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Abstract: We proposed a differential fiber-optic refractive index sensor based on coupled plas-
mon waveguide resonance (CPWR) in the C-band. The sensor head is a BK7 prism coated with
ITO/Au/ITO/TiO2 film. CPWR is excited on the film by the S-polarized components of an incident
light. The narrow absorption peak of CPWR makes it possible to realize dual-wavelength differential
intensity (DI) interrogation by using only one incident point. To implement DI interrogation, we
used a DWDM component to sample the lights with central wavelengths of 1529.55 and 1561.42 nm
from the lights reflected back by the sensor head. The intensities of the dual-wavelength lights varied
oppositely within the measurement range of refractive index, thus, a steep slope was produced
as the refractive index of the sample increased. The experimental results show that the sensitiv-
ity is 32.15/RIUs within the measurement range from 1.3584 to 1.3689 and the resolution reaches
9.3 × 10−6 RIUs. Benefiting from the single incident point scheme, the proposed sensor would be
easier to calibrate in bio-chemical sensing applications. Moreover, this sensing method is expected
to be applied to retro-reflecting SPR sensors with tapered fiber tip to achieve better resolution than
wavelength interrogation.

Keywords: coupled plasmon waveguide resonance; differential intensity interrogation; refractive
index sensor; C-band

1. Introduction

A surface plasmon resonance (SPR) sensor is very sensitive to the change of refractive
index of the measured medium. Due to the advantages of SPR sensors, such as high
sensitivity, real-time monitoring, and label-free, until now, the research of SPR sensors and
their application in bio-molecular interactions and chemical analysis is still a hot spot [1–5].
To make full use of the advantages of optical fiber sensing technology, various SPR sensors
based on optical fiber have been developed. From the role of optical fiber in the sensor,
fiber SPR sensors could be classified into sensing type [6,7] (using fiber as the coupling
element) and light transmission type [8,9] (fiber is only used to transmit optical signal).
Unlike the former, the latter usually used a non-fiber coupling element. Therefore, although
the sensing structure is not compact, it is more robust because the sensor head is not as
fragile as bare fiber tip. This type of sensor can employ either wavelength interrogation
or intensity interrogation. When the working band is in the narrow C-band, the intensity
interrogation would be a better choice because it does not need to consider the extremely
wide SPR spectrum [10].

In previous work, a fiber-optic SPR remote sensor in the C-band has been demon-
strated [11]. To deal with the influence of the power fluctuation of a light source on the
resolution, the sensor is designed to work in the differential intensity (DI) interrogation
mode. A BK7 prism coated with Au/TiO2 films serves as a sensor head, in which the
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thickness of TiO2 films is different. To enable two channels for DI interrogation, two fiber
collimators were glued onto the sensor head. As a result, the sensor head should be large
enough to ensure the space required to implement the scheme of two incident points.
Therefore, the sensor head has little potential for miniaturization. Moreover, when the
scheme of two incident points is applied to biochemical sensing, there would be another
problem. Anisotropic or non-uniform surface refractive index perturbation is the most
frequent situation in biochemical sensing applications of SPR sensors [12]. If the DI in-
terrogation is used to measure one certain biosensing interaction on the surface of the
multiple sensing area, there would be different deviation caused by the different distributed
refractive index perturbation of the sensor, making the sensor difficult to calibrate. As a
result, in the practical application of DI interrogation, a scheme of single incident point is
preferred. Aiming to realize DI interrogation using a scheme with a single incident point
in the C-band, two different wavelengths of light are needed, and the resonant spectrum
should be narrow enough. Fano resonance based on various artificial nanostructures can
provides narrow-band absorption or radiation spectrum. The high quality factor of Fano
resonance is attractive in the field of ultrasensitive sensing and filtering [13–15]. It is also a
good scheme to obtain a desired resonant spectrum with an appropriate width by using the
traditional layered structure, since the preparation of the layered structure is not complex
benefiting from the mature coating technique.

Four different SPR modes have been proposed as conventional SPR (CSPR), waveguide-
coupled SPR (WCSPR), long-range SPR (LRSPR), and coupled plasmon waveguide reso-
nance (CPWR). Unlike CSPR, which uses a single metal film, WCSPR is usually constructed
by inserting a dielectric waveguide layer between two metal films. In angular interroga-
tion, it exhibits two dips that are provided by SPR mode and waveguide mode; thus, it
is convenient to accurately determine the thickness and dielectric constant of the func-
tional layer in a biosensor [16]. Nevertheless, in wavelength interrogation, the spectrum
of WCSPR would widen with the red shift of the working band just like the spectrum of
CSPR. Therefore, the spectrum of WCSPR in the C-band would be too broad to be used
by us. The structure that excites LRSPR is generally composed by substrate/dielectric
layer/metal film/analyte [17]. When the refractive indexes of the dielectric layer and the
analyte are equal or similar, the propagation distance of the surface plasmon is longer than
that of CSPR, which means lower loss of LRSPR as well. As a result, the LRSPR exhibits
a very sharp dip in angular interrogation [18], it also possesses a narrower spectrum un-
der wavelength interrogation than that of the CSPR. The sensor base on LRSPR has the
advantage of higher sensitivity compared with the sensor based on CSPR, a sensitivity of
5.9 × 104 nm/RIUs to bulk refractive index change can be achieved [19]. It is possible to
design a layer structure to obtain a sufficient narrow LRSPR spectrum in the C-band and
ultra-high sensitivity can be expected. However, if the working band is limited within the
narrow C-band (~35 nm), the measurement range would be severely compressed to an un-
acceptable level. What is more, the tuning of the measurement range becomes inconvenient
since the performance of the LRSPR relies upon the existence of a symmetric environment.

CPWR mode is a mode supported by a waveguide usually composed of prism/noble
metal film/dielectric/analyte [16], which fulfills the mode equation. The mode equations
of P- and S-polarized component are different due to the different formulas of reflection
coefficient [20]. The guided modes are related to waveguide parameters. Therefore,
the CPWR mode can be excited by the P- or S- polarized component via adjusting the
parameters of the film in the waveguide. Compared with the CSPR and WCSPR, the CPWR
exhibits a narrower resonant spectrum, which could improve the detection resolution, but
for us, the narrow spectrum makes it possible to realize dual-wavelength DI interrogation in
the C-band using a single incident point. Commonly, CPWR devices’ sensitivity is 10-times
less than that of the CSPR devices, but various approaches can be used to enhance the
sensitivity [21], such as employing the coupling effect of the propagating SPR and localized
SPR [22] or utilizing new sensitivity-enhancing materials [23]. It is worth mentioning
that with the increase of the thickness of the overlayer, the CPWR resonant dip shifts to a
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longer wavelength and the corresponding sensitivity increases [24]. From the perspective
of measurement range, if the working band is fixed within the narrow C-band, a sensor
based on CPWR can obtain a larger measurement range than the one based on LRSPR
because of its lower sensitivity.

In this work, we proposed a differential fiber-optic refractive index sensor based on
CPWR in the C-band. The sensor head is a BK7 prism coated with ITO/Au/ITO/TiO2
film, enabling CPWR of S-polarized components of an incident light. An unpolarized
C-band light emerging from a fiber collimator strikes upon the film twice and excites
CPWR. The reflected light is coupled back to the collimator. A DWDM module samples the
reflected light with central wavelengths of 1529.55 and 1561.42 nm for DI interrogation. The
experimental results show that the intensities of the dual-wavelength lights vary oppositely
within the measurement range from 1.3584 to 1.3689, which demonstrates that it is feasible
to use a single incident point to implement DI interrogation in the C-band.

2. Preparation of Sensor Head

The plasmonic response of a sensing film is vital for the preparation of a sensor based
on CPWR in the C-band. Therefore, we use a measurement apparatus we built up [11]
to characterize the sensing film. In the apparatus, the original photodetectors (ThorLabs,
Newton, NJ, USA, DET50B) were replaced by the detectors (ThorLabs DET20C2) with much
lower dark current to facilitate measurement. BK7 glass substrates (Agar Scientific Ltd.,
Essex, UK) were used to prepare the sensing layer. An ITO/Au/ITO film was prepared
by sputtering a pure gold target and an ITO target (In2O3:SnO2 = 9:1) using two ion-
sputtering equipment (SBC-12, KYKY Technology Co., Ltd., Beijing, China). One is used
for Au film deposition and the other is used for ITO film deposition. The target-substrate
distance of each ion sputtering equipment is set to 50 mm. Under the condition of argon
pressure of 5 Pa and current of 3 mA, the gold film was sputtered for 100 s. For both
ITO films, the pressure of argon is 5 Pa, the current is 5 mA, and the sputtering lasted
for 60 s. TiO2 film were capped on ITO/Au/ITO film by using e-beam evaporation at
a rate of 0.3 nm/s. The thickness of TiO2 film was monitored by a quartz crystal film-
thickness monitor during evaporation. We chose ITO film as an adhesion layer because
ITO has much smaller extinction coefficient than Cr [25,26]. The stability of the sensing
film was tested by immersing the coated substrates into water for one week. It is found
that ITO/Au/ITO/TiO2 film is stable, while Au/TiO2 film fell off from the substrate and
the TiO2 film of ITO/Au/TiO2 film showed wrinkles after one day.

The SPR curves R(θ) of ITO/Au/ITO film were collected at several incident wave-
lengths across the C-band using the established apparatus. As shown in Figure 1, these
curves are very close to each other, and there is only a slight difference in resonant angles
as well as corresponding reflectivities, which is attributed to the dispersion characteristics
of Au film in the C-band [27]. By fitting the SPR curves, the calculated effective thickness
ranges from 33 to 35 nm, in which the thickness corresponding to the incident light wave-
lengths of 1528.77 and 1563.86 nm is 33 nm. Therefore, we considered that it is reasonable
to estimate the thickness as 33 nm, and then we fitted the SPR curves again to determine
the effective dielectric constants when the thickness is fixed at 33 nm.

As shown in Figure 2, there is a lager deviation between the value of imaginary part
of dielectric constant and the fitting curve, compared with the case of real part ones. This is
due to the measurement accuracy of the apparatus, specifically, the repeated positioning
accuracy of the rotary stage is 0.005◦, which is comparable to the interval of angular
scanning (~0.006◦). As a result, the measurement accuracy of resonant angle and reflectivity
is limited. Even so, the fitting results still show a certain degree of regularity.
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Figure 2. Dielectric constants of ITO/Au/ITO film in the C-band.

The incident light was adjusted to S-polarization by rotating the Glan–Taylor polarizer.
The CPWR curves R(θ) of ITO/Au/ITO/TiO2 film were obtained in air. As depicted in
Figure 3a, owing to the dispersion of TiO2 film, the resonance angle decreases gradually
with the increase of wavelength. Utilizing the parameters of ITO/Au/ITO film determined
previously and assuming the dielectric constants of TiO2 film conform to the values in
the reference [28], we fitted the CPWR curves and calculated the thickness of TiO2 film
corresponding to each incident light wavelength. As can be seen in Figure 3b, the calcu-
lated thickness of TiO2 film is distributed between 259 and 259.7 nm. For simplicity, we
determined the thickness of TiO2 film as 259.35 nm.

We characterized the cross section of the film by using a SEM (FEI Sirion IMP). The
image is shown in Figure 4. The thickness of ITO/Au/ITO film agrees well with the
calculated one. The thickness of TiO2 film is 253 nm, which is about 6 nm less than the
calculated value. Nevertheless, the thickness error of 2% can also show that the calculation
results have a certain reliability. We performed simulation to verify the ITO/Au/ITO/TiO2
film is able to support CPWR. The incident angle is fixed at 68.26◦, and the parameters of
the sensing film determined previously are adopted. Multilayer Transfer Matrix Method
for both P- and S-polarized light is utilized to simulate twice interactions between light
and sensing film when the refractive index of sample (ns) is 1.359. For comparison, the
SPR response of 60 nm Au/28.7 nm TiO2 film (denoted as film1) and CPWR response of
60 nm Au/539 nm TiO2 film (denoted as film2) excited by P-polarized component were
also simulated. In the simulation, the dispersion of Au and TiO2 film are sourced from
reference [27,28], respectively.
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Figure 4. The cross section of the ITO/Au/ITO/TiO2 film.

The results are shown in Figure 5a, suggesting that: (1) conventional SPR spectrum of
60 nm Au/28.7 nm TiO2 film is too broad to be used for DI interrogation; (2) the CPWR
spectrum of 60 nm Au/539 nm TiO2 film is narrower than the others. To ensure the linearity
of DI response, the light of two wavelengths corresponding to full width at half maximum
of a spectrum should be selected for DI operation. Due to the narrow spectrum, higher
sensitivity can be expected, but the measurement range would be reduced. To expand
the range, the light of several wavelengths are needed additionally for DI operation, This
segmented detection method requires more detectors, which will also increase the cost.
(3) CPWR of ITO/Au/ITO/TiO2 film can be excited by the S-polarized component of an
incident light. Even though the spectrum is broader than the one of film2, it is sufficient to
realize DI interrogation by using a scheme of single incident point and dual-wavelength
lights. Figure 5b illustrates the resonant wavelength versus ns for ITO/Au/ITO/TiO2 film,
from which a sensitivity of wavelength interrogation can be derived as 2338 nm/RIUs
within a measurement range of 1.353–1.365.
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for ITO/Au/ITO/TiO2 film.

A BK7 prism was customized which should have an isosceles-triangular base of angles
of 68.26◦, corresponding to the cross-section dimensions 27 mm × 27 mm × 20 mm and
height 27 mm. It should be mentioned that to ensure more accurate incident angle, we cus-
tomized a larger prism instead of compact one, which is enough to prove the feasibility of
the proposed sensor. Nevertheless, we measured the size of the prism with a Vernier caliper,
and found that the cross-section size of the prism is 26.94 mm × 26.94 mm × 19.87 mm;
thus, the actual value of the incident angle would be 68.36◦. We deposited a thick Au
film (~400 nm in thickness) onto a square facet of prism as a reflective coating, and then
prepared ITO/Au/ITO/TiO2 film on the rectangular facet of prism. The fixing process
of an fiber collimator and prism has been described in our previous work [11], but unlike
before, we only use one fiber collimator. A rigid pipe is used to connect the prism and
collimator. All parts in contact with each other were fixed with UV curing adhesive. The
structural diagram and photograph of the sensor head are shown in the Figure 6.
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3. DI Sensing Based on CPWR and Discussions

We established a testing system to investigate the CPWR response of the prepared
sensor head in frequency domain. The testing system is shown in Figure 7. A light beam
from a C-band ASE source (ASE-C-100-T-B, Hefei Max-ray Photoelectric Technology Co.,
Ltd., Hefei, China) enters the input port of a circulator and exits from the collimator after
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passing through a fiber (G.652) with a length of one kilometer. The light emerging from the
collimator enters the prism at normal incidence, and then excites CPWR on the sensing
layer at an incident angle of 68.36◦. After the light reflected off the sensing layer is reflected
by the 400-nm gold film, its incidents upon the sensing layer again at the same incident
angle and excites the CPWR one more time. The light output from the prism couples
back to the collimator. The reverse transmitted light passes through the circulator and is
received by an optical spectrum analyzer (OSA, Anritsu MS9710C, Anritsu, Atsugi, Japan)
with a resolution of 50 pm. For testing, the sensor head was immersed into the prepared
aqueous solutions of glycerol. To avoid the influence of temperature fluctuation on the
measurement as possible, the temperature of solution was controlled at 25 ± 0.2 ◦C.
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Figure 7. Structure diagram of the testing system for CPWR response of the sensor head.

Figure 8a shows the CPWR spectrum of the sensor head at ns = 1.3584. The reference
spectrum for normalization was measured when the sensor head was in air. It is obvious
from the figure that absorption has occurred, but hardly determine the position of the reso-
nant wavelength, which is due to the spectrum of ASE is not flat enough. Figure 8b shows
the normalized CPWR spectrums at different ns. From Figure 8b, we can get the following
information: Firstly, the resonant wavelength increases from 1531.85 to 1556.70 nm as ns
increases from 1.3584 to 1.3689, suggesting that the sensitivity is 2366 nm/RIUs within a
measurement range of 1.3584~1.3689. The sensitivity is 1.6-times that of 1396.85 nm/RIUs
reported in the literature [21], which is the benefit of moving the working wavelength into
the C-band. Compared with the sensitivity of 8000 nm/RIUs reported in the literature [23],
the sensitivity of the proposed sensor is more than three-times lower, owing to the ab-
sence of sensitivity enhancement mechanism. Secondly, we can use the light with central
wavelengths of about 1530 and 1560 nm for DI interrogation.

For comparison, we simulated the CPWR spectrums within the measurement range,
and extracted resonant wavelength at ns from both simulated and experimental spectrums,
the results are shown in Figure 8c,d. It is illustrated that the resonant wavelength of the
simulated spectrum is about 8-nm larger than that of the experimental spectrum in the
measurement range. The discrepancy mainly comes from the thickness of TiO2 film on the
sensor head is a few nanometers smaller than that of TiO2 film used to determine the film
parameters, which is due to the TiO2 films not being deposited in the same batch.

To implement DI interrogation, we used a DWDM component (48CH 100 GHz AAWG
module, Hefei Max-ray Photonics Co., Ltd., Hefei, China) to sample the reflected light with
central wavelengths of 1529.55 and 1561.42 nm. The two wavelengths are named λ1 and λ2,
respectively. Figure 9 shows the spectrums of the DWDM’s two channels. The intensity
of λ2 is higher than that of λ1 due to the characteristics of the ASE spectrum as depicted
in Figure 8a. We replaced the optical spectrum analyzer with a DWDM component, and
the DI sensing system is shown in Figure 10. The DWDM samples the lights with central
wavelengths of λ1 and λ2 from the output light of the circulator. The dual-wavelength lights
were received by two photodetectors (ThorLabs, DET01CFC). A synchronous DAQ module
with an actual accuracy of 15-bits collect the voltage signals for DI interrogation. At each ns,



Sensors 2021, 21, 7984 8 of 12

50 data were recorded by collecting one data every 2 s. The normalized differential signal
is obtained by dividing the difference in voltage by the sum of voltages, expressed as:

Signalnormalized = (Vλ1 − Vλ2)/(Vλ1 + Vλ2) (1)
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Figure 10. Structure diagram of DI sensing system.

Figure 11a shows the Vλ1 and Vλ2 at each ns. As expected, within the measurement
range, Vλ1 dropped down as Vλ2 rose up because the reflectivity of light at the correspond-
ing wavelength also experiences such a change trend. Figure 11b depicts the experimental
and simulated DI signal. The experimental results agree well with the simulated ones,
however, there is some discrepancy. Because the dielectric constants of the layer affect the
DI signal through the effect on the width and depth of the CPWR spectrum, we consider
that the discrepancy mainly comes from the deviation between the dielectric constants of
ITO/Au/ITO film and the real value. Due to the simulated signal is not linear natively, we
used third-order polynomial fitting to analyze the experimental data, The relation between
the experimental signal and the ns changing exhibits good regularity, the fit goodness
coefficient is R = 99.887%. The experimental signal rose from −0.3134 to 0.0242 as the ns
increases from 1.3584 to 1.3689; thus, the average sensitivity of the sensor can be derived as
32.15/RIUs which is close to that of 31.7/RIUs in our previous work [11].
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Figure 11. (a) Voltage signals of dual-wavelength lights at ns; (b) Normalized signals including simulated signal, experi-
mental data, and fitting results.

The ultimate resolution of the proposed sensor is directly limited by the maximum
fluctuation of the normalized signal which can be expressed as σmax. Figure 12a illustrated
σmax at each ns. σmax is distributed between 3.0 × 10−4 and 7.5 × 10−4. According to the
sensitivity of 32.15/RIUs, the resolution are derived at each ns, as shown in Figure 12b. The
lowest resolution is 2.33 × 10−5 RIUs reaches the typical value of intensity interrogation,
the highest one is 9.3 × 10−6 RIUs.
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For comparison, we evaluated the resolution of the sensor head for wavelength
interrogation by using the formula in the literature [29]. It is found that the resolution
of DI interrogation and wavelength interrogation are in the same order of magnitude.
However, several factors affect the resolution of wavelength interrogation, such as the
sensitivity, signal to noise ratio (SNR) associated with amplitude noise, full width at half
maximum (FWHM) of CPWR spectrum and optical resolution of 50 pm provided by the
optical spectrum analyzer. As a consequence, the resolution limit of resonant wavelength
is about 0.18 nm according to our evaluation, which is about three-times larger than 50 pm,
causing the deterioration of the sensor’s resolution. For wavelength interrogation, the best
resolution is 6.77 × 10−5 RIUs. There may be two approaches to improve the resolution by
reducing the amplitude noise of spectrum, one is that a light source with very stable power
should be used, another is that the CPWR and reference spectrum should be recorded
simultaneously. The former would lead to a high cost of the sensing system, while the
latter is not easy to realize by using an optical spectrum analyzer with only one channel. It
is worth noting that the DI sensor base on CPWR exhibits better resolution than the sensor
of wavelength interrogation, even using devices with much lower cost than an optical
spectrum analyzer.

4. Conclusions

In this work, we presented a differential fiber-optic refractive index sensor based on
CPWR in the C-band. The sensor head is a BK7 prism coated with ITO/Au/ITO/TiO2
film, which can excite CPWR utilizing S-polarized components of an incident light. The
bandwidth of CPWR is suitable for DI interrogation using only a single incident point
and dual-wavelength lights. To implement DI interrogation, we used a DWDM module
to sample the lights with central wavelengths of 1529.55 and 1561.42 nm from the lights
reflected back by the sensor head. The experimental results showed that the reflectivity of
the dual-wavelength lights vary oppositely within the measurement range; thus, a steep
slope was produced as ns varies. The sensitivity is 32.15/RIUs in the ns range of 1.3584 to
1.3689 and the resolution reaches 9.3 × 10−6 RIUs. The single incident point scheme of the
sensor head is expected to provide great convenience for calibration in bio-chemical sensing
applications. The structure of the sensor head is quite simple; thus, a compact sensor head
could be manufactured for practical applications. What is more, the approach of DI
interrogation using CPWR in the C-band has potential to be applied in retro-reflecting SPR
sensors with tapered fiber tip to achieve better resolution than wavelength interrogation.
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