
sensors

Article

Clustering-Based Plane Segmentation Neural Network for
Urban Scene Modeling

Hongjae Lee 1 and Jiyoung Jung 2,*

����������
�������

Citation: Lee, H.; Jung, J.

Clustering-Based Plane Segmentation

Neural Network for Urban Scene

Modeling. Sensors 2021, 21, 8382.

https://doi.org/10.3390/s21248382

Academic Editors: Javier Alonso Ruiz,

Angel Llamazares and Martin Lauer

Received: 25 October 2021

Accepted: 13 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronic Engineering, Kyung Hee University, Yongin-si 17104, Korea; jimmy9704@khu.ac.kr
2 Department of Artificial Intelligence, University of Seoul, Seoul 02504, Korea
* Correspondence: jyjung@uos.ac.kr

Abstract: Urban scene modeling is a challenging but essential task for various applications, such
as 3D map generation, city digitization, and AR/VR/metaverse applications. To model man-made
structures, such as roads and buildings, which are the major components in general urban scenes, we
present a clustering-based plane segmentation neural network using 3D point clouds, called hybrid
K-means plane segmentation (HKPS). The proposed method segments unorganized 3D point clouds
into planes by training the neural network to estimate the appropriate number of planes in the point
cloud based on hybrid K-means clustering. We consider both the Euclidean distance and cosine
distance to cluster nearby points in the same direction for better plane segmentation results. Our
network does not require any labeled information for training. We evaluated the proposed method
using the Virtual KITTI dataset and showed that our method outperforms conventional methods in
plane segmentation. Our code is publicly available.

Keywords: point cloud plane extraction; 3D point clustering; 3D segmentation; urban mapping

1. Introduction

Large-scale 3D reconstruction has been one of the most popular research topics in
the field of robotics and computer vision for decades. In recent years, researchers and
companies have been actively utilizing various sensors to obtain large-scale 3D reconstruc-
tion results over a certain level of accuracy with less time and cost. In particular, range
sensors, such as LiDARs, have become very popular in outdoor scene modeling, and many
researchers and engineers in related fields are now interested in utilizing the obtained large
point clouds.

In this study, we focus on urban scene modeling, which is a challenging but essential
task for 3D map generation for autonomous cars, city digitization, and AR/VR/metaverse
applications. To model the ground and buildings, which are the major components in
general urban scenes, we present a clustering-based plane segmentation neural network
using 3D point clouds.

Plane segmentation from a point cloud is considered a foundation system in vari-
ous computer vision and robotics fields, including object detection, model reconstruction,
and map compression. Although many effective methods [1–3] have been proposed to
segment a point cloud into planes, these methods focus on organized point clouds, which
are depth values in grid arrays. However, point clouds obtained from LiDARs are usu-
ally unorganized, and organized point clouds obtained from depth cameras can easily be
expressed in an unorganized form as well. Random sample consensus (RANSAC) and
region-growing-based algorithms have been widely used to extract planes from unorga-
nized 3D point clouds.

We propose a novel approach to segment unorganized 3D point clouds into planes,
called hybrid K-means plane segmentation (HKPS). The whole plane segmentation proce-
dure using the proposed system is shown in Figure 1, and the detailed plane segmentation
process of HKPS is shown in Figure 2. We extracted man-made structures from the
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unorganized input point cloud and voxelized the point using voxel downsampling as
pre-processing. The proposed HKPS involves two steps: hybrid K-means clustering and
plane merging. Hybrid K-means clustering performs clustering based on K-means++ [4],
which is a K-means [5]-based clustering algorithm that has the advantage of careful seeding.
K-means++ requires a parameter K, which is the number of clusters. We used PointNet [6]
to estimate parameter K from the point cloud. PointNet is an unsupervised learning model
that uses cosine distance for training. The final plane merging step combines the small
planes that need to be merged. Our code is publicly available at [7].

Figure 1. The plane segmentation procedure using the proposed system. We extract man-made
structures from the unorganized input point cloud and voxelize the points using voxel down sampling
as pre-processing. Then, the proposed hybrid K-means clustering method segments the point cloud
into planes. Finally, the merging process combines the small planes that need to be merged.

Figure 2. An overview of the proposed framework. PointNet [6] takes the input point cloud of man-made structure and
outputs the number of clusters. We estimate the normal of each point, and then perform hybrid K-means clustering for
plane segmentation (Sections 3.1 and 3.2). At the end of the network architecture, the plane merging process optimizes the
number of planes (Section 3.3).
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2. Related Work

Semantic segmentation in 2D images using convolutional neural network (CNN)
has been extensively studied in several decades [8–10]. Semantic segmentation in 3D
point clouds using CNN is a more challenging task in many aspects, and researchers
have focused on the related problems [6,11,12], including the recent studies on fast and
efficient 3D segmentation for urban scene analysis [13–15]. For the task of segmentation in
point clouds, many previous works [16,17] used PointNet [6]. These previous approaches
require the ground truth for training the neural network, which is usually difficult to
obtain. Labeling 3D points for plane segmentation is a laborious task owing to the noise
and ambiguity in point clouds. More recent methods that do not require ground truth are
usually based on the Hough transform, RANSAC, and region growing.

2.1. Hough Transform

Hough transform [18] is a feature extraction technique used to find objects with a
certain class of shapes by a voting procedure. This voting procedure is carried out in a
parameter space, from which object candidates are obtained as local maxima. The classical
Hough transform is used to detect lines in binary images. The key idea behind the Hough
transform is to change the coordinate system from image to Hough space. If the coordinate
system is moved to the Hough space, lines passing through the points can be displayed
as intersection points. Vosselman et al. [19] presented a plane extraction method from 3D
point clouds based on the Hough transform and proposed a 3D Hough transform using
normal vectors to enhance the speed and reliability of the traditional Hough transform.
Limberger and Oliveira [20] proposed a plane extraction algorithm for point clouds by
extending the kernel-based Hough transform [21]. The method creates a cluster using an
octree and principal component analysis (PCA) and then votes for each cluster using a
Gaussian kernel to extract planes. These methods are computationally fast and effective
but tend to be sensitive to outliers.

2.2. RANSAC

Random sample consensus (RANSAC) was first presented by Fischler and Bolles [22].
RANSAC randomly selects some sample data and finds the model parameters to represent
the sample data. In the case of finding planes to fit the sample points, the model parameters
are the parameters in the plane equation. To find the best parameters, the method counts
the number of inliers for the selected model, repeats the process several times, and finally
selects the model with the largest number of inliers as the final result. Typically, to extract
planes from 3D point clouds, we run RANSAC sequentially until no more planes can be
found. RANSAC-based plane extraction algorithms are computationally more expensive
but usually more robust to noise than Hough transform-based algorithms. However, these
methods tend to combine adjacent planes into the same plane, specifically when the size of
the adjacent plane is small.

Gotardo et al. [23] used a robust estimator to avoid premature convergence, which
resulted in the preservation of small regions and edge locations, and accelerated the
optimization process by a genetic algorithm. Schnabel et al. [24] predicted a model using
only nearby peripheral points with an octree. The method detects planes, spheres, cylinders,
cones, and tori and shows improved speed and scalability. Point sets with several million
samples are robustly decomposed within less than a minute. Gallo et al. [25] proposed
CC-RANSAC, which only considers the largest connected components of inliers to evaluate
the fitness of a candidate plane. CC-RANSAC recovers the planar patches composing a
typical step or ramp with higher accuracy than the traditional RANSAC algorithm. Despite
recent advances, RANSAC based algorithms are still weak in distinguishing small clusters
of points. They usually fail to produce reliable results in situations with two nearby patches
of limited extent, where a single plane crossing through the two patches may contain more
inliers than the “correct” models.
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2.3. Region Growing

The region growing algorithm works by randomly selecting a starting point called a
seed from the point cloud and then growing the region by adding points that satisfy a set of
criteria. PCA is generally used to calculate the normal and curvature required for regional
growth. Nurunnabi et al. [26] proposed a minimum covariance determinant (MCD)-based
robust PCA to solve the outlier sensitivity problem of PCA. Vo et al. [27] created an octree
and generated planar patches using PCA at each node of the octree. Their method measures
the planarity of planar patches using the mean square distance, and subdivides the patches
recursively with a threshold. After extracting planar patches, planes and points are merged
using the difference between the normal angle of each plane and its distance to the point.
Araújo and Oliveira [28] presented a plane extraction algorithm that does not require
parameter tuning. Their method is similar to that of Vo et al., but it creates a planar patch
in an octree by a bottom-up approach, whereby it keeps subdividing until planes can be
detected. Planarity tests are performed using angular differences at each step to avoid
parameter tuning. Region growing methods tend to fail in extracting a plane composed of
few points similar to RANSAC-based methods. They also show difficulties in dividing two
adjacent planes with different directions at the edges.

2.4. Clustering

Clustering algorithms can be classified as hierarchical or non-hierarchical. Most previ-
ous clustering-based plane segmentation algorithms are based on hierarchical clustering.
Feng et al. [1] presented a plane extraction algorithm using hierarchical clustering. After ex-
tracting planar patches from the point cloud using PCA, the plane extraction algorithm
constructs a graph to represent the patches and their relationship with each other. Then,
agglomerative hierarchical clustering is performed using the mean-squared orthogonal
point-to-plane fitting error. Finally, the roughly extracted planes are fine-tuned using the re-
gion growth in pixels. Schaefer et al. [3] utilized the maximum likelihood estimation (MLE)
for agglomerative hierarchical clustering. When clustering, a plane is always extended
in the direction that decreases the measurement likelihood of the scan. However, these
methods can only be applied to organized point clouds.

Non-hierarchical clustering can be divided into density-based and center-based meth-
ods. Ester et al. [29] proposed a density-based clustering algorithm, named DBSCAN, based
on the assumption that similar data are closely distributed to each other. Continuously
dense regions are defined as clusters. DBSCAN performs well when dense and non-dense
areas are easily distinguished. K-means clustering [5], a center-based method, performs
clustering with K clusters while moving the centroids in a direction that minimizes the
distance between the centroid and points in each cluster. However, it has a disadvantage
in that it requires an appropriate parameter K to cluster the point cloud. To solve the
problem of a random selection of initial centroids, Arthur and Vassilvitskii [4] proposed
an improved version of the initial centroid selection and named the method K-means++.
The improved method uses distance proportional probabilities to select a new centroid as
far as possible from other centroids.

In this study, we propose a plane segmentation algorithm for unorganized point clouds
based on the K-means++ non-hierarchical clustering algorithm. While the conventional
K-means++ clustering algorithm only measures the Euclidean distance for clustering,
the proposed hybrid K-means clustering method considers both the Euclidean distance
and cosine distance for plane segmentation. Therefore, our method better distinguishes
small plane segments located far from the sensor or partly occluded by obstacles, which
RANSAC and region growing-based methods tend to miss. The requirement of setting
K is also resolved by training a neural network without any labeled data to estimate an
appropriate number of clusters for the point cloud.
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3. Hybrid K-Means Plane Segmentation Neural Network

In this section, we first describe how the proposed hybrid K-means clustering segments
a point cloud into planes. Next, we explain how PointNet estimates the number of planes.
Finally, we demonstrate how to merge planes extracted from hybrid K-means clustering
that need to be combined into the same plane.

3.1. Hybrid K-Means Clustering

K-means++ clustering is one of the most popular algorithms for segmenting data
into k clusters. Nevertheless, K-means++ clustering is not suitable for segmenting a point
cloud into planes because K-means++ clustering only considers the Euclidean distance for
clustering. Spherical K-means clustering [30] is suitable for clustering high-dimensional
data using the cosine distance between vectors. Inspired by K-means++ and spherical
K-means clustering methods, we propose a hybrid K-means clustering method that clusters
data into planes using both Euclidean distance and cosine distance. When hybrid K-means
clustering measures the correlation between points, positional difference uses Euclidean
distance, and normal difference uses cosine distance. Therefore, distant planes were
clustered using Euclidean distances, and the directions of the planes were clustered using
cosine distances. Therefore, distant planes are clustered using Euclidean distances, and the
direction of the planes are clustered using cosine distances.

To estimate the normals of each point, we used K-nearest neighbors with the K-d tree
provided by Open3D [31] for the entire point cloud. Open3D is an open-source Python
library that supports rapid development of software that deals with 3D data. The K-d tree is
a space-partitioning data structure that structures points in a K-dimensional space. The K-d
tree is a useful data structure for finding the nearest neighbors. We set the maximum
neighbors as 30, and the search radius as 3. We define the centroid of the i-th cluster as ci
and each point in the i-th cluster as xj ∈ Si. The goal of the hybrid K-means clustering is to
find Si that minimizes the overall variance V:

V =
K

∑
i=1

∑
xj∈Si

d(xj, ci), (1)

The function d(xj, ci) computes the difference between xj and ci.
The algorithm starts by setting the initial cluster centroids ci. K-means-based clustering

algorithms have a disadvantage in that their performance varies greatly depending on
how the initial value is selected. To overcome this disadvantage, we set the initial cluster
centroids ci using K-means++, which has the advantage of careful seeding. After selecting
the initial centroids, we allocate each point to the most similar cluster by using d(xj, ci),
which is the difference between xj and ci. d(xj, ci) is the sum of the Euclidean distance and
cosine distance, as shown in Equation (2).

d(xj, ci) = E(xj, ci) + λC(xj, ci) (2)

E(xj, ci) =
√∥∥xj − cj

∥∥2 (3)

C(xj, ci) = 1−
xj · cj∣∣xj
∣∣∣∣cj
∣∣ (4)

E(xj, ci) computes the Euclidean distance between positional differences and C(xj, ci)
computes the cosine distance between normal differences, as shown in Equations (3) and (4).
λ is a parameter that determines the ratio between the Euclidean distance and the cosine
distance. As λ grows, parallel planes are classified as the same plane, owing to the in-
creased influence of the cosine distance. In contrast, if λ is too small, the point cloud cannot
cluster as planes. For the clustering points into planes, we chose λ = 60. After allocating
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each point to the most similar cluster, we rearrange the centroid ci of cluster Si using the
center of gravity of points in Si. Equation (5) shows how to rearrange the centroid ci.

ci =
1
|Si| ∑

xj∈Si

xj (5)

The proposed hybrid K-means clustering repeats the above two steps until the cen-
troids converge.

3.2. Parameter Estimation

The proposed hybrid K-means clustering method has the disadvantage that K, the num-
ber of planes to be extracted, must be passed as an input parameter. We used PointNet to
automatically determine parameter K from the point cloud. PointNet takes an unorganized
point cloud represented in the format of RN×3 as the input, where N is the number of
points. PointNet is a widely used library in the field of computer vision for classification
and segmentation by analyzing the characteristics of input point clouds. Our purpose
is to train PointNet to infer parameter K, which is the number of planes. In general,
a pre-processing process for labeling a dataset is essential for obtaining labeled point
clouds. However, in this study, we propose an unsupervised training method using hybrid
K-means clustering.

After hybrid K-means clustering, the input points are segmented into K planes. The av-
erage cosine distance Lk between each plane’s centroid ci and their assigned M points
X =

{
x1, x2, ..., xM|xj ∈ Sj

}
can be defined by

Lk =
k

∑
i=1

1
M

M

∑
xj∈Sj

C
(

xj, ci
)
. (6)

As K increases, Lk decreases when the point cloud is divided into planes, as shown in
Figure 3a. We use dLk, which is the difference of Lk, which can be obtained as the difference
between Lk−1 and Lk.

dLk = Lk−1 − Lk (7)

(a) (b)

Figure 3. (a) Average cosine-distance value of a point cloud calculated by Equation (4) according to
K, the number of planes. (b) Difference of average cosine-distance calculated by Equation (7). If K is
sufficient to cluster point cloud into planes, we can see that the difference of average cosine-distance
converges close to zero and no longer changes. By using difference of average cosine-distance, we
can obtain the appropriate parameter K.

If K is sufficient to cluster the input point cloud into planes, we can see that the
difference in the average cosine distance converges close to zero and no longer changes,
as shown in Figure 3b. Therefore, the smallest parameter K, in which dLk begins to converge
close to zero is the appropriate number of planes for the hybrid K-means clustering method.
We experimentally define that dLk converges close to zero when |dLk| < 0.1 is satisfied.
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Because of Lk and dLk, as shown in Figure 3, the value of K for the with-noise-00 point
cloud was automatically selected as 11. PointNet can be trained in an unsupervised manner
using the K obtained by the above method. PointNet requires a parameter that sets the
maximum limit of K, which we set to 15.

The parameter estimation for hybrid K-means clustering using PointNet has an ad-
vantage in terms of computational time. It takes a lot of time to train PointNet, but after
training it is more time efficient than without using PointNet, which involves perform-
ing hybrid K-means up to the maximum limit of K each time to obtain the appropriate
parameter K.

3.3. Plane Merging

In the previous sections, we clustered a point cloud into planes with an appropriate
number of planes. Figure 1 illustrates the process of the proposed approach. The proposed
hybrid K-means clustering sometimes oversegments input points into two or more planes
that eventually need to be grouped into the same plane, owing to the Euclidean-distance
term in Equation (3). Figure 1 shows that hybrid K-means clustering segments the road
into four planes, even though it can be merged into a single plane. Therefore, we present
a plane-merging algorithm that combines planes that should be merged into the same
plane. To merge different planes, the following two conditions must be satisfied: angular
similarity and distance limit. To find a plane Sj that satisfies the condition of angular
similarity with another plane Si, we compute the cosine distance between centroid ci of
plane Si and centroid cj of plane Sj. If the cosine distance is smaller than threshold σ, we
determine that the angular similarity condition is satisfied. We create a new set I that
consists of planes satisfying the condition of angular similarity with plane Si, as shown in
Equation (8).

I =
{

Sj ∈ S|C(ci, cj) < σ
}

(8)

If we only consider angular similarity, different planes facing in the same direction
apart from each other can be merged into the same plane. To avoid such situations, we
also consider the distance limit condition. If the closest points in planes Sj and Si are closer
than threshold ω, we consider that the planes satisfy the distance limit condition. Such
planes are collected from I to form set H, as described in Equation (9).

H =
{

Sj ∈ I|
∣∣SE(Si, Sj)

∣∣ > 1
}

(9)

SE(Si, Sj) =
{

xi ∈ Si|E(xi, xj) < ω
}

(10)

|·| represents the cardinality of the set. SE(Si, Sj) is the set of points belonging to
planes Si, where the Euclidean distance between points is closer than threshold ω, as in
Equation (10). The members of H merge with plane Si to form a new merged plane Sm.
The above process is repeated until there are no additional planes to merge. We set σ = 0.1
and ω = 4.

4. Results

To evaluate the proposed hybrid K-means plane segmentation (HKPS) method, we
used the photorealistic synthetic Virtual KITTI Dataset [32], which closely mimics the
real-world KITTI dataset [33]. The Virtual KITTI dataset was labeled with 13 different
labels. The dataset obtains a semantically annotated 3D point cloud by projecting a given
2D depth into a 3D space. We extracted man-made structures, such as roads and buildings,
from the Virtual KITTI dataset to evaluate the plane segmentation performance. This is
because these man-made structures can be expressed in planes, which are effective in
composing an urban scene model. The Virtual KITTI dataset consisted of unorganized
point clouds.

For comparison evaluation, we tested the following most widely used plane segmen-
tation techniques: RANSAC, region growing, and K-means clustering-based techniques.
For RANSAC, we used the pyRANSAC-3D library [34] to fit the planes in a point cloud.
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For region growing, we used the latest technology, RSPD [28]. RSPD had the advantage
of extracting planes robustly against noise, and it exhibited better performance in various
indoor environments than the existing plane segmentation techniques. For K-means clus-
tering, we used K-means++, which is most similar to our technique among the previous
methods. In the comparison experiment with K-means++, PointNet was trained using
K-means++ in the same way as HKPS to determine the number of clusters.

PyTorch was used to implement the proposed HKPS. The training was performed on
a single NVIDIA 2080Ti GPU. We used the Open3D library [28] to find the normal vectors
in the point cloud and implement voxel downsampling.

4.1. Voxel Down Sampling

The point cloud is partially composed of different densities owing to the distance from
the sensor, angle, and obstacles, as shown in Figure 4a Because hybrid K-means clustering
rearranges the centroids using the center of gravity of each cluster, the centroids tend to be
rearranged in the direction with a greater density of the points. To solve this problem, we
perform voxel downsampling, and the result is shown in Figure 4b.

(a) A raw point cloud (b) The point cloud after voxel down sampling

Figure 4. The same point cloud (a) before and (b) after voxel down sampling. The density of the
point cloud becomes uniform and noise is removed.

A voxel downsample filter combines a three-dimensional voxel grid on a point cloud.
The points inside each voxel were downsampled to the center of each voxel. The process
of voxel downsampling reduces the number of points to align with a uniform density.
This process not only benefits from balanced centroid rearrangement for hybrid K-means
clustering but also reduces noise and the number of input points to PointNet. Reducing the
number of points enables efficient use of memory. After voxel downsampling, we extracted
1600 points from each point cloud for PointNet training.

4.2. Performance Evaluation

Two types of datasets are used to compare the plane segmentation performance of
our proposed method, HKPS, with previous works: with-noise and without-noise datasets.
The with-noise dataset is the Virtual KITTI dataset after voxel downsampling with uniform
density. For the without-noise dataset, we deleted small clusters of points, such as parts of
trees, vehicles, and unknown objects, from the with-noise dataset. PointNet was trained
with 70 scenes from the with-noise dataset, and the performance evaluation experiment was
performed with 20 scenes from each of the with-noise and without-noise datasets.

We used the performance metrics proposed by Hoover et al. [35] for quantitative
comparison with previous works, and the results are shown in Tables 1 and 2. When
plane Si of the ground truth and plane Sj segmented by the evaluation method overlap
threshold T% or more, we classify the plane as correct detection and use threshold T = 80.
Over segmentation means that a plane is segmented with a greater number than it should
be, and under segmentation means that it is segmented with a smaller number of planes.
Missed means that plane Si of ground truth does not participate in any correct detection,
over segmentation, or under segmentation. Noise means that plane Sj segmented by
evaluation method does not participate in any correct detection, over segmentation, or
under segmentation.
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Table 1. Average result of without-noise Virtual KITTI Dataset. Best results are highlighted in bold.

Method Correct
Detection [%]

Under-
Segmentation [%]

Over-
Segmentation [%] Missed [%] Noise [%] Avg. Cosine

Distance

HKPS (ours) 84.26 3.18 11.31 0.19 0.1 0.0337
K-means++ [4] 70.56 0.76 17.27 9.41 9.40 0.0820
RANSAC [34] 72.36 0.06 6.97 13.28 13.69 0.0606

RSPD [28] 72.54 12.35 0.07 10.05 14.78 0.0182

Table 2. Average result of with-noise Virtual KITTI Dataset. Best results are highlighted in bold.

Method Correct
Detection [%]

Under-
Segmentation [%]

Over-
Segmentation [%] Missed [%] Noise [%] Avg. Cosine

Distance

HKPS (ours) 83.80 1.46 9.50 2.76 2.10 0.0315
K-means++ [4] 51.87 14.70 17.93 11.68 10.76 0.0916
RANSAC [34] 70.93 2.42 4.14 18.30 16.44 0.1284

RSPD [28] 65.96 9.94 1.21 17.11 18.69 0.0106

To increase the objective validity of the results, we propose an average cosine dis-
tance (ACD) as an additional performance evaluation metric.

ACD =
N

∑
i=1

1
M

M

∑
xj∈Sj

C
(
xj, ci

)
. (11)

The average cosine distance represents the angular difference between the normal of
each point and the centroid normal of the plane. N is the number of planes extracted from
this method.

It is necessary to define the ground truth suitable for plane segmentation to evaluate
the proposed plane segmentation technique. Because the ground truth was not available for
the Virtual KITTI dataset, we created it by labeling 3D point clouds using RGB 2D images
provided by the dataset. The ground truth is shown in the last lines of Figures 5 and 6.

K-means++ clustering achieved the lowest correct detection in both the with-noise and
without-noise datasets, and it achieved the largest average cosine distance in the without-noise
dataset and the second largest in the with-noise dataset. As shown in Figure 5, K-means++
fails to segment the corners of buildings and falsely segments buildings and roads into the
same cluster if the distance between the building and the road is small. This is because
K-means++ clustering only considers the Euclidean distance when segmenting clusters;
therefore, it is not suitable for clustering point clouds into planes.

RANSAC showed large values of missed and noise in both datasets, and the average
cosine distance was the largest in the with-noise dataset, which was significantly higher
than that in the without-noise dataset. This is because the points in the with-noise dataset are
widely distributed in the horizontal direction of the surface owing to noise. As shown in
the with-noise scene in Figure 5, RANSAC creates planes perpendicular to the buildings
because the method segments planes without considering their normals. The performance
depends greatly on the initial seed selection. Because of these disadvantages, RANSAC
cannot extract small planes, and the planes that are scanned only partially by the sensor
are estimated as noise.

RSPD has the second highest correct detection in the without-noise dataset, but it drops
significantly in the with-noise dataset. Despite the low value of correct detection, RSPD has
the smallest average cosine distance compared to the other methods. RSPD determines
outliers using angle difference to extract planes from various datasets without adjusting
parameters; however, the allowable angle difference is tightly set. As shown in Figure 6,
the planes composed of a few points in the with-noise dataset and the corners that are
difficult to be segmented into planes using angle differences were classified as outliers.
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HKPS has the highest correct detection in both datasets, and its average cosine distance
is the second best. This means that the proposed HKPS segments the point cloud into
appropriate planes. The values of missed and noise are significantly lower than those of
other methods, as the clustering-based method of HKPS can segment the planes with a
small number of points. It is shown that HKPS is suitable for segmenting planes in urban
scenes, where many parts of planes are obscured by obstacles, such as vehicles and trees.

Figure 5. Performance comparison results using scene 01 from with-noise Virtual KITTI Dataset and without-noise Virtual
KITTI Dataset. Different planes are displayed with different colors. The outliers of RANSAC and RSPD are colored in black.
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Figure 6. Performance comparison results using scene 14 from with-noise Virtual KITTI Dataset and without-noise Virtual
KITTI Dataset. Different planes are displayed with different colors. The outliers of RANSAC and RSPD are colored in black.

4.3. Scalability

We measured the performance change with the number of points in the input point
cloud. Figure 7 shows a graph of the correct detection change according to the change in
the number of input points. There may be more points in the urban scene, but we measured
performance using 70,000 to 200,000 points.
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Figure 7. Correct detection metric difference according to the number of points. It can be seen that
there is not much change in performance depending on the number of points.

The number of input points was the number before voxel downsampling, and 1600 points
were extracted for training PointNet after voxel downsampling. As the number of points
increases, it does not appear to be a significant drop in performance. This proves that our
method is suitable for plane segmentation in an urban scene composed of a large number
of points.

5. Conclusions

We presented an effective neural network for segmenting an urban scene point cloud
into planes. Our plane segmentation method has two major differences compared to
the previous methods. First, we combine two types of coordinate differences: Euclidean
and cosine differences. Our experiments demonstrate that combining the two coordinate
differences translates into superior accuracy plane clustering results. The proposed method
segments the planes composed of a small number of points that are far from the sensor
or partly obscured by obstacles. Second, we use PointNet as a method to automatically
determine the number of planes in the point cloud. Previous K-means clustering-based
methods applied various methods to find the appropriate number of clusters K. In addition,
to find an appropriate K, it was necessary to perform clustering several times while
changing K. However, the proposed method uses PointNet to estimate the number of
clusters so that the plane can be segmented by performing clustering only once. Because of
this, parameter estimation using PointNet has an advantage in terms of computational time.

Owing to the effective results, we suggest several extensions of the proposed plane
segmentation method, HKPS. We plan to extend PointNet to enable parameter estimation
that is suitable for various datasets. In addition, we are working on extending HKPS to a
network that can extract other primitive types, such as spheres and cones.
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