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Abstract: Aiming for simplicity and efficiency in the domain of edge computing, DOORS is a
distributed system expected to scale up to hundreds of nodes, which encapsulates application
state and behavior into objects and gives them the ability to exchange asynchronous messages.
DOORS offers semi-synchronous replication and the ability to explicitly move objects from one node
to another, as methods to achieve scalability and resilience. The present paper gives an outline of the
system structure, describes how DOORS implements object replication, and describes a basic set of
measurements, yielding an initial set of conclusions for the improvements of the design.
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1. Introduction

The Distributed Object Oriented Runtime System (DOORS) proposes a minimal set
of services needed for a solution implementer to address a geographically distributed
problem. Obvious examples of problems targeted by DOORS are telemetry, SCADA, IoT,
maintenance, and monitoring of mission-critical systems.

The set of DOORS services is based on the fundamental OOP concepts of class and
object. The former is encapsulating data structures (system state) and the code acting upon
them (system behavior), while the latter is an individual instance of a class. DOORS objects
are also able to exchange asynchronous messages (with other objects or with external
clients), and the system ensures message transit and delivery. When communication faults
occur, the system handles queuing and re-sending of not-yet-confirmed messages. On top
of the fundamentals, the system offers: an event model, storage of objects, and replication
and partitioning of objects across the available set of nodes, as well as the ability that
multiple versions of the same class to coexist and run side by side. Last but not least,
DOORS provides services for explicit relocation of objects from one node to another,
which allows rational use of the available resources, flexibility in operation, and the ability
to move processing capacity closer to the source of data, minimizing latency and rendering
DOORS a viable solution for edge computing [1,2].

The reasons for which DOORS employs object orientation, as well as its main features,
are described in Reference [3]. In “traditional OOP fashion”, DOORS objects encapsulate
state and behavior, and our major source of inspiration is the Smalltalk language, as em-
phasized in Reference [4], where we also detail how DOORS achieves consistency and
availability. A detailed analysis of object migration in DOORS and its impact on scheduling
for execution can be found in Reference [5]. The present paper presents the replication of
objects in DOORS, a mechanism that offers high availability of the proposed systems.

Considering an operating system for the reference architecture (e.g., Linux), the default
scheduling behavior of the kernel is out of the control of the system implementer for our

Sensors 2021, 21, 7883. https://doi.org/10.3390/s21237883 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4566-1545
https://doi.org/10.3390/s21237883
https://doi.org/10.3390/s21237883
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237883
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237883?type=check_update&version=1


Sensors 2021, 21, 7883 2 of 17

proposed solution. Our approach may employ means for explicitly allocating tasks to
CPU cores using the concept of abstract object oriented runtime system for heterogeneous
parallel architecture [6]. This explicit allocation is achievable by setting the affinity of
individual threads.

The paper is structured as follows. Section 2 presents the main target of DOORS
approach. Then, Section 3 analyzes the orientation towards edge computing. Section 4
describes in details the proposed solution, and Section 5 highlights the experimental results.
The paper ends with con conclusions and future work.

2. The Target of DOORS

As stated in Reference [4], the design of DOORS is focused on a subclass of distributed
problems for which edge-computing solutions are viable alternatives.

Figure 1 depicts a typical geographical distributed system, with remote nodes, special-
ized in data acquisition or control, as well as central nodes, specialized in data aggregation
and analytics. The system contains local control loops, as well as a centrally located
cluster of computing capacity. Last but not least, the system features unreliable network
connections toward remote nodes.

Figure 1. Example of geographically distributed DOORS installation.

Basing our analysis on [7], although Big Data is not in the focus of DOORS, the premise
for parallelism created by the ability to partition objects across the set of available nodes
qualifies our proposal for addressing the heterogeneity of data-sets, processes, or even system
infrastructure [8], which is often encountered in “traditional” analytics implementations.

3. Orientation towards Edge Computing

Edge Computing, as well as the partially overlapping concept of Fog Computing,
share many of the design goals of DOORS, due to their orientation towards decentralization
and migration of control towards “system periphery” [9–12]. Reference [2] introduces the
subject, noting the recurrent and pervasive struggle between the forces of centralization
and the forces of decentralization, and advocating for a new, post-cloud wave of decen-
tralization. The generally accepted definition of fog computing, “a paradigm that extends
Cloud computing and services to the edge of the network”, is targeting real-life scenarios
in the area of Assisted Living, as exemplified by Reference [13].

Based on the planned features, we expect that our proposed system architecture fits in
this area and allows for, hopefully, simple implementations of low-latency, decentralized
event-oriented solutions. The design shall provide solutions for concurrency control,
resilience through redundancy, and maintaining an adequate trade-off between consistency
and availability, during system segmentation events.

We acknowledge the approach of Drop Computing, which is oriented towards ad-hoc
collaboration and aims for higher levels of scalability [14–16]. However, we postulate that
mission-critical systems are not based on ad-hoc configurations, node turnover is extremely
limited if tolerated at all, and, therefore, we concentrate the research effort on a simplified
architecture, as described in the following sections [1,17].
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4. Proposed Solution

Following subsections describe the solutions adopted by DOORS for the realization of
its key distributive features: replication and partitioning. The former refers to the act of
maintaining multiple copies of the same object in distinct location (on different nodes in
our case), while the latter denotes the “spreading out” the objects over the available nodes,
such that each of them is hosted on a single node. The partitioning of objects in DOORS
has the mathematical meaning of the partitioning operation applied to the set of objects
hosted by the system, in the sense that each node hosts one of the resulted subsets.

4.1. The Structure of DOORS Objects

As depicted in Figure 2, the objects have a straightforward structure, containing first
and foremost an unique ID (which is a GUID stored as a string of characters in the reference
implementation), followed by a reference to the definition of the corresponding class and
completed by a map of the object’s attributes. The keys in the map are the names of the
attributes, while the values in the map are dedicated structures, as depicted in Figure 3.
Each attribute contains, therefore, a description, composed of a name, a type, and a value.

Figure 2. Structures of objects and classes in DOORS.

Figure 3. Definitions for attributes, methods and parameters.

All the maps utilize a straightforward implementation of a hash table (not consid-
ered relevant for the scope of the present material), while the values are void pointers,
referring to the actual data fields, stored on the heap.

4.2. Types of DOORS Messages
4.2.1. Notifications

The simplest form of inter-node communication is one in which we choose to have
explicit and immediate confirmation of each message. We analyze the situation in which
the connection between the two nodes is lost between the moment the notification is
being sent and the moment when the receipt confirmation is received. As it shall be seen
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in the analysis below, depending on the exact moment of fault occurrence, we might
have no notification exchanged, exactly one notification exchanged, or multiple identical
notifications exchanged. Depending on the significance associated to the receipt of the
respective notification, the exchange of multiple messages referring to the same real-life
event may be undesirable [18].

4.2.2. Loss of Communication during Notification Transfer

Figure 4 depicts the communication scenario occurring in the case of notification
messages. N1 is the node to which the client is directly connected, and N2 is the node
hosting the object targeted by the notification.

Figure 4. Notifications.

The most relevant aspects are the following:

• N1 uses its local resources (presented below) in order to resolve the node on which
the target object resides;

• N2 uses its local resources in order to resolve the target objects;
• N1 caches the ID of the client sender, so that it can determine where to forward the

receipt confirmation when it is available; and
• both N1 and N2 use a message digest in order to uniquely identify notifications and

associate them with the ID of their sender.

A connection fault between the client and N1 means that the notification will not reach
N1, and no confirmation is ever received. A fault on the path between N1 and N2 means
that the notification will not reach its destination, and, again, no confirmation is available.
In this case, we have two possible alternatives:

• N1 may store the notification locally, as an “offline message”, and place it in the send
queue for when the connection to N2 is restored. A conservation period may be
defined, after which N1 shall discard the cached notification.

• N1 may detect the loss of connection to N2 and send an error message back to the
client. This case is depicted in Figure 5.

If a fault occurs between N1 and N2, node N1 will not be able to ascertain whether the
notification was indeed received by the destination object. This is the reason why the inter-
node communication protocol implements a mechanism for idem-potency: even when
any of the nodes receives the same message twice, it must be able to ascertain in a quick
and efficient manner that the two messages refer to the same event. The solution that we
propose is based on the fact both nodes may compute a quasi-unique ID of any message—a
simple digest. This ID is used by the actors involved as follows:

• N1 computes IDs for all messages that it needs to forward to other peers and stores
locally the IDs of all messages not yet confirmed, each of them in pair with the ID of
the notification sender. Whenever it receives a notification confirmation from a peer,
it shall compute its ID and then look into the list of locally stored IDs. If already present,
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it shall forward the confirmation to the corresponding sender. If the computed ID is
not in the locally stored list, N1 shall discard the confirmation without any forward.

• N2 computes the IDs of all incoming notifications and includes them in their respec-
tive confirmations.

• The client shall also maintain a list of the IDs of all notifications sent and not yet
confirmed. When a confirmation arrives, it shall compare the ID received with the
one stored locally and, therefore, be able to track which of its notifications have been
successfully received.

Figure 5. Notification fault.

We shall observe that, in the case of all confirmed notifications, the sender can be
certain of their reception, while, in the case of not confirmed ones, it may be that at least
some of them reached their intended destination. While this aspect may not be important
for notifications, it becomes relevant in the case of service requests, as described in the
next section.

4.2.3. Service Requests

This type of inter-node communication is the most usual (and useful) form of interac-
tion in a distributed system: node A is sending a message to node B and expects an answer
in return. DOORS supports asynchronous behavior, so the response of node B may arrive
at a much later moment in time. Besides the already discussed and addressed challenge of
“at-least-once” transmission, we have to address additional problems:

• pairing up a request with a much later answer (potentially received after several other
requests, maybe even “out-of-order”);

• deciding when to “stop waiting” for an answer;
• determining whether a request produced any effects on the destination object; and
• de-duplicating multiple responses.

Again, the unique identification of the request (by the receiving node) and the inclusion
of the ID into the response shall be used for de-duplication and pairing requests with
responses. However, for the timing related challenges, we rely on the conclusion of Fischer
and Linch in Reference [19] that, on fully asynchronous systems, consensus is impossible
to obtain in the presence of node crashes. We, therefore, time-box the period in which an
object must reply. If this time period expires, both the sender and the receiver must assume
that the service request fails and act accordingly (the sender may choose to abandon or
re-attempt the request, and the receiver may choose to cancel the service execution and roll
back any partial changes that may have been performed).

4.3. Loss of Communication during Service Requests

In DOORS, we assimilate service calls to objects invoking methods of other objects.
Object A is sending a message to Object B, which resides on another node in order to
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trigger some internal computation. So far, it is similar to the notification, save for a
very important difference: an answer is expected. This means that, besides the normal
receipt confirmation message, Object B shall send back a second response, containing the
expected result. The same ID constructed by N1 shall be used in similar manner, to pair
up the initial request and the receipt confirmation, as well as with the final response,
containing the expected result, as well as to eliminate the potential duplicates at each
reception. The normal communication process is depicted in Figure 6.

Figure 6. Service request scenario.

The asynchronous semantics for service calls in DOORS mean that:

• any client requesting a service from a DOORS object shall receive two answers:
an immediate receipt confirmation and a later service response;

• if no receipt confirmation is received in the normal message exchange time window,
the client shall assume that the request produced no change of state;

• if the receipt confirmation is received but contains the “DESTINATION OFF-LINE”
flag, the client shall assume that the system will re-attempt transmission and execution
of service request when the destination returns online, provided that the service
window has not expired;

• if the receipt confirmation is received without the “DESTINATION OFF-LINE” flag
set, the client shall assume that the system successfully routed the request to the
intended object and that the service is executing or shall be executed in the future,
during the service window period;

• if the receipt confirmation is received without the “DESTINATION OFF-LINE” flag
set, but now response is received during the service window period, the client shall
assume that the service execution failed and that now side effects occurred; and

• if the receipt confirmation is received and the final answer is also received, the client
shall assume that the service executed and that any potential side-effects are durable.

If a fault occurs between the client and N1, the system behavior is similar with
the case of notifications. In addition, if a fault occurs between N1 and N2 before the
receipt confirmation is returned by N2, the system behavior is again similar with the case
of notification. The interesting failure scenario is when the fault between N1 and N2
occurs after receipt confirmation, but before the transmission of the final service response.
This case is depicted in Figure 7, and it shows that the client ends up not receiving the
final service response. The intermediate node N1 performs no further interpretation of this
situation and does not create any supplementary messages.
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Figure 7. Fault during service request.

4.4. The DOORS Approach on Object Partitioning

Class definitions are replicated on each node, while individual objects are atomically
stored—all their attributes are hosted on a single node. Of course, objects may contain as
attributes references to other objects, and those referred objects may be hosted on other
nodes. The system uses digest values for object IDs; therefore, there is no relationship be-
tween any ID value and the node currently hosting an object. Instead, the “current address”
of any object is maintained in the Object Dictionary.

4.4.1. Routing of Messages

Routing messages in distributed systems is making sure that they reach their intended
destination, taking into account the context of partitioning. There is a continuous spectrum
of possible solutions, out of which we mention:

• require that the client entities are aware of the location of each destination object;
this would mean that the client must know to which node to connect in order to send
the message;

• maintain a dedicated entity, which is in charge with the routing, by maintaining an
“address book”; the client must always connect to this dedicated entity; and

• allow the client to connect to any node and implement the “address book” on ev-
ery node.

We have chosen the latter solution for DOORS, and the Object Dictionary is the
globally-replicated “address book”.

4.4.2. Implicit Partitioning and Explicit Balancing

The partitioning policy applied by DOORS is to instantiate any object on the node
on which this operation is required. We name this policy “implicit partitioning”. This is
the simplest policy to implement, it minimizes the cost of the class instantiating operation,
and it also assumes locality, in the sense that objects creating other objects are the most
probable clients of those objects; keeping them on the same node decreases the cost of
their future exchanges of messages. On the other hand, due to particular conditions, e.g.,
when all objects are created by a single client, while the client is connected to the same node,
we end up having all user-created objects hosted on a single node, creating a “hot spot”,
and effectively no partitioning of the set of objects. It may be that the specific needs of a
certain concrete implementation dictate other policies, so DOORS also provides system
services allowing for explicit migration of any object from one node to another. We shall
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refer to this as “explicit balancing”, as it is always explicitly performed by the application
and not provided generically by the system runtime [20,21].

When objects are being moved as an effect of explicit balancing, the Object Dictionary
must be updated and kept in sync on all nodes. This operation must conclude with
the consensus of all nodes, such that any message, originating from any of the nodes,
is properly routed to its destination, and, due to this, the ability to move objects remains
available as long as there is a majority of nodes interconnected.

4.5. The DOORS Approach on Object Replication

We define the replication factor as the number of copies of an object which exist at any
moment in time on a DOORS instance. These copies have all the same ID and the same
values for all attributes. A replication factor of 1 means that each object has a single copy in
the system, which means effectively no replication. A greater replication factor means that
the system provides redundancy. DOORS implements single-leader replication, meaning
that, at any replication factor value, a single copy is “active”, receiving, and processing
reads and writes. We consider this copy the primary replica or “master”. All the other
copies are named secondary replicas, or “slaves”, and they are only following the evolution
of the object state, as occurring on the master. One of the “secondaries” shall take over as
primary replica, in case the node hosting the initial master copy becomes unavailable to
the majority of peers.

The system implements a variant of single-leader replication, the so-called “semi-
synchronous”, depicted in Figure 8, in which only the first replication operation is syn-
chronous, regardless of the replication factor. All reads and writes occur on the primary
replica. All write operations are confirmed back to their issuer only after it was propagated
on the first secondary replica. For DOORS implementation where the replication factor is
greater than 2, all the other secondary replicas shall be updated asynchronously, after the
confirmation of the operation.

Confirmation of a write is performed in two ways, based on the way the write is performed:

• for writes requested by the object itself, the write operation shall only return after the
confirmation; and

• for writes requested by other objects, which are in fact service request messages, the
response message (the second reply message, labeled as “response + msgID” in Figure 6)
shall be sent as confirmation.

Figure 8. Semi-synchronous replication.

In the following subsections, we describe the behavior of the system in various relevant
situations regarding the replication mechanism, and, in preparation of this, we describe
the data structure used for tracking objects within the system: the Object Dictionary.
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4.6. Tracking Object Replicas

In addition to tracking the location of the master replica for each object in the system,
the Object Dictionary is also maintaining other important data, critical for the correct and
efficient management of objects. The structure is outlined in Figure 9, which depicts the
following important fields:

• the object ID: in GUID form, it is the key of the dictionary; the implementation shall
ensure quick access, by maintaining a sorted key-set;

• memory flag and reference: a Boolean flag, set to true if the object is currently in
memory; the reference is a local pointer, indicating the location in the main memory
of the node where the object can be found;

• storage page reference: the id of the storage page if the object is not in memory,
but “swapped-out” to storage instead;

• master node: the id of the node on which the master replica of the object resides;
the memory flag and reference shall be populated only for the entries pertaining to
objects hosted on the current node; and

• replicas reference: a reference to a sorted list of node ids, indicating which nodes
contain the secondary replicas of the object.

Figure 9. Structure of an Object Dictionary entry.

4.7. Object Creation

Everything begins with a node receiving a service request, for instantiating a class.
This request may arrive from an external, directly-connected client, or from another object
currently hosted on the current node (as stated above, any DOORS object shall be created
on the node on which the request is issued). We consider this to be the primary node,
and the major steps performed on it are the following:

1. creation of the master replica of the object: At the end of this step, the structure
depicted in Figure 2 is present in the node’s memory, and the GUID of the object
is generated.
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2. creation of the corresponding Object Dictionary Entry: This step encompasses the
random selection of the nodes which shall host the secondary replicas; at the end of it,
the structure depicted in Figure 9 shall be present in the Dictionary replica present
on the primary node; all the secondary replica entries shall be marked as “invalid”,
as the object is not yet replicated.

3. replication of the Object Dictionary Entry: This is done by the primary node by
sending dedicated messages, containing the “draft” dictionary entry. The majority of
the peers must confirm this before the operation proceeds.

4. creation of the first secondary replica: This is done by the master node by sending a
dedicated message to the node which shall contain the secondary replica, mostly simi-
lar to the initial instantiating message, except that it contains the already generated GUID
of the object. The secondary node must confirm this before the operation proceeds.

5. marking of the first secondary replica as valid in the Object Dictionary and replicating
this change on all accessible nodes: The majority of the nodes must confirm this before
the operation proceeds.

6. initiation of the creation of the rest of secondary replicas: These shall proceed asyn-
chronously. No confirmations are awaited.

7. confirmation of object creation to the issuer of the request.

4.8. Changes in Object State and Their Replication

A change in the state of a DOORS object means the modification of at least one of its
attributes. This may occur in one of the following ways:

• upon execution of one of its own methods: The body of the method may contain a
statement in the form “set (attribute,new-value)”.

• upon receipt of a message requesting the modification of the respective attribute:
DOORS only allows compare-and-set semantics; therefore, the message must be in the
form “change (attribute,old-value,new-value)”. Such a request shall fail if the current
attribute value does not equal the old-value indicated in the body of the message.
Such a message may be received from either a client or from another object within
the system.

A successful change of an attribute must be propagated to all object replicas, in semi-
synchronous manner, as described in Figure 8. For maximum efficiency in the propagation
of changes, the write message from the master node to the slaves is always in simplified
form: “set (attribute,new-value)”. The primary value always takes precedence; therefore,
we can do away with the compare-and-set semantics.

4.9. Failure Detection

Due to the chosen communication solution (based on TCP sockets and the event-based
portable library libevent [22]), DOORS is able to directly detect only one type of failure:
loss of communication. We managed to time-bound this detection, by implementing
messages of known length, and discarding messages not received integrally in a set window
of time. Details on the communication framework and implemented state machine can be
found in Reference [5].

Whenever a message is sent, each of the two involved nodes get a fresh view of the
status of the the other. The receiver node learns that the sender is accessible upon the
receipt of the message, while the sender learns about the status of the receiver based on
whether it receives a confirmation or not.

During periods of “silence”, the peer status information would “go stale”. To avoid
this, in absence of useful traffic, DOORS nodes exchange status query messages regularly,
such that any inaccessible node is detected with a known maximum delay. The fixed
time period at which the status inquiry messages are exchanged is, therefore, the longest
time interval for which the nodes are not aware of the status of their peers. This is
completely under the control of the system; it does not depend on the periodicity of
the useful traffic and is configurable in DOORS. Connection loss may mean anything,
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from transient communication issues, to software malfunctions, or even total loss of
node hardware.

4.10. Reaction to Failure

When a node detects failure of at least one peer, it shall perform the following opera-
tions, as soon as possible:

• determine whether itself forms a majority with the all the peers it can still access:
this status information is important for determining the behavior of the node during
the recovery;

• establish the impacted set: this set contains all objects in the system for which their
master replica is currently inaccessible from the current node.

Nodes which are not part of a majority (i.e., which can still access less than half of
their peers or no peers at all) shall not perform election of a new master for the impacted
set. Instead, all messages originating from their directly connected clients, as well as from
the objects for which they are the master replica, and aimed at objects from the impacted
set, shall be queued and kept locally. Any messages received (and which of course are
aimed at objects for which the node is master) shall be processed normally.

Nodes which are part of a majority (i.e., which can still access at least half of their
peers) shall perform the election of a new master, by iterating through the Object Dictionary
entries pertaining to objects from the impacted set and automatically promoting to master
status the first ID in the list of slave replicas, which is still accessible. In the example
given in Figure 9, if node 5 becomes inaccessible, and the current node is part of the
majority; then the new master node for the depicted object shall be node 3, and iff node
3 is still accessible from the current node. Otherwise, the new master node shall be node
8. If none of the indicated secondary replicas are in fact accessible from the current node,
then, the respective object shall be marked as inactive and all messages aimed at them shall
be locally queued.

The most probable type of failure is single-node isolation. This occurs when only one
node loses its network connection and, therefore, becomes isolated from the rest of its peers.
We shall analyze the effect of this failure upon replication, with the help of Figure 8:

• If N2 fails, then, N3 would be promoted it is place as soon as this condition is detected,
and this is due to the fact that, according to Figure 9, N3 follows N2 in the list of
secondary replicas. The update operation during which the N2 failure occurred would
be then performed normally on N3 and the new slave replica that would have to be
recruited. The state of N2 would be re-synchronized upon its “return to the system”,
according to the outline in Section 4.10.2.

• If N3 fails, then, a new node would have to be recruited as slave replica and synchro-
nized as soon as this condition is detected. The update operation during which the N3
failure occurred would be then performed normally on N2 and the new slave replica.
The state of N3 would be re-synchronized upon its “return to the system”.

• The most complex case is when N1, the master replica, fails during the update of
an object. In this case, the secondary replicas learn about the master failure due
to lack of traffic (no response from N1 to normal requests sent by N2 or N3 or no
normal requests coming from N1 or, in the absence of useful traffic, no status inquiries
coming from N1). The changes required by the client and performed on N1 would
not be persisted into the system only if N1 failed before sending the “write msg1”.
In this case, the client would not have received the confirmation, and N2 would be
promoted to master, while containing the old, not updated value. If, however, the N1
fails after sending “write msg1”, then, the N2 would be promoted to master with
the updated value. The update would not be lost, but the client would not have
received its confirmation. There would be a workaround, by issuing “write msg1”,
“write msg2”, etc., after the completion of “local write 1”. However, this would have
dramatic effect on the performance of the writes, and we chose not to implement this
variant in DOORS.
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4.10.1. Recruitment of New Followers

At this moment, all objects from the impacted set will be temporarily having one less
slave replica. The procedure of election of a new slave replica is in the charge of the newly
elected master and shall be accomplished by random selection. The result of the selection
shall be broadcast by the new master to the rest of the majority.

4.10.2. Synchronization after Connection Restore

When any of the previously inaccessible nodes become accessible, a synchronization
of Object Dictionaries shall occur. This phase relies on a dialogue between the two nodes
and the details depend on previous state of each of the two, as follows:

• If one of the nodes was part of the majority, his Object Dictionary entries will take
precedence over the entries from the Object Dictionary of the other node (which was
for sure not part of the majority during the communication failure). After synchro-
nization, both nodes are considered part of the majority [23].

• If none of the nodes was part of the majority, their synchronization shall be postponed
until one of them becomes part of the majority. In the special corner case in which a
majority is not achievable (due to the fact that the system was heavily segmented by
the failure), a special session for construction of majority shall be initiated. The con-
struction of majority, as well as the case of cascading failures, are not in the scope of
this material.

After the successful synchronization of the Object Dictionaries, the nodes that joined
the majority shall proceed to transmit, in order, all the messages queued locally.

As described in Section 4.10, DOORS nodes maintain the convention to promote to
master the first of the secondary replicas. This implicit form of consensus is ensured iff all
nodes have a consistent object dictionary. The complete list of operations which perform
changes upon the Object Dictionary and, therefore, need a consensus operation in place are:

• creation and deletion of objects;
• migration of objects—please note that only the master replica of an object shall

be moved;
• graceful node life-cycle events, e.g., an admin issuing a command for a node to leave

or join a certain system instance; and
• communication failures, as described above.

4.11. Partitioning in Conjunction with Replication

Partitioning may and shall be used in conjunction with replication [24]. This way,
the system gains both resilience through redundancy and capacity through horizontal
scaling. This, however, complicates the system implementation, as commonly shared data
structures must keep track of all replicas and their distribution across the system.

Figure 10 shows an example DOORS instance, containing 4 nodes and employing a
replication factor of 3. The system hosts 4 objects, and each of them has 1 master replica
and 2 slave replicas. The replication mechanism ensured uniform distribution of replicas,
while the balancing algorithm ensured uniform distribution of the master replicas of
each object.
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Figure 10. Partitioning and Replication in a DOORS instance.

5. Experiments
5.1. The Test Setup

In the context of the Minimal System [4], the first operation performed by a generic
DOORS application is creation of objects. This involves the actual allocation and initializa-
tion of the object, as well as the correct initialization of the Object Dictionary [25].

Our first experiments test the capacity and scaling capabilities of the set of data
structures chosen to store the Object Dictionary. The test platform runs Manjaro Linux
21.1.2, with kernel version 5.10 on a dual-socket machine, with a total of 24 threads running
at 3.06 GHz and 32 GB of RAM.

5.2. Initialization of the Object Dictionary

We performed 8 rounds, with increasing number of objects. We start with 1000 objects
(all identical, and instances of the same minimal class, as described above) and continue in
geometric progression up to 128,000 objects. We measure the time required to complete the
set-up. The results are depicted in Figure 11.

Figure 11. Object Dictionary creation time, logarithmic scale.

The final value is extrapolated, based on the recorded series. We see a duration of 72 s
for creating a dictionary of 128,000 objects and extrapolate to almost 9 min for creating a
dictionary of one million objects. The conclusion is that our currently adopted solution,
of creating the dictionary “from scratch”, does not scale satisfactorily. DOORS must build
the dictionary incrementally and rely on storage in order to become a usable system.
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5.3. Status Inquiry

As described in Reference [3] and based on the solution outlined in Reference [26],
each DOORS node exchanges “heartbeat” messages with all its peers in order to detect
communication failures. The drawback of this approach is of course the low scalability
(the cost increases linearly with the number of peers). According to measurements per-
formed in a non-perturbed 780 Mbps Wi-Fi network, the duration of one status inquiry is
around 10 ms and involves the transmission of less than 60 bytes (it involves three one-way
trips between the nodes). Given the fact that one message exchange yields status for both
involved nodes, the number of messages needed for a full status update of an N-node
system is N · (N − 1)/2. The evolution of the total duration of the status update as a
function of the number of peers is depicted in Figure 12.

A DOORS Local System of 128 peers would then need 90 s just to get a full status
update. One must consider then the occupancy of the communication channels. If we
would restrict the status inquiry traffic to a maximum of 25% of traffic, it would mean
that we would never be able to get a status update more often than any 325 s. Fortunately,
a solution to this limitation is immediate: the status inquiries shall only be exchanged in
the absence of useful traffic.

Figure 12. Evolution of the total duration of status requests as a function of the number of peers in
the LS.

By periodically computing latencies and by exchanging status information, the nodes
shall be able to distinguish between:

• system segmented (each node is alive, but part of one of potentially several segments);
• node isolated (a single node is missing, or the present node is active but isolated); and
• perturbed network (multiple transient node disappearances).

5.4. The Cost of Election of a New Master

We measured the cost of replication and its evolution as a function of the replication
factor and of the number of objects. We use a geometric progression in the number of objects:
1000, 2000, 4000, all the way up to 512,000 objects. We perform 2 sets of measurements for
replication factors of 2 and 3. The results are depicted in Figure 13.
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Figure 13. Election of new master for unavailable objects.

The cost of master election for 512,000 objects with a replication factor of 3 is less than
170 ms. By extrapolating the series, we find out that, for a cost of 1s, the system is able to
manage the replication of around 3.6 million objects. For future practical cases, in which
this cost is not acceptable, we shall consider optimization of the election algorithm.

The actual values recorded are listed in Table 1. The values show a relatively linear
growth. Doubling the number of objects yields a roughly twice as long election time. This is
consistent with our estimation, based on the type of data structure currently implementing
the Object Dictionary, which is a double-linked queue, for which the traversal is O(n) .
We have, however, exceptions, for numbers of objects equal to 16 k up to 64 k, for which
the duration increases more rapidly. We consider that the cause lies in the “loss of locality”.
These are the sizes at which the data structure no longer fits in the CPU caches and
performance degrades. For numbers greater than 64 k objects, the recorded duration grows
linearly again.

Table 1. Duration measured for the election of new masters for unavailable objects.

Number of Objects 1 k 2 k 4 k 8 k 16 k 32 k 64 k 128 k 256 k 512 k

Election time, r = 2 [ms] 0.081 0.167 0.3 0.7 1.844 6.395 16.365 34.358 70.148 143.477
Election time, r = 3 [ms] 0.092 0.188 0.378 0.795 2.031 7.734 19.703 40.955 83.676 168.486

6. Conclusions

The paper presented the replication solution for the object-oriented runtime system for
Edge Computing. The solution is semi-synchronous with a configurable factor having the
capability to move objects from one node to another. We described the structures of objects
and classes in DOORS, the definitions for attributes, methods, and parameters, and the
communication protocols. The communication issues are also presented, and proper
solutions are adopted. The partitioning aspect is analyzed in conjunction with DOORS’
nodes replication. The experimental results show the ability to distinguish between system
segmented, node isolated, and perturbed network.

A series of baseline experiments were performed and documented, measuring the du-
ration for: the creation of the Object Dictionary, the system-wide status inquiry, and the cost
of replication. Besides establishing a quantitative baseline, the experiments conclude that:
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• “full-rebuilds” of the Object Dictionary should be avoided; instead, this system
data structure shall be saved into persistent storage and restored from there upon
node restart;

• status inquiry grows rapidly with the number of nodes; in order to scale acceptably
above 100 peers, nodes should only use dedicated “heartbeat” messages only in
absence of timely useful traffic; and

• the relatively naive implementation of the Object Dictionary in the DOORS Minimal
System is capable of electing new master replicas for 3.6 million objects per second.

As future work, we may focus on migration of client connection, efficient dictionaries,
polymorphism, and event-oriented language implementation.
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