accuracy 
0.611 
(0.10) 

0.611 
(0.13)   

0.558 
(0.10) 

0.588 
(0.11) 

    
accuracy, n 
sign  13 10     8 7  

                

  
GROUP 
MODEL auroc 

0.661 
(0.10) 

0.698 
(0.11)   

0.593 
(0.11) 

0.636 
(0.14) 

    
auroc, n 
sign 12   16   10   10 



    accuracy 
0.598 
(0.08) 

0.626 
(0.08)   

0.564 
(0.08) 

0.587 
(0.08) 

    
accuracy, n 
sign  12 12     6 7  

 
  



Figure S3: Comparison of different model approaches for short window medication 
states classification 
 
To understand which methodological approaches yielded best performance, we explored the 
differences between individual and group trained models and the effect of an activity filter in 
detail and investigated optimal training data sizes and feature window lengths (see Methods 
section in main text). For this we compared the 20 areas under the receiver operator 
characteristic (AUC) and classification accuracy scores of each model using equality plots. 
Each dotted line visualizes the line x = y, and represents equality of the two displayed 
models. 
 
The p-values throughout these figures indicate whether the ratio of patients that scored 
higher on model X versus model Y is statistically significant. We performed a 5000 
permutation test where 20 dots (random x-value, random y-value) were randomly plotted in 
the equality plot. The p-values represent the chance that the distribution is better than the 
random chance level.  
 
Figures S3A and S3B show classification superiority of models analyzing 60 seconds data 
epochs using 103 accelerometer-derived features compared to 4 features (AUC p-values < 
0.002, accuracy p-values < 0.020, significance tested via a 5000-permutation test).  
The consecutive S3C-F figures only display the models including 103 features. Individual 
models based on a support vector classifier (SV) resulted in higher AUC scores and 
accuracies than individual models based on random forest classifier (RF) in 15 out of 20 
patients (figure S3C, p = 0.009 below). SV and RF group models yielded similar AUC scores 
and accuracies (figure S3D below, p = 0.406). Overall, applying the activity filter led to 
slightly better mean results per model (table S2). On an individual level, there was no 
significant difference between classification performance with or without activity filtering 
(figure S3EF, p-values ranged between 0.06 and 0.41). However, it was noted that there 
was a trend towards higher individual predictive performance with activity filtering. 
 

Figure S3A: Individual models: 4 versus 103 features. 

 
Individual 103 features model higher than individual 4 features model for: 
 AUC: 17 out of 20 higher, p < 0.000, accuracy: 18 out of 20 higher: p < 0.000 
 
 
 

 



Figure S3B: Group models: 4 versus 103 features. 

 
Group 103 features model higher than group 4 features model for: 
AUC: 16 out of 20 higher, p = 0.002, accuracy: 14 out of 20 higher: p = 0.023 
 

Figure S3C: Individual models: SV versus RF classifiers. 

 
Individual SV model higher than individual RF model for: 
AUC: 15 out of 20 higher, p = 0.009, accuracy: 15 out of 20 higher: p = 0.009 
 
Figure S3D: Group models: SV versus RF classifiers. 

 
Group SV model higher than group RF model for: 
AUC: 10 out of 20 higher, p = 0.406, accuracy: 10 out of 20 higher: p = 0.406 



Figure S3E: Individual SV models: with activity filtering versus without activity filtering. 

 
Individual SV model with activity filtering higher than individual SV model without activity 
filtering for: 
AUC in 10 out of 20 higher, p = 0.406, accuracy in 13 out of 20 higher, p = 0.056. 
 
Note that both the AUC scores and the classification accuracies of the activity filtered 
models are marginally higher than those of the not filtered models, when all ‘none significant’ 
candidates are disregarded. We conclude that although there is no statistically significant 
superiority of the activity filtered models, there is a trend that activity filtered models lead to 
higher predictive performance and this step was included within our standard pipeline.  
 
 
 

Figure S3F: Group SV models: with activity filtering versus without activity filtering. 

 
 
Group SV model with activity filtering higher than group SV model without activity filtering for: 
AUC in 13 out of 20 higher, p = 0.056, accuracy in 11 out of 20 higher, p = 0.250. 
 
  



Figure S4A: Good classification performance in patients with and without tremor 

 
 

Figure S4B: Good classification performance in patients with and without abnormal 
involuntary movements 

 
 
Colored bars visualize the individual AUC scores from the best individual and the best group model 
(both support vector classifier, and activity filtered), and correspond to the left y-axis. Individual tremor 
fluctuations between pre- and post-medication correspond to the right y-axis. Tremor scores 
represent the described MDS-UPDRS III items for unilateral upper extremity tremor (see Methods). 
On the x-axis individual participants are sorted on tremor fluctuation, in descending order. 
Colored asterisks indicate statistical significance of the AUC score compared to chance level (alpha = 
0.05, FDR corrected). The black dotted line indicates chance-level for the AUC scores. AUC: area 
under the receiver operator characteristic; FDR: false discovery rate, MDS-UPDRS: Movement 
Disorders Society - Unified Parkinson Disease Rating Scale. 
 
 

  



Table S3: Spearman R correlations between symptom fluctuation and predictive performance 
at an individual level. Spearman r correlations are calculated between the MDS-UPDRS tremor and 
bradykinesia and AIMS fluctuations (collected and calculated as described in the Methods), and the 
predictive performance per participant. Support vector models including activity filtering were 
compared for individual and group model comparisons. 
 
  
 

Individual 
models, AUC 

Group 
models, AUC 

Individual models, 
accuracy 

Group models, 
accuracy 

Bradykinesia  
(r (p)) 

0.24 (p = 0.305) 0.01 (p = 
0.962) 

0.24 (p = 0.305) 0.18 (p = 0.452) 

Tremor (r (p)) 0.34 (p = 0.140) 0.11 (p = 
0.642) 

0.21 (p = 0.380) -0.06 (p = .807) 

Abnormal involuntary 
movements (r (p)) 

-0.05 (p = 
0.851) 

0.122 (p = 
0.607) 

0.01 (p = 0.979) 0.34 (p = 0.142) 
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