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Abstract: Proximal sensing for assessing sugarcane quality information during harvest can be affected
by various factors, including the type of sample preparation. The objective of this study was to
determine the best sugarcane sample type and analyze the spectral response for the prediction of
quality parameters of sugarcane from visible and near-infrared (vis-NIR) spectroscopy. The sampling
and spectral data acquisition were performed during the analysis of samples by conventional methods
in a sugar mill laboratory. Samples of billets were collected and four modes of scanning and sample
preparation were evaluated: outer-surface (‘skin’) (SS), cross-sectional scanning (CSS), defibrated
cane (DF), and raw juice (RJ) to analyze the parameters soluble solids content (Brix), saccharose (Pol),
fibre, pol of cane and total recoverable sugars (TRS). Predictive models based on Partial Least Square
Regression (PLSR) were built with the vis-NIR spectral measurements. There was no significant
difference (p-value > 0.05) between the accuracy SS and CSS samples compared to DF and RJ samples
for all prediction models. However, DF samples presented the best predictive performance values for
the main sugarcane quality parameters, and required only minimal sample preparation. The results
contribute to advancing the development of on-board quality monitoring in sugarcane, indicating
better sampling strategies.

Keywords: chemometrics; proximal sensing; precision agriculture

1. Introduction

Near-Infrared (NIR) spectroscopy is a well-established technique to monitor the qual-
ity of raw sugarcane received by sugar mills [1], and consequently, for pricing and trading
with producers and growers [2]. Crop quality is estimated based on physicochemical
parameters related to physiological composition, such as soluble solids content (Brix),
water-insoluble solids (Fibre), and the apparent sucrose in the juice (Pol). Furthermore, all
other parameters (purity, Pol of cane, reducing sugars, and total recoverable sugars) are cal-
culated based on the former parameters [3], from which total recoverable sugars (TRS) are
used for the pricing and trading of the raw material. Sugarcane quality parameters are de-
termined by analytical methods and empirical equations described by the National Council
of Sugarcane Producers (CONSECANA), which are based on the International Commission
for Uniform Methods of Sugar Analysis (ICUMSA). Using calibration methods, it is now
possible to obtain some crop quality parameters by NIR spectroscopy [4].

Different wavelength regions of the electromagnetic spectrum can be used in spec-
troscopy, such as visible (400 to 750 nm), near-infrared (NIR, 750 to 2500 nm), shortwave
near-infrared (SWNIR, 750 to 1100 nm), and visible and near-infrared (vis-NIR, 400 to
2500 nm) [5–8]. However, there is no consensus on the limits between these regions.
Interaction between electromagnetic radiation and matter causes molecular vibrations
involving heavy atom (C, N, O, and S) attached to a hydrogen atom [8]. This basic principle
has allowed substantial scientific advances to predict organic compounds of agricultural
products associated with its quality using vis-NIR spectroscopy as a nondestructive and
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environmentally friendly analysis technique [5]. Moreover, several studies have shown
promising results when using the technique to predict sugar cane quality in the sugar
mill [9–12] and for breeding programs [13–15].

Despite the advances in industrial sugarcane quality monitoring, spectral methods are
still a distant reality for in-field measurements in line with precision agriculture practices.
Current proximal sensing technologies applied at the canopy level allow only monitoring
crop yield [16,17]. However, some studies have indicated that vis-NIR could also be a
viable technology for acquiring quality data of harvested products in real-time during
mechanical harvesting [16]. The monitoring of crop quality parameters across the field is
important to adopting precision agriculture (PA) practices, in which quality maps would
show the variability of the crop and help guide site-specific management [18]. In this
context, mechanical harvest opens a way to obtain a high frequency of sampling and
data collection to analyze the quality variability across the field [19]. However, some
requirements need to be satisfied to use vis-NIR as proximal sensing technology for this
purpose: (i) the location of adaptation in the harvester, (ii) development of a sampler
system, and (iii) the type of sampling required for analysis. The first two requirements are
fundamentally dependent on the last one.

Nawi et al. (2014) indicated that the ideal place for implementing an on-board sug-
arcane quality monitor would be in the elevator of the harvester, where the sugarcane
material is partially cleaned and processed in the form of billets. In this context, some
studies have reported promising results on the prediction of sugarcane Brix from sensor
readings made on the outer-surface (‘skin’) [20] or on cross-sections [21] of sugarcane bil-
lets. Furthermore, more recent studies have advanced with on-board vis-NIR spectroscopy
sensor applications on the elevator of a sugarcane harvester simulator, i.e., analyzing
samples at a distance and in motion [2,22]. However, Maraphum et al. [23] and Phupha-
phud et al. [24] reported that the waxy material should be removed from the cane surface
for maximum accuracy in the spectral data condition, even though this may be imprac-
tical for an embedded system. Associated with this fact, Phetpan et al. [2] reported on
the need to evaluate the potential of the vis-NIR spectroscopy technique with data sets
consisting of a larger number of sugarcane varieties. In addition, despite the advantages
of nondestructive measurement, there is a lack of basic studies comparatively evaluating
various forms of sampling without and with minimal processing, using extensive numbers
of samples obtained over the course of a harvest. Thus, the objective of this study was to
compare different sugarcane sample types, including billets, defibrated cane, and raw juice,
and to analyze the spectral response of each sampling type for the prediction of quality
parameters of sugarcane from vis-NIR spectroscopy.

2. Materials and Methods
2.1. Sampling

Variability of sugarcane quality parameters throughout a harvest occurs due to diverse
environmental conditions, mainly temperature and precipitation, during the harvest [25].
Based on this, the data collection procedure occurred on random periods over six months
of the 2019 harvest (June to November). We sought to obtain higher variability of the
sugarcane quality parameters from this collection procedure throughout the harvest.

The data collection was carried out in the quality laboratory of a sugar mill. Three hun-
dred and two samples were collected, and different levels of processing were applied. Also,
all data acquisition was performed in a controlled temperature environment (20 ± 5 ◦C),
minimizing the effects of sugar degradation by microorganisms. In addition, we collected
the daily results of conventional analysis performed by sugar mill quality laboratory over
the same months in which the samples were collected for spectral analysis.

The sampling procedure for vis-NIR analysis was carried out sequentially and simul-
taneously to the sample preparation for conventional analysis, as described:
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1. An oblique probe collected a sample of sugarcane billets in each truckload to pro-
ceed with the conventional analyzes of the sugarcane transported to the sugar mill
(Figure 1a). Before the laboratory processes the sample, we took a subsample com-
posed of three random sugarcane billets (Figure 1b);

2. The remaining sample of billets was milled in a mechanical knife crusher and homog-
enized in a mixer (Figure 1c). Then, samples with 500 g and 50 g of the homogenized
defibrated sugarcane were collected (Figure 1d) to proceed with the conventional and
spectral analysis, respectively;

3. The 500 g sample was pressed in a hydraulic press under constant pressure, at
24.5 MPa (250 kgf cm−2) for 60 s to obtain the raw juice for conventional analysis
(Figure 1e). At the same moment, the third sample composed of extracted raw juice
was collected for spectral measurements (Figure 1f).
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Figure 1. The sequence samples collection and spectral measurements during the preparation steps of samples for con-

ventional analysis. (a) Sampling of sugarcane billets by an oblique probe in the cargo truck; (b) sugarcane billets for skin 
Figure 1. The sequence samples collection and spectral measurements during the preparation steps of samples for
conventional analysis. (a) Sampling of sugarcane billets by an oblique probe in the cargo truck; (b) sugarcane billets for
skin and cross-sectional scanning measurements; (c) milling and homogenization of sugarcane to defibrated sample; (d)
defibration sample; (e) pressing of defibrated sample to extracting of juice; (f) extracted raw juice; prepared samples for
vis-NIR spectral measurements: (g) cross-sectional and skin of billets inside pipeline chambers, (h) defibrated cane and raw
juice; (i) Veris vis-NIR spectrometer and internal configuration scheme of the measurement shank; (j) fibrous cane residue
and extracted raw juice for conventional analysis.

The sample types composed of three billets, defibrated cane, and raw juice were
prepared (Figure 1g,h) and immediately used for spectral measurements at the sugar mill
laboratory (Figure 1i). The remains of raw juice and the bagasse without juice (after pressed)
were used for conventional analytical analysis (Figure 1j).
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2.2. Sugarcane Quality Analysis

All the procedures and equations for sugarcane quality parameters determination
followed the standard protocol proposed by the CONSECANA [26]. These protocols agree
with the international rules from ICUMSA.

Initially, the soluble solids content (Brix) was determined by pouring raw juice into a
refractometer probe (RX-5000α, ATAGO Co Ltd., Tokyo, Japan) with a maximum resolution
of 0.1 Brix. Then, 14 g of a mixture composed of a 4:2:1 proportion of Celite (mineral filtering
agent), aluminum chloride, and calcium hydroxide, respectively, was added to 200 mL
of raw juice homogenized by a magnetic stirrer until the solution was well-mixed. The
solution was filtered through filter paper to obtaining clarified juice. A volume of 70
mL was added in a digital polarimeter (Schmidt + Haensch, Polartronic NHZ 8, Berlin,
Germany) to the saccharimetric reading. The result was obtained as percentage of apparent
sucrose in the juice (Pol).

After the juice extraction, the remaining fibrous cane residue (Figure 1j) was trans-
ferred to metal baskets, with holes at the base. The fibrous residue was weighed on a
semianalytical balance. Then, samples were maintained in a forced air circulation dryer
at a temperature of 105 ◦C, until constant weight was achieved. The dryer samples were
weighed, and the fibre content (insoluble solids) was determined.

The Pol of cane and TRS were calculated for each sample from the previous parameters
as described by CONSECANA (2015). The triplicate values obtained from each sample
were averaged.

It is important to mention that reducing sugars (fructose and glucose) and purity
(apparent sucrose in the soluble solids content) were also determined in the laboratory.
However, while these parameters are not the subject of the present study, they were used
to calculate TRS by the reference method.

2.3. Acquisition of Spectral Data

The spectral measurements were performed with a Veris vis-NIR spectrometer (Veris
Technologies Inc., Salina, KS, USA). This equipment was developed for on-the-go soil
measurements mounted on a platform, connected to a three-point hitch, and pulled by a
tractor [27]. However, it may also be used in bench mode. The equipment consists of a
CCD array spectrometer (USB4000, Ocean optics, Largo, FL, USA), measuring wavelengths
between 373 and 1011 nm, and an InGaAs photodiode-array spectrometer (C9914GB, Hama-
matsu Photonics, Hamamatsu, Japan), with a spectral range between 1170 and 2222 nm.
The system presents a resolution of around 5 nm. Spectral measurement acquisitions were
performed via a sapphire window in the lower of the shank using a tungsten halogen
lamp as an electromagnetic energy source (Figure 1i). Each spectrum recorded by the
equipment software (Veris spectrophotometer software V1.79) corresponded to the average
of 20 spectral readings. The inside shutter is operated automatically to obtain dark and
reference spectra before each analysis. Four external references with different grey levels
were used for spectral calibration of the spectrometer before the analysis. The spectral data
were stored as absorbance units.

The three billets of each sugarcane sample were cut transversely at both extremities,
and their skin was lightly cleaned with paper to remove residues from harvest (Figure 1b).
An ad hoc dark chamber was constructed with PVC pipes and foam to accommodate the
billets, and its inside was painted matte black. Also, magnets were placed on the cover of
the chamber, next to the hole through which the spectral scans were performed, aiming
to fix the chamber on the reading shank of the spectrometer. This device standardizes the
distance between the sapphire window of the spectrometer and the sugarcane billets and
removes interference from external lighting (Figure 1g).

The spectral scan method on billets was adapted from Nawi [20,21] and Phupha-
phud [15]. The spectral scans were performed at three equidistant points (around 120◦) on
the skin of each billet. Furthermore, the cross-sectional scanning of billets was performed in
triplicate in each cross-sectional surface of each billet, only changing the position after each
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reading. Therefore, each sample type measurement, skin scanning (SS), and cross-sectional
scanning (CSS) of billets was represented by an average of nine successive scans.

The spectral measurements of defibrated cane and raw juice were performed in the
same manner. A recipient available from the equipment itself with a volume of around 3
mL was used. The recipient was filled with sample (defibrated cane or extracted raw juice,
Figure 1h), and the spectral measurements were performed in triplicate. Three replicates
were performed for each sample. Thus, the average of nine spectral readings of defibrated
cane (DF) and nine spectral readings of raw juice (RJ) were recorded.

2.4. Spectral Preprocessing

Data preprocessing steps were performed to remove or minimize the sources of
spectral variabilities, such as noise present in the dataset, which was not related to the
analytical signal [8,28].

Firstly, the spectra were preprocessed using standard normal variate (SNV) [29] to
eliminate the deviations caused by particle size and scattering, which centers each spectrum
on its mean and then scales it by its standard deviation. Also, the second derivative based
on the Savitzky-Golay algorithm [30] was applied, with a window size of 11 points and
second-order polynomial fitting to minimize hurdles such as baseline shifts drifts and to
remove high-frequency noise from a spectrum and improve the signal-to-noise ratio [28].
After the preprocessing of the spectral data, Pareto scaling (PS) was applied to variables,
which is the most commonly applied scaling method in infrared data [31]. The method
centered all variables at their means, and then divided them by the square root of the
standard deviation.

2.5. Multivariate Analysis

Firstly, the spectral data of the four sampling conditions were concatenated. Then,
the data was divided into calibration (75%, 227 samples) and external validation (25%,
75 samples) data sets, based on the Kennard-Stone method [19]. This procedure allowed to
obtain the same samples for calibration and external validation data set for both sample
types evaluated. The spectral measurements were used to build predictive models for
sugarcane quality parameters based on Partial least square regression (PLS) [20].

The models were calibrated using the venetian blinds cross-validation method with
10 splits. The optimal PLS models were determined based on the lowest number of latent
variables (LV), in which the root mean square error of cross-validation (RMSECV) was not
significantly higher than the minimum RMSECV [23]. The root mean square error (RMSE)
was calculated as follows:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(1)

where n is the number of samples, yi is the reference measurement of sample i, and ŷi is the
estimated result for sample i.

The outliers were evaluated during the calibration step for the reference lab values
and spectral data. The presence of outliers in the spectral data was evaluated by the
“influence plots” based on high leverage and unmodeled residuals by Hotelling T2 and Q
statistics, respectively [8]. Samples with high values in both cases, at 5% of significance
level, were considered outliers and removed from the spectral data set. On the other hand,
outliers in reference data were evaluated by the root mean square error in calibration
(RMSEC) values. Samples that presented errors in prediction greater than ±3 × RMSEC
were considered outliers and removed from the data set [32]. The external validation
samples were considered unknown samples. In this way, the outliers were evaluated only
for the spectral data set. The process was carried out at most three times in the calibration
step, as recommended by ASTM E1655-7 [33].

The model accuracy was evaluated based on the RMSE for calibration, cross-validation,
and prediction (RMSEC, RMSECV, RMSEP, respectively). Prediction performance was
evaluated based on the determination coefficient (R2) for calibration and prediction (R2c
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and R2p, respectively), and the ratio of performance to the interquartile range (RPIQ),
which is calculated by the ratio between the interquartile difference and the RMSEP. Also,
a randomization test [34] with 0.05 significance level of probability was performed. The
aim was to compare the accuracy of regression models using different sugarcane sample
types in the validation set. The hypothesis evaluated were:

• Null hypothesis (H0): RMSEPsample type 1 = RMSEPsample type 2 (accuracy is similar);
• Alternative hypothesis (H1): RMSEPsample type 1 6= RMSEPsample type 2 (accuracy is not

similar).

An advantage of this test is its simplicity and the fact that assumptions about normality
or homoscedasticity of the data are not required (distribution-free) [35]. More details about
this test, included an algorithm script, can be found in Olivieri [36].

Moreover, the variable importance for the projection (VIP) was calculated to verify
the wavelengths with a more significant impact on the external validate models [27] for
each sample type. The VIP was calculated as follows:

VIPj =

√√√√p
h

∑
k=1

[
Z
( wjk

||wk||

)2
]

.

(
h

∑
k=1

Z

)−1

(2)

where VIP is the variable importance for projection (dimensionless), j is a specific wave-
length (nm), p is the number of wavelengths (dimensionless), h is the number of latent
variables (dimensionless), Z is the fraction of variance in the prediction explained by the
latent variable (dimensionless), and w is the loading weight (dimensionless).

All models, routines, and data processing were performed in Matlab R2015a (The
MathWorks, Natick, MA, USA) and PLS Toolbox 8.9 (R8.9.1; Eigenvector Research, We-
natchee, WA, USA).

3. Results and Discussion
3.1. Overview of Sugarcane Quality Reference Data and vis-NIR Spectral Measurements of
Different Sample Types

From the daily results of analyses performed by conventional methods at the mill, it
was possible to characterize the variation of the main parameters determined analytically
(Brix, Pol, and Fibre), as well as for TRS, throughout the months in which the experiment
was performed (Figure 2).

It is possible to observe an increasing trend in all parameters from June to October.
Afterward, there is a tendency to decrease, except for fibre. Weather is highly influen-
tial on sucrose storage [25]. In the months corresponding to autumn (June) and winter
(June to September), water stress and cooler temperatures contribute to the reduction
of vegetative crop growth and favor sucrose storage [37]. With the beginning of spring
(September/October) and the beginning of the rainy season, the vegetative growth of the
crop is resumed, and the reserves are consumed. The sample acquisition on different peri-
ods (vertical bars in Figure 2) throughout the harvest allowed us to obtain data including
different stages in this variation. The effect of this variability was reflected in the range of
all samples collected during the experiment (Table 1).

On a first view, the Kennard-Stone method provides a representative calibration data
set, with external validation data set between its range (Table 1). The sample acquisition
method provided a satisfactory variability of data, as expected; TRS varied from 86.94 to
173.80 kg of sugar per Mg of cane.
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Table 1. Descriptive statistics of the reference results for the sugarcane quality attributes of all samples, calibration, and
external validation data sets.

Parameter unit Mean ± SD Median Range p25 p75 SEL

All samples (n = 302)

Brix % 18.95 ± 1.71 18.99 13.08–23.42 17.80 20.01 0.03
Pol % 16.67 ± 1.90 16.66 10.78–21.20 15.41 17.95 0.01

Fibre % 13.29 ± 1.79 12.90 7.22–20.08 12.07 14.33 0.07
Pol of cane % 13.80 ± 1.56 13.91 8.40–17.56 12.92 14.78 0.01

TRS kg Mg−1 137.66± 14.48 138.66 86.94–173.80 129.75 146.84 1.12

Calibration set (n = 227)

Brix % 18.86 ± 1.66 18.80 13.08–23.42 17.79 19.98 -
Pol % 16.54 ± 1.86 16.55 10.78–21.20 15.38 17.78 -

Fibre % 13.31 ± 1.89 12.83 7.22–20.08 12.05 14.41 -
Pol of cane % 13.69 ± 1.52 13.79 8.40–17.56 12.83 14.60 -

TRS kg Mg−1 136.65± 14.07 137.01 86.94–173.80 128.99 145.19 -

Validation set (n = 75)

Brix % 19.24 ± 1.85 19.59 13.55–23.05 18.06 20.61 -
Pol % 17.06 ± 1.98 17.33 11.24–20.90 15.73 18.54 -

Fibre % 13.23 ± 1.44 13.02 10.49–17.15 12.24 14.16 -
Pol of cane % 14.14 ± 1.64 14.34 8.96–17.14 13.27 15.47 -

TRS kg Mg−1 140.76± 15.36 142.59 92.16–169.02 132.35 152.44 -

SD: standard deviation; p25: lower quartile; p75: upper quartile; SEL: standard error of laboratory; TRS: total recoverable sugar.

The distribution of all quality parameter values had wide distribution (Figure 3). Fibre
content did not positively or negatively correlate with any other parameters analyzed,
with values varying from −0.16 to 0.13 (p < 0.05). On the other hand, the other parameters
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showed a positive correlation higher than 0.94 (p < 0.05). The highest correlation was
observed between Pol of cane and TRS, close to 1.00 (p < 0.05). Higher correlation values
are observed between the TRS with parameters analytically determined such as Brix and
Pol (0.94 and 0.96, respectively, p < 0.05). The correlation values for these attributes are
firstly explained by the composition of the soluble solids content of sugarcane, measured
by Brix, in which the largest proportion corresponds to sucrose (about 15–18%), measured
by Pol [38,39], and reducing sugars (fructose and glucose) in a smaller proportion (about
0.5%) [40]; note that the determination of reducing sugars was not the objective of the
present study.
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The vis-NIR raw spectral data obtained for 302 samples of each sugarcane sample
type are shown in Figure 4. The spectral data were evaluated to identify possible spectral
errors [41]. We observed a noisy aspect in the region corresponding to the visible spectrum
(400 to 698 nm), mainly for SS samples. This effect may have been attributed to the influence
of skin colors of billet samples, which were obtained for several different sugarcane varieties
(Table A1), or soil residues from the harvest present in the RJ samples. Therefore, this
spectral region was removed from the data set. Phuphaphud [14] observed the same effect
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due to the skin color of sugarcane billets. Also, based on the evaluation of the coefficient
of variation (CV) obtained for each spectral band, the last spectral bands showed high
CV concerning their neighbors and were also removed from the dataset, similar to the
procedure performed by Franceschini [27] in a study on the external effects on the spectral
reading of vis-NIR of soil samples using the same equipment. Thus, only bands in the
spectral range between 699 and 1010 nm and between 1070 and 2153 nm (303 spectral
bands) were retained.
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scanning of billets, (c) defibrated, and (d) raw juice samples.

A PCA analysis performed an exploratory overview of the data structure. The spectral
data were only mean-centered, and the classes were identified by sample type. Two
principal components, PC1, and PC2, explained 98.6% of the data variance (Figure 5). The
first component explained 96.8% of the data variance. The data structure was different for
each sample type, as can be seen from ellipses illustrating the majority of samples (Figure 5).
However, a first overview allowed us to verify the greater difficulty in explaining the
variance of less processed samples, such as samples obtained by spectral readings in the
skin (SS) and cross-sectional (CSS) of the billets, than processed samples, such as raw juice
samples (RJ).
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Vis-NIR spectroscopy may be used in a number of applications, including the clas-
sification of sugarcane varieties, with promising results [42]. The same authors showed
that the spectral regions between 650 and 750 nm, corresponding to the visible spectrum,
was the most suitable for sugarcane discrimination. The principal component analysis
for the four sample types individually showed that the scatter plots were not categorized
into groups based on sugarcane varieties (Figure A1). These results indicated that the
sample set composed for many different varieties did not affect the spectral characteristics
between each variety for both sample types. A similar effect was observed by Phupha-
phud et al. (2020) [14] when evaluating the classification of three varieties. Therefore, the
present study was conducted for all varieties combined.

The vis-NIR technique principle is based on the detection of compounds and molecules
through their molecular vibration states [8]. Different varieties naturally have different
concentrations of parameters such as sucrose and fibre according to genetics. Furthermore,
for all of them, the plant matrix is essentially composed of water (75–82%), insoluble
solids content (Fibre, 10–18%), and soluble solids (Brix, 18–25%), which are composed of
nonsugars (1–2%), sucrose (14–24%), and reducing sugars (0–1.5%) [43]. However, the
prediction of quality parameters related to chemical compounds of interest should be
independent of sugarcane varieties.

3.2. Prediction Performance of Models Based on Different Sugarcane Sample Types

Figure 6 presents scatter plots showing reference versus predicted values of sugarcane
quality parameters. There was an underestimation of high values and overestimation of
lower values for all attributes and sample types evaluated. However, this effect was more
intense for the less prepared sampling condition, such as SS and CSS. Also, overall, the
residuals showed no trend (Figure A2).
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Figure 6. Plots of observed values versus predicted sugarcane quality values from vis-NIR by skin (SS) and cross-sectional
(CSS) scanning of billets, defibrated (DF), and raw juice (RJ) samples. Brix, Pol, Fibre, and Pol of cane are in percentage, and
TRS values are in kg Mg−1.

More LVs were necessary to explain the variance of the data for models constructed
from SS samples (between 7 and 10) than those obtained to predict the same parameters
from other sample types (Table 2). Also, it could be observed that SS and CSS did not show
similar accuracy (p-value < 0.05) for Fibre, Pol of cane, and TRS (Table 3). Moreover, the
prediction performance results for these parameters by these sample types were worse than
the performance results obtained by DF and RJ samples (Table 3). The RPIQ values for TRS
were 40% higher on average than those for SS and CSS samples, for example. Furthermore,
the model accuracy observed between sampling methods for all the other conditions was
statistically nonsignificant (p-value > 0.05).
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Table 2. Figures of merit for the PLSR models for all studied sugarcane quality attributes and sample types.

Attribute Sample Type LV RMSEC a RMSECV a RMSEP a R2c R2p RPIQ

Brix

SS 9 0.92 1.10 1.29 0.64 0.48 1.98
CSS 6 0.95 1.04 1.38 0.62 0.41 1.85
DF 7 0.67 0.75 0.84 0.81 0.80 3.05
RJ 8 0.64 0.83 0.75 0.85 0.85 3.39

Pol

SS 8 1.09 1.26 1.42 0.60 0.48 1.98
CSS 6 1.09 1.19 1.44 0.61 0.44 1.95
DF 7 0.82 0.93 0.87 0.79 0.83 3.24
RJ 7 0.80 0.97 0.90 0.82 0.81 3.12

Fibre

SS 10 1.02 1.29 0.87 0.59 0.65 2.22
CSS 4 1.45 1.50 1.27 0.24 0.23 1.51
DF 5 0.93 1.04 0.82 0.69 0.69 2.36
RJ b - - - - - - -

Pol of cane

SS 7 0.95 1.07 1.13 0.52 0.46 1.94
CSS 5 1.01 1.09 1.27 0.52 0.31 1.73
DF 7 0.73 0.84 0.72 0.76 0.81 3.04
RJ 7 0.71 0.85 0.72 0.78 0.81 3.07

TRS

SS 9 8.57 10.27 10.86 0.60 0.50 1.85
CSS 5 9.49 10.17 11.86 0.50 0.32 1.69
DF 7 6.50 7.51 6.71 0.76 0.82 2.99
RJ 7 6.38 7.95 6.79 0.78 0.81 2.96

SS: skin scanning of billets samples; CSS: cross-sectional scanning of billets samples; DF: defibrated samples; RJ: raw juice samples. LV:
latent variable. RMSEC: root mean square error of calibration. RMSECV: Root Mean Square Error of Cross-Validation. RMSEP: Root
Mean Square Error of Prediction. R2c: calibration coefficient of determination. R2p: prediction coefficient of determination. RPIQ: Ratio
of performance to interquartile distance. a values for Brix, Pol, Fibre, and Pol of cane are in percentage and TRS in kg Mg−1. b The fibre
content was not determined from raw juice samples.

Table 3. p-Values of randomization test of external validation set for all compared sugarcane sample types.

Binary Combination
(Sample Types)

Sugarcane Quality Parameters

Brix Pol Fibre Pol of cane TRS

SS vs. CSS 0.104 0.116 <0.001 0.036 0.008
SS vs. DF 1.00 1.00 0.667 1.00 1.00
SS vs. RJ 1.00 1.00 - 1.00 1.00

CSS vs. DF 1.00 1.00 1.00 1.00 1.00
CSS vs. RJ 1.00 1.00 - 1.00 1.00
DF vs. RJ 0.879 0.344 - 0.606 0.502

SS: skin scanning of billets; CSS: cross-sectional scanning of billets; DF: defibrated samples; RJ: raw juice samples; TRS: total recover-
able sugar.

The model performance for DF and RJ samples was equivalent for practically all
parameters evaluated. There was no significant difference between the model’s accuracy
(p-value > 0.05) and very close values of R2p and RPIQ. Moreover, from DF samples, it was
possible to obtain a satisfactory performance to predict Fibre content; this was not possible
for RJ samples. On the other hand, the models performed for SS samples presented a
higher number of LV than for a prepared sample. The model performance for predicting
parameters related to sucrose (Brix, Pol, Pol of cane, and TRS) was not satisfactory, with
R2p and RPIQ below 0.5 and 2.0, respectively, except for Fibre prediction. The prediction
results from SS samples for Fibre were close to those obtained for DF samples, as shown by
the values of R2p and RPIQ. However, the results were less promising than those obtained
by Phuphaphud et al. (2019) [15], which obtained the following results: maxima of 0.81 for
R2p and 0.63 for RMSEP. Although Fibre content is an important attribute for sugarcane
quality determination, it is not essential for sucrose estimation. Fibre content has no relation
with some important attributes, such as Brix and Pol, and only minimally impacts TRS
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calculation. The prediction of this parameter is important for producing energy cane and
breeding programs, as in work developed by Phuphaphud et al. (2019) [14].

Some models developed for CSS samples were similar to those developed for SS, as
for Brix and Pol prediction. However, its predictive performance was lower than those
obtained for Fibre, Pol of cane, and TRS predicted by SS samples, with worse results for
R2p and RPIQ. In a first investigation, Nawi et al. (2013a) obtained values of 0.87 for
R2p. The excellent performance of this index can be explained by the method of data
acquisition adopted by the authors, with individualized samples according to the stem
portion (lower, middle, and upper portion) and only three varieties of cane. Sucrose
accumulation occurs in an ascending manner, with more accumulation in the lower portion
and less in the internodes of the upper portion, close to the leaves [38,44,45]. Therefore,
samples composed of different sections resulted in more variability in quality parameters.
However, if we analyze the characteristics of a sugar cane harvester, after the stems pass
through the chopper roll system, the distinction between portions of the sugarcane stem is
not viable.

The RPIQ values for the SS method were higher than those obtained by the CSS
method. The SS method on billet samples on the harvester conveyor would be the most
practical method, due to the better operability of sample acquisition in that portion of the
harvester [16]. However, several external factors must be considered to measure quality
attributes by the SS method. A critical one is the constitution of the sugarcane skin itself,
as various colors depending on the variety, black and white waxy material, and organic
compounds may be present [24,46].

There are common waxy materials on the cane surface that affect vis-NIR measure-
ments by the SS method. Maraphum et al. (2018) evaluated the effect of the waxy material
on the cane surface to eliminate or avoid getting low accuracy of the models for Pol mea-
surements. They obtained RMSEP values were around 1.20 to 1.50%, i.e., close to those
found by the present study. The authors concluded that spectra acquisition by removed-
wax samples was convenient for the measurement of Pol. However, other compounds
could affect vis-NIR spectroscopy measurements, such as cellulose and lignin [7].

Overall, the predictive performance results of the models (based on the R2p and RPIQ)
indicate that DF and RJ samples presented similar performance and provide the best results.
However, models built from DF samples require less preparation, i.e., by avoiding juice
extraction, making them more attractive for an on-board system. Moreover, CSS samples
presented worse performance than all other samples. SS samples presented higher values
of R2p and RPIQ than CSS samples for all quality parameters. Furthermore, SS samples
showed a nonsignificant difference (p-value > 0.05) of accuracy (RMSEP) with models built
from DF samples, but worse results for performance (R2p and RPIQ), except for Fibre.
Possibly DF results were satisfactory due to the exposure of the internal constituents, which
overlapped concerning the waxy material that becomes visually negligible. On the other
hand, the organic compounds in the sugarcane outer-surface may have interfered in the
prediction models. Future studies using nonlinear processing methods [47] or advanced
filtering methods, with orthogonalization of unwanted signals concerning the compounds
of interest [48], may help in increasing the predictive performance of the models, which is
more interesting for an on-board system.

3.3. Variable Influence on the Models

VIP scores were used to describe the importance of each wavelength to the prediction
of the main sugarcane quality parameters (Figure 7).
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Figure 7. Heatmap of Variable Importance in Projection (VIP) for models used to predict Brix, Pol, Fibre, Pol of cane, and
TRS based on different spectral sample types datasets. SS: skin scanning of billets; CSS: cross-sectional scanning of billets;
DF: defibrated samples; RJ: raw juice samples; TRS–total recoverable sugars.

As a vibrational spectroscopy technique, the interaction between the vis-NIR electro-
magnetic radiation and the matter of the sample could be interpreted mainly by overtones
and combinations of vibrational modes involving C-H, O-H, and N-H chemical bonds [8,49].
VIP values greater than 1.0 indicate variables with greater influence on the models, and VIP
values between 0.8 and 1.0 indicate the moderately influential variables. All variables with
VIP smaller than 0.8 are insignificant to the predictions [50]. Some substantial similarities
could be observed for different samples and quality parameters on a first overview.

At around 960 nm, there is a small interval with high values of VIP (higher than
2.3), especially related to the prediction of Brix, Pol, Pol of cane, and TRS by CSS and
RJ samples, corresponding to the second and third overtone of O-H and C-H stretching,
respectively [51]. The region between 980 and 1030 nm can be regarded as an important
contributor to quality predictions (VIP higher than 1.0). Between 972 and 1009 nm there is
a characteristic signal related to saccharides and the third overtone of O-H [7]. This signal
is more expressive for parameters determined for SS samples. This spectral range could
be associated with cellulosic fibres, which explained the higher VIP values to SS samples.
Similar observations were found by Phuphaphud et al. (2020) to predict commercial cane
sugar from growing cane stalks for breeding programs using vis-NIR spectroscopy.

At 1139 nm, there is a small band with VIP values higher than 1.0 for all parameters
predicted for four sample types, except for Fibre content. On the interval between 1100
and 1230 nm occurs the second vibrational frequency overtones associated with C-H
stretching [51]. Also, at around 1170–1180 nm, there are VIP values higher than 1 for Fibre
predicting, mainly by DF and CSS samples. In this region, the third overtone of C-H and
unsaturated C=C double bonds are typically associated with fibre, such as lignin [7].

At 1360 nm, there is another expressive region with high VIP values, possibly related
to C-H combinations and the O-H first overtone, respectively [49]. Then, at 1600 nm,
there are highly similar VIP values possibly associated with to first vibrational frequency
overtone of C-H stretching [51]. Another region shows a high contribution, with VIP
values higher than 1, for Fibre predicting between 1850 and 1900 nm, mainly for CSS and
DF samples. Around 1820 nm occurs the effects of O-H stretching associated with two
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combinations of C-O stretching commonly associated with Fibre as cellulosic [7]. This
interval is lower and with lower VIP values for SS samples, possibly due to the waxy effect
on the near-infrared signal [23]. Finally, in the last bands of the spectra, after 2100 nm, the
intensity of VIP values is similar for all predicted attributes from any sample type due to
O-H bending and C-O stretching combination [7].

The scores of the models for all measured quality parameters are displayed by their
first PLS loadings (Figures A3–A7 see Appendix A), accounting for more than 95% of the
data variance. Overall, the most considerable variation occurred in the spectral region
between 1300 and 1500 nm and between 1800 and 1950 nm. Other authors have found
similar response in these spectral regions for prediction of sugars in other products [52,53].
This effect was similar for all sample types and all parameters evaluated. Therefore, this
fact proved the relationships identified by the VIP scores and the key molecular bonds
related to the parameters of interest described earlier.

The gap between two spectrometers, starting at 1011 nm until 1070 nm, is not related
to significative known vibrational frequency overtones associated with some bands related
to sugars or fibres [7]. Therefore, the absence of information in this range would not have
significantly affected the development of the models.

Processed samples allowed a more significant interaction of electromagnetic radiation
corresponding to vis-NIR bands with matter constituents. This physical effect resulted in
more prominent signals from specific vibrational frequency bands related to the chemical
constitution of sugarcane quality parameters. Overall, defibrated samples (DF) showed
performance prediction results that were close to raw juice samples (RJ). Also, the DF
sample allowed us to predict Fibre content as well as other parameters, which is not possible
with RJ samples. The prediction of sugarcane quality parameters from less processed
samples is a desirable characteristic for mechanization of on-the-go measurements of crops,
thus promoting spatial information of crops based on quality. DF samples may partially
satisfy this requirement; however, this is a destructive sampling technique.

Improving the predicting performance of sugarcane quality parameters from billets
for on-the-go systems may be possible [20]. Some effects, such as waxy and skin organic
compounds, need to be considered and minimized [24]. Other data processing techniques
such as nonlinear models [47] or advanced filtering methods such as orthogonalization [48],
could be investigated to improve the performance aiming to develop reliable models for
measuring sugarcane quality using billets of cane.

4. Conclusions

This study demonstrates that vis-NIR spectroscopy could be used as a quick method
to assess the abundance of chemical compounds of sugarcane related to its quality. There
was no significant difference (p-value > 0.05) in the accuracy (RMSEP) of prediction of
whole cane samples when compared to processed samples, such as defibrated cane (DF)
and extracted raw juice (RJ), for all evaluated quality parameters. Also, outer-surface
measurements of sugarcane billets presented a better accuracy (RMSEP, p-value > 0.05) and
performance (R2p and RPIQ) than measurements on the cross-section.

Despite the similar accuracy (p-value > 0.05), DF and RJ sampling presented better
performance than outer-surface measurements of sugarcane billets. Moreover, the perfor-
mance of the models from DF and RJ samples were similar, but DF samples involve less
preparation, as they do not require juice extraction of the sample.

The results showed that DF sampling could be used to predict the main sugarcane
quality parameters, such as soluble solids content (Brix), saccharose (Pol), Fibre, Pol of cane,
and total recoverable sugars (TRS), all of which are used for pricing and trading between
mills and sugarcane producers. The DF models presented RMSEP varying between 0.72%
and 0.87% for Brix, Pol, Fibre, and Pol of cane, and 6.71 kg Mg−1 for TRS.

The results in this study contribute to advancing the development of on-board quality
monitoring in sugarcane. This information shows the spatial variability of crop quality and
helps guide site-specific management of sugarcane fields.
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Appendix A

Table A1. Number of samples of each Brazilian sugarcane variety used in the study.

Variety # Samples Variety # Samples Variety # Samples

CT96-1007 12 CTC 9001 1 RB966928 7
CT96-3346 7 CTC 9005 2 RB975201 1

CTC 11 19 CV 6654 3 RB975952 2
CTC 14 10 IACSP95-5000 1 RB985476 1
CTC 15 12 RB855002 3 SP80-3280 9
CTC 17 7 RB855156 33 SP83-2847 31
CTC 2 19 RB855536 4 SP83-5073 2

CTC 20 26 RB867515 9 RB965621 1
CTC 22 2 RB935621 4 SP91-1049 1
CTC 4 34 RB965621 1 Various 26
CTC 7 1 RB965902 12
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