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Abstract: The rapid development of remote sensing and space technology provides multisource
remote sensing image data for earth observation in the same area. Information provided by these
images, however, is often complementary and cooperative, and multisource image fusion is still
challenging. This paper proposes a novel multisource remote sensing image fusion algorithm. It
integrates the contrast saliency map (CSM) and the sum-modified-Laplacian (SML) in the nonsub-
sampled shearlet transform (NSST) domain. The NSST is utilized to decompose the source images
into low-frequency sub-bands and high-frequency sub-bands. Low-frequency sub-bands reflect the
contrast and brightness of the source images, while high-frequency sub-bands reflect the texture
and details of the source images. Using this information, the contrast saliency map and SML fusion
rules are introduced into the corresponding sub-bands. Finally, the inverse NSST reconstructs the
fusion image. Experimental results demonstrate that the proposed multisource remote image fusion
technique performs well in terms of contrast enhancement and detail preservation.

Keywords: multisource remote sensing image; image fusion; contrast saliency map; SML; NSST

1. Introduction

Remote sensing images play an important role in urban planning, environmental
monitoring, and military defense [1]. As a basic step of target classification, detection, and
recognition in remote sensing images, remote sensing image fusion has attracted more and
more research interest across the world. Due to the incident wavelengths of the remote
sensing images in the same region being different, multiband remote sensing images have
significant differences. The high-band remote sensing image can provide an overall view
of the scene, which is similar to optical imaging, while the low-band remote sensing image
is relatively bleak and has deeper penetration. Remote sensing image fusion can integrate
multiband remote sensing images into a comprehensive image, which is conducive to the
recognition and observation of ground objects [1-3].

Multisource remote sensing image fusion is an information processing technology for
the fusion of multisensor, multiplatform remote sensing and multispectral band remote
sensing data. The fusion image contains different spatial, temporal, and spectral infor-
mation of multisensor, which allows for preparation for further analysis and processing.
Many image fusion methods have been proposed in recent decades; however, image fusion
algorithms based on transform domain and edge-preserving filters are widely used [4]. In
terms of transform domain-based image fusion frameworks, the wavelet transform, discrete
wavelet transform (DWT) [5], dual-tree complex wavelet transform (DTCWT) [5], dual-tree
complex wavelet package transform (DTCWPT) [6], framelet transform [7], curvelet trans-
form [5], contourlet transform [8], nonsubsampled contourlet transform (NSCT) [9], shear-
let transform [10], and nonsubsampled shearlet transform (NSST) [11], etc., are adapted to
the field of image fusion. Igbal et al. [12] introduced a multifocus image fusion approach
using a DWT and a guided image filter to improve the definition of the fused images.
Aishwarya et al. [13] used a DTCWT and an adaptive combined clustered dictionary for
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visible and infrared image fusion to enhance the target information. Wang et al. [14] pro-
posed a multispectral (MS) and panchromatic (PAN) image fusion technique based on the
hidden Markov tree model in a complex tight framelet transform domain to improve the
spatial resolution of the MS image while keeping the spectral information. Due to the fact
that the wavelet transform cannot capture the abundant directional information of remote
sensing images and can introduce spatial distortion, a contourlet transform and an NSCT
are introduced to resolve this shortcoming. Yang et al. [15] proposed a remote sensing
image fusion algorithm via a contourlet hidden Markov tree and a clarity—saliency-driven
pulse couple neural network (PCNN) model to enhance the edges and contours of fused
remote sensing images. Li et al. [16] introduced an image fusion method using dynamic
threshold neural P systems and NSCT for multimodality medical imaging to improve the
visual quality and fusion performance. Because the contourlet transform- and NSCT-based
image fusion approaches are computationally complex, the shearlet transform and the
NSST are proposed to increase computational efficiency. Because the shearlet transform
lacks translation invariance, the NSST has become more widely used as the improved
version of the shearlet transform in the field of image processing. Yin et al. [17] proposed
an image fusion technique via NSST and parameter-adaptive pulse coupled neural net-
work (PAPCNN) to improve the contrast and brightness of the fused medical images.
Wang et al. [18] introduced the nonsubsampled shearlet transform hidden Markov forest
(NSST-HMF) model for pansharpening to improve the spatial resolution of hyperspectral
images while preserving spectral features.

In terms of edge preserving filter-based image fusion approaches, the guided image
filter, cross bilateral filter, and rolling guidance filter, etc., are widely used. Li et al. [19]
first introduced the guided image filter for image fusion, for which the computational
complexity is relatively low. Then, the combination of guided image filtering and other
transform domain algorithms such as DTCWT, NSCT, and NSST is introduced into the field
of image fusion, and good results are achieved. Shreyamsha et al. [20] introduced the cross
bilateral filter for image fusion based on pixel significance to enhance the visual quality of
the fused images. Jian et al. [21] proposed a multiscale image fusion method using a rolling
guidance filter to preserve the details and suppress the artifacts of the fused images.

In this work, a novel remote sensing image fusion algorithm using a contrast saliency
map (CSM) and SML in the NSST domain is proposed. The contrast saliency map-based
fusion rule and SML-based fusion rule are used to merge the low- and high-frequency
sub-bands, respectively. Experimental results demonstrate the effectiveness of the pro-
posed remote sensing image fusion method over the traditional and state-of-the-art fusion
algorithms in terms of qualitative and quantitative analysis.

The rest of this work is organized as follows: Section 2 shows the related works,
Section 3 depicts the proposed remote sensing image fusion method, the experiments and
results are summarized in Section 4, and the conclusions are provided in Section 5.

2. Related Works
Nonsubsampled Shearlet Transform

Nonsubsampled shearlet transform (NSST) is a kind of nonsubsampled multiscale
transform, which was introduced based on the theory of shearlet transform [11,18]. The im-
age is decomposed by NSST into multiple scales with multiple directions by multiscale and
multidirectional decompositions. Firstly, the nonsubsampled pyramid (NSP) is adopted
as the multiscale decomposition filter to decompose the image into one low-frequency
sub-band and one high-frequency sub-band. Then, the high-frequency sub-band is de-
composed by the shearing filter (SF) to achieve the multidirectional sub-bands. Due to the
NSST decomposition process having no subsampling for the NSP and the SF, the NSST is
shift-invariant. Figure 1 denotes the example of three levels of NSST decomposition of a
zoneplate image, where all the images are displayed in the “jet” colormap and the direction
numbers from coarser to finer are 4, 8, and 8. Figure 1a depicts the original zoneplate image,



Sensors 2021, 21, 1756

3o0f14

Figure 1b shows the low-frequency component, and Figure 1c—e show the high-frequency
sub-band images with the direction numbers 4, 8, and 8, respectively.

(U

(e)

Figure 1. The nonsubsampled shearlet transform (NSST) decomposition of a zoneplate image. (a) original zoneplate image,

(b) the low-frequency component, (c) the high-frequency sub-bands of NSST decomposition at level 1, (d) the high-frequency

sub-bands of NSST decomposition at level 2, (e) the high-frequency sub-bands of NSST decomposition at level 3.

3. Proposed Fusion Method

In this section, a novel remote sensing image fusion method based on the NSST is
proposed, and the whole process can be divided into four parts: NSST decomposition,
low-frequency sub-band fusion, high-frequency sub-band fusion, and inverse NSST image
reconstruction. Suppose the input remote sensing images are A and B, then the two
images are decomposed up to N levels utilizing the NSST to generate the decomposed

sub-bands {L A Hf;‘d} and {LB, Hgd}, respectively. The H§d|X € {A, B} represents the
high-frequency sub-bands of X achieved at the /th decomposition with the direction d, the
Lx|X € {A, B} represents the low-frequency sub-band of X, where ! € [1,N],d € [1,D(I)],
N equals the number of NSST decomposition levels, and D denotes the vector which
concludes the number of directions at each . The fused image F is generated by inverse
NSST performed on the fused sub-bands {L F Hf_-’d } The flow chart of the proposed remote
sensing image fusion approach is shown in Figure 2. The fusion rules for low-frequency
and high-frequency components are summarized as follows.
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Figure 2. The flow chart of the proposed remote sensing image fusion method.

3.1. Fusion of Low-Frequency Components

The low-frequency sub-bands present the brightness and contrast information of the
source remote sensing images [22]. In this section, in order to preserve the contrast, the
contrast saliency maps (CSM) of the low-frequency components are constructed based
on the brightness distribution. The contrast of the image denotes the difference between
the lowest and highest brightness levels in the remote sensing images, and where the
difference in brightness is more significant, a higher contrast is implied. Therefore, we
can infer that the brighter or darker the pixel value is relative to the average value of
the image, the greater its contribution to the image contrast and the stronger the contrast
significance. The L, norm is used to judge the deviation between pixel value and average
value, and the significance of each pixel is expressed. When the L, norm is performed on
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the low-frequency sub-bands L4 and Lg, the contrast saliency maps Sy, and Sy of the
low-frequency sub-bands are generated by the following:

S1, = norm([|La — mean(Ly)|l,) M

Si, = norm(||Lp — mean(Lg)||,) )

where the mean(-) denotes the average value of the image. L, norm is used to eliminate
the effect of symbols, and the norm(-) function is defined as follows:

x — min(x)

norm(x) = max(x) — min(x)

®)

The weight matrices Wy , and Wy, of the low-frequency components are calculated by
the following formulas performed on the saliency maps of the low-frequency sub-bands:

Wi, =05+05(S., — Si,) @)

Wi, = 05+0.5(St, — S,,) ©)

The fused low-frequency sub-bands are computed by the Hadamard product per-
formed on the low-frequency components and the corresponding weight matrices, and the
corresponding equation is defined as follows:

LF:WLA*LA+WLB*LB (6)
where L represents the fused low-frequency component, and * shows the Hadamard product.

3.2. Fusion of High-Frequency Components

The high-frequency components contain the texture information and details. In this
section, the sum-modified-Laplacian (SML) is used to process the high-frequency sub-
bands. The SML is defined for the local window with the size (2P +1)(2Q + 1), and the
corresponding formula is calculated by [23]:

SMLM(, ) = Y Z [Mle(z+p,]+q)} @)
p=-Pq=-Q

MLM(i,j) = ‘ZHld i,j) — H" (i — step, ) — Hld(z—i-step,])‘

8
+‘2H1d (i,j) — HY(i,j — step) — H"(i, ]+step)’ ®)

where step denotes the changeable interval among the high-frequency coefficients. It is
usually defined as 1.
The fused high-frequency sub-bands can be computed by:
Id s o - Id/: - 1d/: »
Hl'd(i i) = HAd(z,]) if SMLlAd(z,]) > SMLE (i, ]) ©)
Hy (i, ) if SML'A(i,j) < SMLE (i, )
where Hr denotes the fused high-frequency components.

The whole procedure of the proposed remote sensing image fusion method can be
summarized in Algorithm 1.
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Algorithm 1 Remote sensing image fusion via NSST

Input: the source remote sensing images A and B

Output: fused image F

Parameters: the number of NSST decomposition levels—N; the number of directions at each
decomposition level—D(1),1 € [1, N]

Step 1: NSST decomposition

The input images A and B are decomposed into low- and high-frequency sub-bands {L A H%d}

and { Lg, H g,d }, respectively.

Step 2: low-frequency band fusion rule

(1) The saliency maps (Sg,,, S,) and the corresponding weight matrices (Wy ,, Wy, ) of the
low-frequency bands are calculated by Equations (1)-(5).

(2) The fused low-frequency band L is obtained by Equation (6).

Step 3: high-frequency band fusion rule

(1) The SML of the high-frequency bands is constructed via Equations (7)—(8).

(2) The fused high-frequency band Hf is computed by Equation (9).

Step 4: inverse NSST and image reconstruction

The fused image F is reconstructed by inverse NSST performed on the fused low- and

high-frequency bands { Lr, HlF’d } .

4. Experimental Results and Discussion

In this section, in order to demonstrate the effectiveness of the proposed multisource
remote sensing image fusion method via NSST, public data sets (https://sites.google.com/
view /durgaprasadbavirisetti/datasets (accessed on 15 December 2020)) are used for simu-
lation, and several state-of-the-art image fusion algorithms are adapted for comparison,
namely image fusion based on a guided image filter (GFF) [19], image matting for the
fusion of multifocus image (IFM) [24], image fusion using a dual-tree complex wavelet
transform (DTCWT) [5], curvelet transform-based image fusion (CVT) [5], image fusion
utilizing phase congruency (PC) [25], structure-aware image fusion (SAIF) [26], fusing
infrared and visible images of different resolutions via total variation model (DRTV) [27],
multimodal image seamless fusion (MISF) [28], and parameter-adaptive pulse-coupled
neural network-based image fusion via a nonsubsampled shearlet transform (NSST) [17].
In order to reflect the fairness of the algorithm, the parameters of the comparison algo-
rithms are consistent with the original published papers. In the proposed fusion technique,
the number of NSST decomposition levels is four, and the direction numbers from coarser
to finer are §, 8, 16, and 16. The selected remote sensing image data sets are shown in
Figure 3.

In order to objectively assess the fusion performances of all the different fusion tech-
niques, a lot of image fusion evaluation indexes have been introduced in these years. It
is known to us that just one evaluation index could not well demonstrate the quality of
fused images in quantitative assessment. Thus, for the sake of making a comprehensive
evaluation for the fusion images, six popular fusion evaluation metrics are introduced
in this section, namely visual information fidelity for fusion (VIFF) [29-33], Qs [34], av-
erage gradient (AG) [20,35,36], correlation coefficient (CC) [20,37,38], spatial frequency
(SF) [20,39-41], and Qw [34,42]. In terms of all the six metrics, the higher the value data of
the evaluation index, the better the fusion performance will be. The experimental results
are depicted in Figures 4-7 and Tables 1-5.
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(i) DRTV (j) MISF (k) NSST (1) Proposed
Figure 4. Fusion results of the first group of images. (a) Source A, (b) Source B, (c) guided image filter (GFF), (d) image
matting for fusion (IFM), (e) dual-tree complex wavelet transform (DTCWT), (f) curvelet transform-based image fusion
(CVT), (g) phase congruency (PC), (h) structure-aware image fusion (SAIF), (i) different resolutions via total variation
(DRTV), (j) multimodal image seamless fusion (MISF), (k) nonsubsampled shearlet transform (NSST), (1) proposed method.
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() DRTV | (j) MISF | | ) NSST O Proosed

Figure 5. Fusion results of the second group of images. (a) Source A, (b) Source B, (c) GFF, (d) IFM, (e) DTCWT, (f) CVT,
(g) PC, (h) SAIF, (i) DRTYV, (j) MISE, (k) NSST, (1) proposed method.

Figure 6. Cont.
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(i) DRTV ) ) MISF

Figure 6. Fusion results of the third group of images. (a) Source A, (b) Source B, (c) GFF, (d) IFM, (e) DTCWT, (f) CVT,
(g) PC, (h) SAIF, (i) DRTYV, (j) MISE, (k) NSST, (1) proposed method.

(a) Source A

~ o7y [ =
: . g .
A

(i) DRTV (j) MISF (k) NSST (I) Proposed

Figure 7. Fusion results of the fourth group of images. (a) Source A, (b) Source B, (c) GFF, (d) IFM, (e) DTCWT, (f) CVT,
(g) PC, (h) SAIF, (i) DRTYV, (j) MISE, (k) NSST, (1) proposed method.
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Table 1. The objective evaluation of the methods in Figure 4.

VIFF Qg AG CcC SF Ow
GFF 0.4057 0.8064 8.7903 0.7493 14.4590 0.8079
IFM 0.2871 0.7174 9.5061 0.6834 15.6730 0.7091
DTCWT 0.5380 0.8140 10.0384 0.7816 15.7787 0.8214
CVT 0.5534 0.7984 10.2397 0.7771 15.5899 0.8165
PC 0.4246 0.7477 9.1494 0.6668 14.6779 0.6555
SAIF 0.5662 0.8038 9.3884 0.6798 15.2025 0.8261
DRTV 0.2895 0.7316 7.8006 0.7176 11.6689 0.6561
MISF 0.5226 0.8051 9.1365 0.6575 14.9136 0.8142
NSST 0.6158 0.8218 10.0766 0.7272 15.4583 0.8304
Proposed 0.6130 0.8438 10.4592 0.7893 16.2149 0.8434
Table 2. The objective evaluation of the methods in Figure 5.
VIFF Qs AG CC SF Ow
GFF 0.3982 0.7197 26.7401 0.8926 35.1380 0.7640
IFM 0.3679 0.6925 27.4735 0.8840 36.6562 0.7345
DTCWT 0.5255 0.7384 28.8500 0.8899 37.5651 0.7866
CVT 0.5396 0.7310 29.2726 0.8896 37.6290 0.7828
PC 0.3712 0.6379 24.6670 0.8748 34.9834 0.6894
SAIF 0.4689 0.7239 27.9649 0.8875 37.6971 0.7872
DRTV 0.3633 0.6082 22.4563 0.8694 31.2856 0.6744
MISF 0.4630 0.7252 27.2744 0.8859 36.6062 0.7721
NSST 0.5119 0.7521 28.8961 0.8820 37.0427 0.7872
Proposed 0.5940 0.7625 30.1132 0.8921 38.9878 0.8034
Table 3. The objective evaluation of the methods in Figure 6.
VIFF Qs AG CC SF Ow
GFF 0.4048 0.7965 22.7779 0.6300 33.9869 0.7602
IFM 0.2564 0.6778 23.4184 0.6315 34.6252 0.5919
DTCWT 0.4120 0.7772 24.5238 0.6583 35.9560 0.7537
CVT 0.4258 0.7614 24.8528 0.6610 35.6106 0.7490
PC 0.3381 0.7186 22.9823 0.6226 35.0967 0.6680
SAIF 0.3493 0.7689 24.1520 0.6217 36.0128 0.7543
DRTV 0.2970 0.6430 18.5259 0.5972 25.2082 0.5422
MISF 0.3838 0.7722 23.6538 0.6112 36.1746 0.7535
NSST 0.4299 0.7911 24.2249 0.6324 35.5451 0.7750
Proposed 0.5430 0.7965 25.3122 0.6512 36.5362 0.7706
Table 4. The objective evaluation of the methods in Figure 7.
VIFF Qg AG CcC SF Ow
GFF 0.7339 0.9520 13.4416 0.9325 17.0349 0.9294
IFM 0.6886 0.9465 13.5312 0.9302 17.1410 0.9100
DTCWT 0.7997 0.9497 13.7663 0.9413 17.6068 0.9306
CVT 0.8047 0.9485 13.8226 0.9409 17.5972 0.9304
PC 0.6968 0.8124 9.4584 0.8726 14.6077 0.8451
SAIF 0.7475 0.9510 13.2681 0.9320 17.0035 0.9297
DRTV 0.5262 0.6900 5.4341 0.9179 10.8994 0.7934
MISF 0.7429 0.9498 13.3593 0.9301 17.1603 0.9235
NSST 0.7133 0.9406 13.0894 0.9250 15.9954 0.9068
Proposed 0.8260 0.9529 13.9189 0.9414 17.7991 0.9366
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Table 5. The average objective evaluation of the methods on the sixteen group images.

VIFF Qs AG cC SF Ow
GFF 0.5040 0.8165 17.2688 0.8025 24.7722 0.8166
IFM 0.4167 0.7596 17.9319 0.7706 25.7461 0.7344

DTCWT 0.5689 0.8229 18.3304 0.8271 25.8626 0.8266
CVT 0.5759 0.8145 18.5907 0.8271 25.8054 0.8230

PC 0.4188 0.7248 14.6469 0.7758 22.2573 0.6786
SAIF 0.5730 0.8191 17.8152 0.7863 25.6650 0.8366
DRTV 0.3885 0.7077 14.5927 0.7873 20.1573 0.6742
MISF 0.5563 0.8170 17.6502 0.7811 25.5196 0.8265
NSST 0.5902 0.8208 16.7840 0.8018 23.4510 0.8168
Proposed 0.6372 0.8394 18.8870 0.8273 26.3930 0.8401

4.1. Qualitative Analysis

In this section, the fusion results obtained by the proposed method and the com-
pared results calculated by nine other fusion algorithms are given in Figures 4-7. The
Figures 4, 5, 6 and 7a,b show the source images A and B, respectively. As seen from Figure 4,
the GFE, DTCWT, CVT and DRTV algorithms decrease the contrast of the fusion images,
making some details invisible (see Figure 4c,e f,i). The IFM, SAIF, and MISF methods
appear to generate a block effect and artifacts, affecting the observation of the fused images
(see Figure 4d,h,j). The PC algorithm makes the image distorted (see Figure 4g). The NSST
technique provides overly high brightness (see Figure 4k). The proposed fusion technique
can provide a high-definition image and preserve spatial detail information in the fused
image (see Figure 41).

From Figure 5, we can see that the GFF, IFM, and DRTV methods make the fused
image darker in some regions (see Figure 5c,d,i). The DTCWT and CVT methods make the
fused images better compared to the previous methods (see Figure 5e,f). The PC approach
provides a poor fusion performance (see Figure 5g). The SAIF and MISF algorithms
introduce artifacts (see Figure 5h,j). The NSST method makes the fused image brighter,
and it is not conducive to the acquisition of target information from the fused image (see
Figure 5k). The proposed fusion method provides a better fusion effect (see Figure 51).

From Figure 6, it can be seen that the GFE, [IFM, DTCWT, and CVT algorithms decrease
the contrast and make the images darker (see Figure 6¢—f). The PC technique appears
to generate a block effect (see Figure 6g). The SAIF, MISF, and NSST methods produce
artifacts, and the brightness is over-enhanced in some regions (see Figure 6h,j,k). The DRTV
method produces over-enhanced brightness in some regions and an overly smooth fusion
image (see Figure 6i). The proposed algorithm can enhance the contrast and definition,
which is helpful in obtaining the target information from the fused image (see Figure 61).

From Figure 7, we can see that the GFF, IFM, SAIF, and MISF algorithms make the
fusion image darker (see Figure 7c,d,h,j). The DTCWT and CVT methods produce a
good fusion visual effect (see Figure 7e,f). The PC, DRTV, and NSST techniques produce
distortion and artifacts (see Figure 7g,i k). The proposed fusion technique can produce
relatively higher contrast and preserve the texture information (see Figure 71).

In summary, the analysis of the subjective assessment of the fusion results demon-
strates the super-performance of the proposed remote sensing image fusion technique
when compared with the state-of-the-art fusion algorithms.

4.2. Quantitative Analysis

In this section, the six indexes (VIFE, Qg, AG, CC, SF, Qw) are used to evaluate the
fusion results quantitatively. The data for the evaluation metrics of the different fusion
algorithms for Figures 4-7 are shown in Tables 1-4. From Table 1, we can see that the value
of VIFF as computed by the proposed method is slightly worse than the NSST algorithm,
while the data for the other five metrics as calculated by the proposed fusion technique are
the best. From Table 2, we can see that the metric values given by the proposed method
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DTCWT ovT PC

(a) VIFF

DTCWT o PG

(e) SF

are the largest except for the metric of CC. From Table 3, the values of CC and Qw as
computed by the proposed technique are a little smaller than the corresponding values
obtained by the CVT and NSST methods, respectively. From Table 4, we can see that all six
values of the metrics achieved by the proposed method are the best compared to the other
fusion methods.

In order to demonstrate the effectiveness of the proposed method, the sixteen image
groups given in Figure 3 are simulated, and the average values of their objective evaluation
are given in Table 5. The line charts of the objective metrics data in Table 5 are given in
Figure 8, and the proposed method has the best values in the data for all metrics. Therefore,
it is demonstrated that better fusion performance can be generated by the proposed remote
sensing image fusion work.

/ 0.86 - =

| T ' '
DTCWT ovT PC SAIF DRTV MISF NSST

(b) Qs

07
SAIF DRTV MISF NSST Proposed GFF It Proposed

L L 07
SAF DRTYV MISF NSST Proposed GFF IFM DTCWT ovT PC SAF DRTV MISF NSST Proposed

DTCWT ovT PC SAIF DRTV MISF NSST

(f) Qw

07
SAIF DRTY MISF NSST GFF IFM Proposed

Figure 8. The line chart of objective metric data in Table 5. (a) VIFF; (b) Qs; (c) AG; (d) CC; (e) SF; (f) Qw.

5. Conclusions

In this work, a novel saliency-guided nonsubsampled shearlet transform for multi-
source remote sensing image fusion is introduced. First, the input images are transformed
from the spatial domain to the shearlet domain according to a nonsubsampled shearlet
transform. Second, the contrast saliency maps and corresponding weighted matrices are
introduced for fusing the low-frequency coefficients, and the SML-based fusion rule is per-
formed on the high-frequency coefficients, which can improve the contrast and definition
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of the fused images. To prove the universality of the proposed fusion algorithm, sixteen
sets of remote sensing images are simulated, and six image fusion evaluation indexes are
utilized for the quantitative analysis. From the experimental results, we can conclude
that the proposed fusion approach has superior performance compared to the state-of-the-
art fusion methods. In future work, we will extend the algorithm to panchromatic and
multispectral [43-48], hyperspectral and multispectral image fusion [49,50].
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