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Abstract: We discuss a synchronised sensing technique for the analysis of painted surfaces of frescos.
Specifically, the performance of Visible-Near Infrared (VIS-NIR) Reflectance Imaging Spectroscopy
(RIS) synchronized with three-dimensional (3D) acquisition is demonstrated in the study of a detached
mural painting by Alessandro Botticelli. Synchronized sensing generates georeferenced data for
simplified data treatment and interpretation. We show how such output data can provide key
information to interpret important fresco surface and subsurface features (e.g., painting technique,
material composition, pentimenti).

Keywords: heritage science; 3D acquisition; reflectance imaging spectroscopy; multi-spectral reflec-
tography; mural painting; registered data

1. Introduction

Optical analytical tools provide crucial information about paintings and artworks’
materials and techniques. Innovative non-contact (and non-invasive) optical methods are
under constant development, with controlled levels of radiation emission allowing the
safekeeping of examined objects. Multisensorial imaging methods play an ever-increasing
role in the examination of painted surfaces, capable to deliver complementary information
on the entire artwork’s surface and stratigraphy. The visible-near infrared (VIS-NIR)
imaging scanning device, coupled with a 3D acquisition sensor, described here, exploits
the property of IR radiation to penetrate the pictorial layers. The spectral information
carried by visible (VIS) and infrared (IR) radiation reveals properties and composition of
the probed matter, and the laser distance sensor retrieves the surface topography. While
the first instruments for IR reflectography collected the radiation in a single, broad spectral
range [1], the method gradually evolved, starting from the mid 1990’s, into the multi/hyper
spectral (MS/HS) modality, derived from Earth remote sensing techniques [2]. The great
potential of MS/HS reflectance imaging spectroscopy (RIS) in the analysis of artworks has
been recognized by the heritage science community, today including a large number of
research groups active in this field [3–18]. A detailed account of the evolution and progress,
as well as of the fundamental physical principles of RIS and systems involved, is provided
in a recent review [19]. Key advantage of RIS is the integration of the spectroscopic and
the imaging approaches for disclosing hidden features, for differentiation/classification of
various components and their spatial distribution in a non-invasive way.

The point-scanning approach, based on the detection of radiation reflected from
painted surfaces by boustrophedon movement of a single photodiode, was introduced
in the 1990’s by a group of researchers at the National Institute of Optics (INO, now in
the Italian National Research Council, INO-CNR) [8,18,20]. Such approach permits a very
easy alignment and registration of geometrically-corrected images, at the cost of longer
acquisition times. The technique evolved across several prototypes, leading to the current
multi-spectral system producing 16 bands in the 380–780 nm VIS and 16 bands in the
780–2500 nm NIR spectral ranges [18]. Such an extended spectral coverage offers several
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advantages, given an increasing transparency of most of pictorial materials with increasing
wavelength (multi-spectral infrared reflectography), ending up in a better visibility of the
preparatory drawing (the underdrawing) usually found under the colour layers of ancient
paintings. The capacity to measure in the visible, the near-infrared and the shortwave
regions makes RIS a powerful technique for characterizing artwork materials. Advanced
methods of data analysis facilitate data classification, pattern recognition and prediction
derived from existing data. The RIS method alone has a robust but non-exhaustive ca-
pacity for the characterization of the composite painted systems. Therefore, RIS can be
coupled with other spectroscopic or non-spectroscopic sensors to measure a larger variety
of properties [19]. The association of multimodal sensors producing hardware-registered
(multimodal) datasets avoids the necessity to employ a subsequent software data fusion
methodology. The benefits of the synchronized registered 3D scanning and MS imaging are
mainly in eliminating the necessity of two separate instruments, reducing the acquisition
time and computational capacity needed for processing and co-registering 3D data on
MS images. To the best of our knowledge, the only system recording simultaneously 3D
data with multispectral imaging in the field of heritage science is the PRISMS (Portable
Remote Imaging System for Multispectral Scanning) devised by the Nottingham Trent
University, designed for the remote sensing of large painted surface such as wall paintings.
As compared to our scanner, PRISMS operates in a completely different optical set-up and
acquires in a more limited (i.e., 400–900 nm) spectral range [21].

The extraction of three-dimensional (3D) information is of interest in many application
fields, including monitoring of the artwork cleaning operations and evaluation of its
conservation state and history [22–24]. Differences in principles and characteristics of 3D
techniques involve various factors such as cost, acquisition accuracy, speed and range.
Indeed, diverse systems, sensors, and techniques have been developed in terms of their
physical size, robustness, weight, interfacing option, reliability, process requirement, high-
resolution, price, and power consumption to meet the needs of a specific application
field. Laser triangulation, involved in the discussed device, can be implemented using
off-the-shelf components, representing a relatively low cost and fast approach [25].

By showcasing significant results obtained on the detached mural painting Sant’Agostino
nello Studio, by the Florentine Renaissance Master Sandro Botticelli, this article provides
insights into how the combined RIS and 3D sensing enable the disclosure of hidden features
in the artwork, of the chemical mapping of the constituent materials and is capable to
reveal details of the artwork preparation and realization process.

2. Materials and Methods
2.1. VIS-NIR Multispectral Scanner

The expertise gained in the last 30 years with the scanning device for short-wave
infrared (SWIR) imaging in a single broad band led to the actual version of multispectral
scanner, having 32 bands in the spectral range from 380 to 2500 nanometres. Specifically, an
XY(Z) scanning system moves both the lighting system and the collecting optics, which are
set to a 45◦/0◦ illumination/detection geometry, following CIE indications for non-contact
reflectance colour measurements [26]. The scanning system consists of two orthogonally
mounted XY stages having a maximum run of 1000 mm and of a Z stage with a total run of
100 mm to keep the optical head in focus while scanning the surface.

The lighting system is composed of two low-voltage current-stabilized halogen lamps,
equipped with aluminium back-reflectors whose beam divergence is ±5◦ and of two
narrow-spot white LEDs, with beam divergence of about ±4.5◦. The uniformly irradiated
area on the painting surface is about 5 cm2. The irradiance as measured on the painting
surface in standard illumination conditions is about 105 kLux (from the LEDs) plus 4 kLux
from the halogen lamps. The total irradiance is practically equal to bright sunlight condi-
tions, but the continuous motion of the sources prevents the surface of the painting from
being heated significantly (the maximum local heating produced by the scanning was
measured at about 4 ◦C).
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The image of the painting is acquired by X-Y scanning of the entire surface. For each
point, a small square grid (6 × 6 pixels) of the image is acquired by imaging a small
square portion (1.5 mm × 1.5 mm) of the painting surface on the free end of a 36-fibres
square-shaped optical bundle that carries the light to 36 separate detectors (Figure 1). The
optical fibre ends in the bundle are packed in a square arrangement and are evenly spaced
at the same pitch of the pixels in the final image, 0.25 mm, which in turn is both the pitch
of the scanning system and the pixel size of the resulting image (square pixels of 0.25 mm
× 0.25 mm). The hardware image registration is then easy to be obtained, as it is sufficient
to shift the 36 acquired image planes by whole-pixel steps (multiple to 0.25 mm) to align
the spectra acquired in each pixel. In this process, a margin of 5 pixel is lost, as along the
image borders there is insufficient coverage to obtain complete spectra. The output is a
registered set of images, the so-called multispectral cube, that can be seen either as a stack
of monochromatic images (one for each channel) or as a collection of discrete spectra (one
for each pixel, i.e., 4000 spectra in the image of one square meter of surface). The whole
process is handled by the instrument software, which produces images having resolution
of 4 pix/mm (or 101.6 dpi) at a rate of about 3 h/m2.
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Figure 1. Experimental scheme for the synchronised VIS-NIR imaging spectroscopy and 3D sensing.

This type of scanning almost entirely avoids the geometric distortion of the acquired
image, resulting in an overall geometric distortion at the image border of less than 1/1000
(less than 1 mm per each metre of the image). The multi-spectral image can then be
also used for measuring the size of details on the surface, for example to compare the
underdrawings between different paintings in search for the use of transfer media for
the drawings.

Chromatic aberrations in the image, which could be expected considering the broad
spectral region acquired (380–2500 nm), are actually avoided by using a fully catoptric
optical system design, made by two off-axis parabolic mirrors arranged to give a unit (1:1)
magnification. Transverse optical aberration of this system is not expected to be small, but
in the specific set-up (paraxial usage), the field angle tended by the bundle half transverse
size (0.75 mm at about 300 mm) is so small that all field aberrations are negligible, and
the registration of the acquired images is aberration-free. The spectral bands are acquired
with 32 separate photodetectors: 19 Si (380–1000 nm) and 12 InGaAs (1050–2500 nm)
photodiodes, each equipped with a notch filter (multilayer interference filters) to select the
acquisition spectral range. The filters have individual spectral resolutions ranging from
about 20 to 30 nm in the visible (VIS) and from 60 to 120 nm in the near infrared (NIR),
respectively. Central wavelengths and respective bandwidths are shown in Figure 2. The
spectra extracted from the multispectral cube are reported as a mean value computed over
a 0.5 mm circular area, i.e., over 5 pixels (Figure 3).
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Another advantage of the combination of movable illumination, point-by-point scan-
ning and detection with a catoptric optical system is that the resulting illumination is
homogeneous through all the image, and between successively acquired images. This
feature is very useful to get the image mosaicking of paintings wider than 1 m × 1 m.

Moreover, high-resolution single-point spectroscopy has been performed by directly
coupling commercial spectrometers (Zeiss MCS 521 VIS-NIR-E and MCS-511 NIR 1.7, Carl
Zeiss, Oberkochen, Germany) with the optical system of the VIS-NIR scanner. This gives
the possibility of acquiring the detailed spectra in the very same conditions used for the
multi-spectral scanning acquisition.

The autofocus (AF) system of the scanning device [27] is based on three elements:
a high-speed triangulation distance meter, a motorized linear stage (the Z stage of the
system, as previously described) and a custom-made control software, synchronized with
the acquisition of the spectral reflectance image. The system runs by acquiring a set of
profiles of the scanned surface, whose points are obtained by measuring the scanning
probe-painting distance with the triangulation sensor (Figure 1), and generates a 3D map
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of the surface. The AF operates in an open-loop configuration, due to the speed of the
scanning (approaching 500 mm/s) and, consequently, to the risk of having the optical head
to move in an uncontrolled way. The open-loop system works by first acquiring the surface
profile on the lines to be scanned (the vertical columns in the image), then calculating the
profile to be fed to the AF stage and, finally, by generating the exact profile of motion
for the Z stage, which is synchronised to the vertical scanning by using the signal of the
vertical encoder on the Y stage. The Z stage moves with minimum steps of 50 microns and
a maximum speed of 25 mm/s. By using this open-loop strategy, the Z stage moves in
a totally controlled (and safe) way and adapts the optics-to-painting distance during the
vertical scanning with a high accuracy. Being the depth of field of the acquisition optics
about ±1 mm, the system is able to survey highly bended surfaces, that is often the case
when dealing with ancient panel paintings, keeping the optical head at the exact working
distance. Calculated motion profiles for the AF are previously fitted to the real surface
profile so that the AF system is not sensitive to abrupt variations in the stand-off distance,
e.g., presence of cracks, steps, frames, etc.

As a very useful by-product of the AF system, the 3D map of the painting surface is
extracted from the raw distance data, as measured by the triangulation meter. The sensor
provides a distance signal (analogue, ranging from 0 to 10 V) which is digitised by the
scanner main ADC. The sampling rate, triggered by the Y stage encoder, is the same for
all the sensors (the VIS, the NIR and the profile) so that the profile 3D map has the same
raster resolution of the spectral images and is perfectly aligned to these. This integration
makes it possible to extend the possible metrology of distances on the surface to a full
3D. The final image obtained has then the same properties of an orthophoto. Indeed, the
autofocus system, synchronized with image set acquisition, generates a series of profiles,
whose points are obtained by measuring the probe-painting distance. Such profiles were
used to produce a 3D model of the surveyed surface (250-micron sampling step).

2.2. Examined Artwork

Sant’Agostino nello studio is a mural painting by Sandro Botticelli (2750 × 1750 mm)
dating back to 1480. The fresco depicts Saint Augustine, the forerunner of the humanistic
scholars, in his study. A great care was given to the description of the details, inspired by
the realism of Flemish painters [28]. The artwork was originally located at the entrance
wall to the choir in the church of Ognissanti (Florence, Italy) which was destroyed in the
sixteenth century during the reconstruction of the church. The artwork was anyway already
been detached a massello (detachment of a wall painting including several centimetres of
the mural support) and transferred to the church nave by Giorgio Vasari. During the
transfer, parts of the architectural frame and the inscription at the top of the Botticelli’s
fresco were lost and possible alterations were made to the coat of arms of the Vespucci
family, patron of the church. Following the flood in 1966, which affected the lower part
of the fresco, the artwork was finally detached with the stacco technique from the original
mural structure. The stacco technique consists in preserving only millimetres of the original
pictorial plaster and attaching it to a new support, in this case, made of polyester resin
and glass fibre. The artwork has been subject of numerous exhibitions all over the world,
thanks to its transportability, and has recently been under restoration in the laboratories of
the Opificio delle Pietre Dure in Florence [29]. On that occasion, the non-invasive analyses
presented in this paper were carried out as well as other complementary analysis for robust
material identification such as X-ray fluorescence (single-point and mapping), fibre optics
reflectance spectroscopy, Fourier-transform infrared spectroscopy, etc.

3. Discussion and Results

The autofocus output, after being mapped in a mesh format, can be processed with
image processing and/or 3D-handling software. The 3D map in a 2D image format can be
handled so to create a shading effect that makes the surface look like a real one, except for
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its colour appearance, making morphology seemingly pop out from the screen. This relief
effect (raking-light effect) is achieved through first derivative of the surface profile map.

By a quantitative analysis of 3D data, it was possible to discern fourteen areas identifi-
able with the so-called giornate, corresponding to portions of the fresh plaster presumably
worked in one day [30,31]. 3D raw maps were fitted with a best plane, which was sub-
tracted to generate the so-called conditioned surface. A set of profiles was then acquired
on such surface, along lines among the different areas and following different directions,
to quantify the step heights. As an example, the profile along the black dashed line
(Figure 4a,b), crossing five different giornate, is reported in Figure 4c. The coloured giornate
image of the entire fresco was derived (Figure 5c) by merging the information from the
simulated raking light image and the colour height map (where altitude is displayed as
colour gradient), and the profile plot. Each working day of painting (giornata) has been
coloured in a different shade.

Figure 5a shows the true-colour image produced by processing the visible region
spectral dataset acquired with the multispectral scanner, collected in a 45◦/0◦ illumina-
tion/detection geometry, by applying standard D65 illuminant and the CIE 1931 standard
observer. Figure 5b displays a 3D model of the fresco, shown as a raking-light image,
that is perfectly co-registered with the colour image. To provide a visual guidance, the
coloured giornate in Figure 5c show, for example, that Botticelli has realized the saint’s head
in one small stand-alone portion, a proof of his great care dedicated to the detail. Moreover,
Figure 5c displays damage/abrasion in the zone of robe (green giornata lower right).
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Figure 5. Sant’Agostino nello studio (2750 × 1750 mm2): RGB image (a) and 3D model displayed as a raking light image (b)
with 14 evidenced giornate (c).

The 3D model documents the conservation intervention performed in the 1970s.
Following the flood in 1966, the fresco was detached from the original wall through the
stacco process and placed on a new movable support. The latter is rendered in grey colour
in the 3D model (Figure 5b). In Figure 6, a detail showing the step between the neutral
plaster and the fresco is reported. 3D data enable to quantify the thickness of the original
protruding material comprising both the pictorial layer(s) and the plaster to be about
1–3 mm, as evident from the 2D colour map images (Figure 6c,e) and 3D mesh plots
(Figure 6d,f). Such conservation approach, in which the new neutral plaster is not at the
level of the original fresco, is typical for that period.

The VIS-NIR spectral data, examined as a set of 32 16-bit monochromatic images, were
exploited to shed light on the technique used to draw the fresco. Among the common
methods is the so-called spolvero that consists in tracing a natural-scale drawing on the
paper then transferring it on the plaster by charcoal (carbon) powder diffused through
tiny-punctured holes pierced in the paper along the drawing lines. As a result, rounded
carbon-based signs remain on the freshly cast intonaco. Long-wavelength IR reflectograms
(at wavelengths about 2000 nm) give good transparency of top layers (RGB detail of clock
in Figure 7a) and provide evidence for spolvero (Figure 7b), due to the sufficient contrast
between the carbon dots, absorbing the IR light, and the plaster substrate that reflects it.

Another way to transfer the drawing from paper to the plaster is to imprint the
drawing on the fresh plaster by etching incisions along the drawing lines. These signs,
usually printed by sharp metal instruments into the fresh plaster, leave a clear trace with
raised edges [30,31], particularly visible in the simulated raking light image (Figure 7c).
The colour map of the same area is shown in Figure 7d. The black rectangle indicates the
position of an in-depth horizontal profile extracted (Figure 7e). Here a high-resolution 3D
analysis was used for quantifying the thickness of the grooves of the engravings, resulting
in a depth range from a few tens to one hundred micron, and width of nearly 10 microns.

Figure 7b reveals a pentimento, i.e., a change by Botticelli to his original drawing made
during the realization stage. The reflectogram evidences a sketch of two clock hands in the
preparatory phase: one pointing up (numeral XII) and the other down (XXIIII). Only the
latter, indicating the sunset, was realized both with incision (Figure 7c) and in the successive
pictorial process (Figure 7a). This could be either related to importance of the twilight in
the fifteenth century indicating that all the residents need to enter the city because the city
wall gates would close, or could be inspired by an iconographic interpretation [29].
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The main pigments used in the fresco palette were identified through their spectra
generated from the high spectral resolution Fibre Optics Reflectance Spectroscopy (FORS)
and VIS-NIR dataset, and their distribution was mapped with spectral correlation maps
(SCM). Basing on the measure of the spectral similarity between the spectrum of each
pixel in the multispectral data and a specified reference spectrum (endmember), the SCM
classification algorithm identifies different regions or materials in the multispectral data
cube by computing the spectral angle distance between each pixel and the endmember
spectra of the data cube, provided that the data is normalized and centred on the average
of the two spectra. The spectral correlation mapper method is a modification of the Spectral
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Angle Mapper (SAM, one of the leading classification methods, which consists in obtaining
the angles formed between the reference spectrum and the image spectrum treating them
as vectors in a space with dimensionality equal to the number of bands), and is a derivative
of Pearson’s correlation coefficient [32,33].
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The latter is known as the best method of measuring the association between variables
of interest because it is based on the method of covariance, giving information about the
magnitude of the association, or correlation, as well as the direction of the relationship.
Given a pair of random variables (X, Y), the formula for Pearson’s correlation coefficient,
commonly represented by the Greek letter ρ, is

ρX,Y =
cov(X, Y)

σXσY
=

σXY
σXσY

where cov is the covariance, σX is the standard deviation of X, σY is the standard de-
viation of Y. Coefficient values can range from +1 to −1, where +1 indicates a perfect
positive relationship, −1 indicates a perfect negative relationship, and a 0 indicates no
relationship exists.

Pearson’s correlation coefficient, when applied to a sample, is commonly represented
by rxy and may be referred to as the sample Pearson correlation coefficient. The formula for rxy
is obtained by substituting estimates of the covariances and variances based on a sample
into the formula above. Given paired data {(x1, y1), (x2, y2), . . . , (xn, yn)} consisting of n
pairs, rxy is defined as:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2(yi − y)2
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where n is the sample size, xi, yi are the individual sample points indexed with i, and

x =
1
n

n

∑
i=1

xi

(sample mean), and analogously for y.
For the red/yellow and blue/green hues, three representative reference spectra were

chosen, as shown in Figure 8a,b. Those endmember spectra are the mean value computed
over a 0.5 mm circular area, i.e., over 5 pixels (Figure 3).
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the white circle with black contour indicates the exact positioning of the sampled point.

For each endmember spectrum shown in Figure 8, an SCM image was then gen-
erated. The so obtained SCM images were combined with the trichromatic modality.
Specifically, the respective SCMs were attributed to the R, G, and B channel, for both
Figure 8a (the clock, drawer and book spectrum) and Figure 8b (the coat of arms, book and
background spectrum).

The visible image (Figure 9a) indicating the sampled points for the warm and cold
hues endmember spectra, and the SCM resultant two false colour images are shown in
Figure 9b,c. The chief advantage of this approach is that it generates trichromatic composite
image concentrating all the information obtained with the SCM analysis. Concerning the
Figure 9b, there is a strong correlation between the pigment used for the coat of arm and
the clock (appearing in red), whereas the red pigment of the books is different (appearing
mostly blue with violet binding). The saint robe is a mixture of pigments (magenta),
instead the mantle, the drawers and the capital are nearly the same colour (appearing
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green), suggesting a single pigment type. The SCM image in Figure 9c shows a strong
similarity between blue pigments of the small book and the clock.
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Figure 9. Fresco by Botticelli: RGB image (a), colour composite images from SCMs for warm in (b) and cold (c) hues.
Sampled 0.5 mm areas for spectral endmembers are indicated in (a) with red and blue circles related respectively to (b)
and (c). Figure 9b: red relates to SCM of “clock”, green to “drawer”, blue to the “book”, spectral endmembers in Figure 8a;
Figure 9c: red relates to SCM of “coat of arms”, green to “book” and blue to “background” spectral endmembers in
Figure 8b.

Related to blue zones, two different pigments were discriminated through comple-
mentary analysis: prevalent ultramarine and smalt [29]. The SCM computed on VIS dataset
shows the distribution of the ultramarine, coded in green colour. The map reveals its
presence in the clock and the blue cover of the precious book. The ultramarine pigment,
chemically the most complex of all the mineral pigments, is extracted from Lapis Lazuli
stones imported in the past mostly from Asia. A broad absorption band at 600 nm (due to
the charge transfer within the sulphur anions trapped in the aluminosilicate network) in
VIS-NIR reflectance spectrum serves as its identifying marker, along with high reflectance
values in red spectral region typical of natural ultramarine [34–36].

The second blue pigment distinguished through the VIS-NIR spectra is a cobalt based
pigment. As the SCM evidences, its distribution is located within the coat of arms of the
Vespucci family—the patron of Ognissanti church. The spectral pattern is compatible with
cobalt-based pigments where two broad absorption bands—the first in 550–650 nm and
the second in 1200–1550 nm range—origin from the electronic transitions among d orbitals
of Co(II) ion in tetrahedral coordination with respect to oxygen atoms. One of these is the
smalt (a potash silicate glass coloured with cobalt) [36,37].

Table 1 summarizes the discussed spectra and prevailing materials which are the
main constituents of the fresco palette. As to the common practice [19], the material
identification was supported by several complementary techniques, including FORS and
X-ray fluorescence (single point and mapping) spectroscopy [29].
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Table 1. Hues and materials of the fresco as measured on the six points shown in Figures 8 and 9.

Zone Hue SCM Colour Code Materials

Clock Reddish Red (Figure 9b) Prevailing cinnabar
(α-HgS)

Drawer Yellowish Green (Figure 9b)
Yellow ochre

(mixture of iron oxyhydroxide (FeOOH)
and varying amounts of clay and sand)

Book Brownish Blue (Figure 9b)
Prevailing red ochre

(mixture of iron oxide (α-Fe2O3) and
varying amounts of clay and sand)

Coat of arms Darker bluish Red (Figure 9c) Prevailing smalt
(potassium glass containing cobalt oxide)

Small book Bluish Green (Figure 9c) Ultramarine
(approx. (Na,Ca)8(AlSiO4)6(SO4,S,Cl)2)

Background Greenish Blue (Figure 9c) Green earth
K[(Al,Fe),(Fe,Mg](AlSi3,Si4)O10(OH)2

4. Conclusions

All the image properties discussed (image resolution and contrast, even illumination,
spectral and metric accuracy) would have been impossible to obtain without a system to
keep the exact working distance of the optical head to the scanned surface. There are many
reasons for this: first the small field depth of the collecting optics (about ±1 mm) which
requires that the surface-to-objective distance is kept within that depth during the whole
scanning. Second, the uniformity of illumination and the spectral accuracy are greatly
affected by small variations of the same focus distance. The autofocus (AF) system is then
key to the scanner performances and to the syncing of the different sensing techniques.
Moving the whole optical head to closely follow the surface profile while rapidly scanning
requires the fast displacement of a considerable mass and, consequently, specially designed
hardware and software systems.

The synergic multi-sensor approach in the investigation of a work of art by means of
multispectral VIS-NIR analysis combined with topographic analyses provides evidence on
the artist’s realization technique. The hardware-registered data enable straightforward data
analysis bypassing the necessity for data fusion. Data from the 3D sensor allowed to extract
information related to the giornate, spolvero and direct incisions. Spectral VIS-NIR data were
used to map pigments of the masterpiece. Moreover, we have been able to discriminate the
presence of a pentimento and to determine the composition and distribution of some later
restoration intervention. The combined use of spectral imaging with 3D acquisition has
been of great importance to gain insights on crucial features of the painting, also thanks to
the portability and non-invasiveness of the coupled techniques.

The main advantage of the employed VIS-NIR instrument as compared to analogous
devices is that data are aberration-free and hardware registered, where no correction and
alignment post-processing is necessary. The twofold nature of the obtained data, in the
spectral and the spatial domains, consents for the mapping of the materials constituting the
artworks, such as the pigments and retouches, pentimenti, underdrawing, etc., maintaining
a geo-referenced visual approach to the data analysis. The main benefit of the home-built
scanner is its full controllability, versatility from both the analytical and the mechanical
point of view. Synchronized VIS-NIR and 3D imaging supplies the experts with information
that can be crucial about the most suitable restoration process and about the artwork’s
realization and conservation history.
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