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Abstract: This study proposes an entire hardware and software architecture from operator input to
motor command for the autonomous area coverage mission using multiple unmanned aerial vehicles.
Despite the rapid growth of commercial drone services, there are many limitations on operations,
such as a low decision-making autonomy and the need for experienced operators to intervene in the
whole process. For performing the area coverage mission more efficiently and autonomously, this
study newly designs an optimization problem that allocates waypoints created to cover that area to
unmanned aerial vehicles. With an optimized list of waypoints, unmanned aerial vehicles can fill the
given areas with their footprints in a minimal amount of time and do not overlap each other during
the mission. In addition, this study performs both various simulations for quantitative analysis and
an outdoor experiment through real hardware implementation in order to verify the performance
sufficiently. The methodologies developed in this study could be applied to endless applications
using unmanned aerial vehicles equipped with mission-specific sensors.

Keywords: unmanned aerial vehicle; mission planning; area coverage; task assignment; mixed integer
linear programming; path planning

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, will replace most
human labor, especially in dangerous places and tedious tasks. The world’s largest drone
companies (e.g., DJI, Parrot, and 3DR) have already launched commercial drone service in
various fields such as agriculture, mapping, and infrastructure inspection. Unfortunately,
at the current level of service, there is a limit to the number of drones to be performed
simultaneously because a skilled human operator must intervene in the entire process of
the operation. However, to overcome the small payload capacity and short operating range
of a single drone, it is essential to deploy multiple drones at industrial sites and increase
autonomy. Researchers also have increased interest in the autonomous operation of drones
using artificial intelligence, but it is still difficult to apply them to a single drone. For these
reasons, research on autonomous missions using multiple drones is still in its early stages.

Otto et al. [1] classified the autonomous missions that can be performed by UAVs into
area coverage [2], search [3], routing [4,5], data collection, and communication relay: the
area coverage mission applies to building inspection and pesticide spraying; the search
mission applies to rescue service and wildfire suppression; the routing mission applies to
transport and parcel delivery. The main difference between the area coverage and search
missions is whether the environment in which the mission is performed is previously
known or not. The area coverage mission first defines a finite area and then makes UAVs
thoroughly monitor that area with equipped sensors. On the other hand, the search mission
aims to detect particular targets in an unknown environment. Therefore, a different strategy
with the coverage mission is needed to accurately estimate the target location and expand
the search area in a minimal amount of time. Note that the methodologies proposed for
the area coverage mission can be the simplest solution for the search mission. When the
area coverage method applies to the search mission, UAVs gradually scan the entire area
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regardless of time and eventually encounter the target. For that reason, this study takes the
area coverage mission as a starting point. In the following, we will review recent research
related to the area coverage mission.

Most of the previous research carrying out the coverage mission has focused on gener-
ating a coverage pattern for exploring the given area with a single drone. Typical geometric
patterns to explore the given area are divided into the back-and-forth movement [2], spiral
pattern [6], and grid-based method [7]. Among several coverage patterns, the back-and-
forth movement can be considered the most energy-efficient [1]. The reason is that when
the UAV changes its flight direction by making a sharp turn, it needs to slow down, rotate,
and then speed up again. Thus, as the number of turning maneuvers increases, the UAV
consumes more energy [8].

On the other hand, only a few studies have performed the area coverage mission using
multiple vehicles. Most of them have adopted a two-step procedure consisting of (i) area
partitioning and (ii) subarea assignment. Peterson et al. developed a multi-robot system of
UAV and UGV to localize radioactive materials by covering a given area [9]. Barrientos et
al. presented a multi-UAV system for aerial imaging applied to precision agriculture and
conducted extensive field tests [10]. In their works, after the preprocessing of dividing a
given area into several smaller subareas and assigning the divided subareas to unmanned
vehicles, each unmanned vehicle performs coverage path planning to explore the allocated
subareas. However, a considerable effort is required to decompose the given area into
subareas reasonably and then effectively assigns the subarea to each UAV, considering
the capability of UAVs. In contrast, Avellar et al. proposed a novel approach that allows
multiple UAVs to achieve cooperative area coverage by increasing the vehicle’s decision-
making autonomy without dividing the area in advance [2]. To be more specific, a given area
could be transformed into a list of waypoints by applying the back-and-forth movement.
As UAVs have to visit the list of waypoints, the area coverage mission can eventually be
modeled as the multiple Traveling Salesman Problem (TSP). Aevellar et al. used Mixed
Integer Linear Programming (MILP) to solve the TSP. Various optimization methods such
as metaheuristics [11] and hybrid methods [12] allow us to calculate the optimal solutions
of the TSP.

It is also important to configure the entire hardware and software system from op-
erator input to motor command. However, relatively few studies have been devoted to
the construction of the entire mission execution framework. Valente et al. proposed taking
aerial images and building a map through image stitching for precision agriculture [13].
In their system, the mission area is sampled with a grid of constant size, and then a path
is generated to perform full coverage with the minimum number of turns without re-
visiting the grid. However, their work was limited in that only one UAV participated in
the mission, and that area information to perform coverage was provided to the UAV
in advance. Garzon et al. presented a multi-robot system including software, hardware,
and communication architecture for a signal search mission [14]. However, their system
applied to Unmanned Ground Vehicles (UGVs), not UAVs, and thus focused on comparing
two different approaches to coverage path planning techniques (i.e., the back-and-forth
movement and the spiral pattern). Besides, few studies have conducted field tests to verify
the performance of the mission system. Nedjati et al. presented a new multi-tour coverage
for a post-earthquake response system that collects images at the earthquake site and
builds a map to extract useful information [15]. Yao et al. proposed inspecting urban build-
ings by assigning buildings to UAVs and generating optimal spherical coverage patterns
around the buildings [16]. However, both previous studies presented only the results of
numerical simulations without performing experiments using real hardware. Acevedo et al.
studied a more practical coverage algorithm in which subareas are assigned to heteroge-
neous aerial robots, taking into account their various sensing and motion capabilities [17].
Mansouri et al. developed a more sophisticated coverage method that considers the camera
movement and acquired the stitched image by collecting image streams during the cov-
erage mission [18]. However, these previous studies are still unfortunate as indoor flight
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tests have been conducted in limited space because most practical applications of the area
coverage mission run outdoors. In other words, indoor experiments cannot be sufficient
validation because there is no wind and no GPS errors (thanks to motion capture system),
which might be critical and challenging issues in a real implementation.

The primary purpose of this study is to provide the entire mission system configuration
for the area coverage mission using multiple UAVs and to design the optimization problem
for task assignment. More exactly, the autonomous area coverage mission begins when the
operator enters parameters to define the mission through the Ground Control Station (GCS).
This study designs an optimization problem to assign optimal waypoint lists to UAVs based
on MILP. The optimization problem takes into account the back-and-forth movement and is
intended to completely fill the given area with the footprint of multiple UAVs. When each
UAV receives an optimal list of waypoints, it takes off from the ground and visits a series of
waypoints in order. During the mission, the waypoint status is monitored in the proposed
task management algorithm. The entire mission ends with all UAVs flying through this
process and then landing. Accordingly, the following assumptions are considered in this
study. First, we assume that the area covered by multiple UAVs exists in a two-dimensional
space and is always convex. Second, the given area is small enough to allow the UAV to
complete the mission with one full charge, and therefore we do not consider returning to
the depot to recharge the battery. Third, it is assumed that all UAVs participating in the
mission have the same capability (i.e., the maximum travel distance). Forth, we consider
the centralized task assignment scheme performed on GCS, so the assignment results are
unilaterally transferred once to UAVs waiting on the ground. In addition, we assume that
the communication range and the amount of data required for the communication between
the UAV and GCS is unlimited. Lastly, we envision that the mission environment is static
and clean without obstacles. It means that there are no significant problems with UAVs
following the assigned waypoints, so no additional strategies are required to respond to
environments with static obstacles or dynamic environments.

The contributions of this study are threefold. First, this study presents a mission
execution framework ranging from operator input to motor command to perform the area
coverage mission. Second, by comparison with the motivational research [2], this study ex-
pands to multiple areas and lightens the computational complexity of optimization. Third,
this study addresses various simulations and flight tests in outdoor environments to verify
the proposed system’s performance. To the best of our knowledge, we provide the first mul-
tiple areas optimal coverage with multiple drones verified through outdoor experiments.

The rest of this study is organized as follows. Section 2 defines each subsystem con-
stituting the entire system and the interactions between subsystems. Section 3 explains
the graph building process for the task assignment subsystem in detail and provides the
MILP formulation, including objective function and constraints. In Section 4, the proposed
system’s performance is verified through various simulations performing single area cov-
erage missions with different types of polygons and different numbers of UAVs. Section 5
presents the results of the outdoor experiment in which two hexacopters cover multiple
areas designated by the operator. Section 6 describes this study’s conclusions and discusses
possible directions for future research.

2. Problem Description

Figure 1 shows the hardware and software architecture of the entire mission system
from operator input to motor command. As shown in Figure 1, the primary components
of the hardware are multiple UAV platforms and one laptop computer that acts as a
ground-based GCS hardware system. In terms of the software, the entire mission system
consists of five subsystems; GCS software for task definition and task monitoring, task
assignment, task management, path planning, and flight control subsystems. All of these
subsystems work under the Robot Operating System (ROS) framework [19]. Note that
GCS software and task assignment subsystems work on the laptop computer. On the
other hand, task management, path planning, and flight control subsystems operate on an
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on-board computer mounted on each UAV platform. The subsections below describe each
subsystem’s operations; however, the description of the flight control subsystem is omitted
because the PX4 firmware [20], which is an open-source autopilot software, is used as the
flight control subsystem.

Figure 1. System architecture.

2.1. GCS Software

In this study, the GCS software is developed based on QGroundControl [21], which is
an open-source GCS working with various vehicle types supported by the PX4 firmware.
In the original QGroundControl, the operator enters several parameters to define the
survey, such as a polygonal area, the angle between waypoints, the spacing between
waypoints, and the altitude to perform the mission. Then, QGroundControl creates a set of
waypoints based on the operator inputs. Note that the waypoints generated by the original
QGroundControl are (i) highly operator dependent, (ii) not optimized, and (iii) not for
multiple UAVs.

The following four features are newly added to the original QGroundControl for the
optimal area coverage mission using multiple UAVs aimed in this study. First, QGround-
Control is modified to be able to publish and subscribe to ROS messages. For QGround-
Control to work in the ROS environment, a WebSocket connection is selected to design the
client structure. The rosbridge interface [22] is implemented to communicate with other
subsystems. Therefore, the operator inputs through QGroundControl are transferred to
other subsystems as ROS messages. In addition, the results calculated by other subsystems
are sent as ROS messages so that the operator can monitor the progress of the mission.
Second, QGroundControl is expanded to perform missions using multiple UAVs. To do this,
the operator needs to enter two additional inputs: the number of UAVs and the origin of
the inertial coordinate. In addition, the position of each UAV in the GNSS coordinate is sent
to the modified QGroundControl. After that, the relative coordinates between the inertial
coordinate and the body-fixed coordinate of each UAV are defined, and the coordinate
transformations are performed. For that reason, despite the operator defining the mission
areas in the inertial coordinate, each UAV can transform the waypoints assigned to it in
its body-fixed coordinate. Third, even if the operator does not specify the direction of the
back-and-forth movement (i.e., the angle between waypoints), the proposed task assign-
ment subsystem determines the optimal direction to cover the polygonal area. Therefore,
although the operator enters fewer parameters to define the mission than the original
QGroundControl, the operator can be provided with optimal mission planning. Namely,
the modified QGroundControl in this study attempts to determine the optimal waypoints
for multiple UAVs rather than simply flying along waypoints entered by the operator.
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In summary, the primary operations of GCS software are (i) task definition determining
which waypoints UAVs should visit to perform the mission and (ii) task monitoring to
see the progress of the mission. The GCS software interacts with the operator and other
subsystems at 1 Hz as follows. The inputs entered by the operator are the vertices of the
polygonal areas, the mission altitude, the number of UAV, the spacing of waypoints, and
the origin of the inertial coordinate. In addition, the GCS software needs the longitude and
latitude of each UAV obtained from the GPS sensor mounted on each UAV. As the outputs
for the operator, the GCS software displays the list of optimal waypoints determined by
the task assignment subsystem and the status of each waypoint provided by the task
management subsystem on the map. The outputs to other subsystems are the operator
inputs and the relative coordinates between the inertial and the body-fixed coordinates.

2.2. Task Assignment

The primary function of the task assignment subsystem is to allocate waypoints to
each UAV in order to perform the mission given by the operator optimally. The inputs
required for the task assignment subsystem are the vertices of the polygonal areas, the
number of UAV, and the initial position of UAV in the inertial coordinate. The outputs of the
task assignment subsystem are the set of waypoints assigned to each UAV and are provided
at the end of solving the optimization problem. As has been mentioned in the previous
section, task reassignment is not considered in this study. However, if task reassignment is
required, this subsystem needs additional inputs from the task management subsystem to
solve the task reassignment problem. For example, the task reassignment problem requires
additional information, such as which UAV is failed to reach the given waypoint and the
residual list of waypoints. The task assignment subsystem will be discussed in detail in
Section 3.

2.3. Task Management

Task management identifies the target waypoint that a UAV should currently head to
in the list of waypoints and checks whether the UAV reaches the target waypoint or not.
The optimal waypoint list is subscribed from the task assignment subsystem. Because this
study considers two-dimensional area coverage, the altitude of the waypoints is equal to
the mission altitude defined by the operator. It is necessary to prevent collisions with other
UAVs in the process of starting from the depot and moving to the mission area, moving
between different polygon areas, and returning to the depot after completing the mission.
Therefore, in this study, the transition altitude concept is newly introduced, where each
UAV is assigned a unique transition altitude. Inside the polygonal area, a lateral safety
separation is ensured due to the spacing of the waypoints. Outside of the polygonal area, a
longitudinal safety separation is possible thanks to the transition altitude. In other words,
as shown in Figure 2, we consider virtual waypoints in addition to the waypoints for the
coverage mission to ensure safe separation between UAVs.

When a UAV enters within a certain radius of the target waypoint, it is considered that
the UAV reached the target waypoint. Although the task reassignment problem is beyond
this study’s scope, the following strategy can be envisioned when a UAV fails to reach the
target waypoint. First of all, the task management subsystem can retry the same task (i.e.,
visiting the target waypoint) a certain number of times. Nevertheless, if the retrial fails,
the task management subsystem decides that the remaining mission should be reassigned
and transfers the decision with additional information required to solve the reassignment
problem to the task assignment subsystem.
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Figure 2. A concept of transition altitude.

In short, the inputs of the task management subsystem are the optimal waypoint list
assigned for each UAV. The outputs of the task management subsystem are the status of
each waypoint and information related to the task reassignment problem. Note that the
task management subsystem operates at 5 Hz.

2.4. Path Planning

The role of path planning is to generate a guidance command at 50 Hz that allows a
UAV to navigate to the target waypoint designated by the task management subsystem.
In this study, linear velocity command Vcmd ∈ R3 to the X-Y-Z axis of the body-fixed
coordinate is considered as the guidance command to be transferred to the flight control
subsystem. Therefore, the position error between the target waypoint Pdes ∈ R3 and the
UAV’s position P ∈ R3 is defined in the body-fixed coordinate. In order to make the
position error converge to zero, the linear velocity command can be derived based on a
proportional controller as follows:

Vcmd = −K(P− Pdes) (1)

where K denotes the proportional gain matrix. In addition, the predefined maximum
speed Vmax is set for stable flight. The velocity command Vcmd is limited to ensure proper
waypoint followings without exceeding the maximum speed Vmax as follows.

|Vcmd| ≤ Vmax (2)

3. Methodologies for Task Assignment

This section describes the procedures and methods used in the task assignment
subsystem in detail. Firstly, a graph consisting of nodes and edges is constructed as a
two-dimensional square matrix. Under the constructed graph, an optimization problem is
designed based on MILP to determine the optimal pair between UAVs and waypoints.

3.1. Graph Building

When the vertices of the polygonal areas, the number of UAV, the initial position of
UAV in the inertial coordinate, and the spacing between waypoints are provided from
the GCS software, the task assignment subsystem’s first operation is to build a graph
consisting of nodes and edges. As the simplest way to fill the finite two-dimensional area
with each UAV’s footprint, the area to be covered can be gridded with the footprint size
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of each UAV. Therefore, the area to be covered can be expressed as a graph composed of
nodes representing the center of the footprint and edges connecting nodes. However, as
mentioned previously, this study considers the back-and-forth movement, not the grid-
based method. The following describes the detailed procedure of building a graph to cover
the given areas with the back-and-forth movement.

First, the node consists of (i) each UAV’s initial launch position (called a depot) and
(ii) the waypoints that each UAV should visit. The waypoints can be generated as follows.
When the polygonal area is given as a sequence of vertices, each line segment connecting
two vertices can be determined as the polygon boundaries. In other words, by drawing line
segments connecting two adjacent vertices in a clockwise (or counter-clockwise) direction,
a set of line segments whose number is equal to the number of vertices can be determined.
For example, in the tetragon shown in Figure 3a, the polygon boundaries are connected to
four line segments. The longest line segment among the boundaries is determined and is
regarded as the coverage direction (perpendicular to the sweep direction) [2]. For example,
the relationship between the longest line segment, the coverage direction, and the sweep
direction is illustrated in Figure 3b. Virtual lines are generated parallel to the coverage
direction. The intersections between the virtual lines and the boundaries can be considered
as the waypoints. For example, 12 intersections can be determined by placing the virtual
lines parallel to the longest line segment at intervals of 1 m in a polygonal area, as shown
in Figure 3c. These 12 intersections are regarded as the waypoints that UAVs should visit.

(a) Vertices and line segments (b) Longest line segment (c) Waypoints

Figure 3. Graph building procedures.

Secondly, the edge can be determined as follows. The graph can be considered as a
two-dimensional square matrix of which size is equal to the number of nodes. The element
(i, j) of the two-dimensional square matrix corresponds to the edge connecting the i-th
waypoint and the j-th waypoint. In general, the value of the element (i, j) (i.e., the cost of
the edge) is determined by the distance between nodes. However, in the following three
cases, a different value is used as the edge cost instead of the distance between nodes for
particular purposes. The first case is that the value of the diagonal element (i, j) when i = j
is set to an arbitrarily large number. This strategy has been commonly used to prevent
tours from node i to node i in the TSP. The second case is to prevent a UAV from visiting
other UAV’s initial launch position. To this end, if node i and node j correspond to the
initial launch position of UAV, the distance between node i and node j is multiplied by a
penalty greater than one. In general, when performing coverage or routing missions with
multiple UAVs, only one depot was considered in most previous studies [23]. However,
when considering a single depot, time separation between UAVs is essential to guarantee
safe separation at the depot [24]. For this, the time to reach the node should be considered as
a decision variable. As the number of decision variables increases, the computation amount
required for optimization increases. Therefore, we consider a method of spatially separating
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each UAV, starting from a different position. The last case is to avoid overlapping of the
areas to be covered by different UAVs. After a UAV makes the back-and-forth movement
along a virtual line segment, it can move to a nearby waypoint. In this study, the numbering
difference between waypoints is not more than two are defined as the nearby waypoints.
Therefore, if node i and node j are not be considered as the nearby waypoints, the distance
between node i and node j is multiplied by a penalty greater than one.

3.2. Decision Variables and Constraints

Let us consider that there are N nodes and M UAVs. Each node i and UAV k belong to
the set of nodes N (i.e., n(N ) = N) and the set of UAVsM (i.e., n(M) = M and N > M),
respectively. Note that the first M nodes represent the depots of each UAV, and therefore the
set N0 (i.e., n(N0) = N −M) is defined to distinguish nondepot nodes [23]. Additionally,
the set N ′ is set to N ′ = {x | x ∈ N0, x = odd} to distinguish the waypoints on the same
sides relative to the center of the virtual lines.

Three decision variables are defined to formulate the optimization problem: one binary
variables xk

ij, and two slack variables s and ui for ∀i, j ∈ N , ∀k ∈ M, i 6= j. Note that i and

j are used for the index of nodes, and k is used for the index of UAVs. First, xk
ij is a binary

variable which becomes one when a UAV k is assigned to the edge connecting node i and
node j and zero otherwise. Second, s is a continuous slack variable representing the longest
travel distance among all UAVs. Lastly, ui is a continuous slack variable that is required for
the constraint to prevent subtours in the typical TSP [2].

There are five constraints required to determine the optimal pair between N nodes
and M UAVs. The first constraint is that all UAVs should visit all nodes only once except
the depots. The first constraint can be represented as follows.

M

∑
k=1

N

∑
i=1

xk
ij = 1, ∀j ∈ N0 (3)

The second constraint indicates that if a UAV arrives at a node, then the UAV should also
depart from the node to another node. It can be summarized as follows.

N

∑
i=1

xk
ij −

N

∑
i=1

xk
ji = 0, ∀j ∈ N , ∀k ∈ M (4)

The third constraint is required to prevent subtours in the typical TSP with the continuous
slack variable ui. This constraint can be expressed as follows.

ui − uj + N
M

∑
k=1

xk
ij ≤ N − 1, ∀i, j ∈ N0, i 6= j (5)

By using the fourth constraint, all UAVs are regulated to participate in the routing mission
as follows.

N

∑
j=1

xk
ij = 1, ∀k ∈ M, ∀i ∈ N\N0 (6)

The last constraint is necessary to make the back-and-fourth movement [2] and can be
formulated as follows.

M

∑
k=1

xk
i(i+1) +

M

∑
k=1

xk
(i+1)i = 1, ∀i ∈ N ′ (7)

Note that the numbering order is critical for the last constraint in Equation (7) to work
correctly. In this study, the waypoints (i.e., the nodes of the set N0) are numbered as shown
in Figure 3c. Intersections created by one virtual line have numberings that are adjacent to
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each other. Therefore, from the center of the virtual lines, intersections on one side are odd
(or even), and intersections on the other side are even (or odd).

3.3. MILP Formulation

The optimization problem for assigning N nodes to M UAVs using previously defined
decision variables and constraints can be summarized as follows.

Minimize s +
1
M

M

∑
k=1

N

∑
i=1

N

∑
j=1

cijxk
ij (8)

subject to Equations (3)–(7),

N

∑
i=1

N

∑
j=1

cijxk
ij ≤ s, ∀k ∈ M (9)

The objective function is designed to minimize the maximum travel distance s (i.e., the first
term in Equation (8)) and the average travel distance of all UAVs (i.e., the second term in
Equation (8)). Note that the constant cij denotes the cost of moving the edge from node i
and to node j (i.e., the element (i, j) of the graph). Lastly, Equation (9) is added to define
the maximum travel distance s.

4. Simulations

This section validates the performance of the proposed framework for the area cover-
age mission of multiple UAVs through two simulations. In the first simulation, the task
assignment subsystem explained in Section 3 is applied to various polygonal areas and
different number of UAVs. The second simulation evaluates the entire system described
in Section 2 by assuming that an arbitrary polygonal area is given by the operator. All
numerical computations were performed using a laptop computer with a 2.6 GHz Intel i7
CPU and 16 GB RAM running the Ubuntu operating system. Note that the task assignment
subsystem was written in MATLAB (version R2020a; The MathWorks Inc., Natick, MA,
USA) and used Gurobi solver [25], which is a standard optimization software package for
MILP, to solve the optimization problem described in Section 3.3.

4.1. MATLAB Simulation

The first simulation aims to verify the performance of the task assignment subsystem.
In other words, this simulation focuses on determining whether the task assignment
subsystem appropriately solves the optimization problem. Several different configurations
are considered; two to five UAVs cover a single polygonal area randomly provided from
triangle to hexagon.

Figure 4 shows the sample configuration in which three UAVs cover a pentagon.
Suppose that the following information is provided as inputs to the task assignment
subsystem: (i) the five vertices of the pentagon are given as small circles in Figure 4a, (ii) the
spacing between waypoints is set to 5 m, (iii) the number of UAVs participating in coverage
is three, and (iv) the UAVs are initially placed in the inertial frame as shown in the small
asterisks in Figure 4a. We can use these inputs to create the graph according to the method
described in Section 3.1. Figure 4b presents the nodes of the graph. The three small asterisks
and 16 small circles represent the depots of each UAV and the waypoints, respectively.
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(a) Initial configuration (b) Nodes (c) Assignment results

Figure 4. Task assignment procedures for the sample configuration.

To describe the input arguments of the Gurobi solver, let us reproduce the opti-
mization problem described in Section 3 for the sample configuration. All constraints in
Equations (3)–(7) and (9) can be considered matrix equations or inequalities for the solu-
tion vector, including three decision variables. Note that the solution vector has size 1103
by 1 (1083 for xk

ij, 19 for ui, and 1 for s). In the first constraint described in Equation (3), the
linear equality constraint matrix has size 19 by 1103, where 19 is the number of nodes and
1103 is the size of the solution vector. In the second constraint explained in Equation (4), the
linear equality constraint matrix has size 57 by 1103, where 57 is the product of the number
of nodes and the number of UAVs (i.e., 57 = 19× 3). The third constraint presented in
Equation (5) has the linear inequality constraint matrix of which size is 240 by 1103, where
240 is equal to 240 = (19− 3)× (19− 3)− 16. The linear equality constraint matrices of
the fourth constraint in Equation (6) and the fifth constraint in Equation (7) have size 3 by
1103 and size 8 by 1103, respectively. In the additional constraint described in Equation (9),
the linear inequality constraint matrix has size 3 by 1103. The objective function given in
Equation (8) can be expressed as the dot product between the coefficient vector and the
solution vector. Lastly, we need to specify the lower and upper bounds of the solution
vector x and specify which value is an integer. In this way, when all input arguments to
the Gurobi solver are specified, the Gurobi solver provides the optimal value of decision
variables as output.

Figure 4c provides the assignment results of allocating 19 nodes to three UAVs to cover
the given area optimally. The computation time was only 0.80 s to solve the optimization
problem. As shown in Figure 4c, the UAVs could cover the given area by implementing the
back-and-forth movement without overlapping each other.

It can be seen from Figure 4c that the upper waypoints were allocated to UAV2 initially
located relatively above, and the lower waypoints were allocated to UAV3 initially located
relatively lower. Additionally, as Figure 4c shows, UAV3 was assigned more waypoints
than UAV1 and UAV2 because the distance from the initial launch position to the first
waypoint for UAV1 and UAV2 was greater than UAV3. Table 1 summarizes the number of
waypoints and the sequence of waypoints assigned for each UAV, the travel distance of
each UAV, and the average travel of all UAVs.

The assignment results for all configurations are described in the following. If there
is one UAV, its initial position is set to (0 m, 0 m), the origin of the inertial coordinate. As
the number of UAVs increases, the added UAVs are placed 5 m away along the y-axis.
For example, if there are five UAVs, their initial positions are (0 m, 0 m), (0 m, 5 m), (0 m,
−5 m), (0 m, 10 m), and (0 m, −10 m). Figures 5–8 show the assignment results when the
number of UAVs varies from two to five and a polygonal area from triangle to hexagon
is given to cover. Table 2 summarizes the travel distance of each UAV and the average
and maximum travel distance according to the assignment results. For all configurations,
as we intended, waypoints were reasonably assigned to each UAV so that the polygonal
area was covered by each UAV, like cutting a cake. The assignment results can also be



Sensors 2021, 21, 2482 11 of 21

interpreted as UAVs cooperate to minimize the objective function, the goal of all UAVs,
in Equation (8) while satisfying the constraints in Equations (3)–(7) and (9). Note that, to
describe the results on a limited page, we set the number of UAVs to a maximum of five
and polygons to a maximum of a hexagon. However, the proposed task assignment can
operate for more UAVs and more complex polygon.

Table 1. Task assignment results for the sample configuration.

UAV1 UAV2 UAV3

Number of waypoints 4 4 8

Sequence of waypoints 1–8–9–11–10–1 2–6–7–5–4–2 3–18–19–17–16–14–15–13–12–3

Travel distance [m] 143.86 154.96 214.42

Avg. travel distance [m] 171.08

(a) Two UAVs (b) Three UAVs

(c) Four UAVs (d) Five UAVs

Figure 5. Assignment results for triangle.
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(a) Two UAVs (b) Three UAVs

(c) Four UAVs (d) Five UAVs

Figure 6. Assignment results for tetragon.

(a) Two UAVs (b) Three UAVs

Figure 7. Cont.
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(c) Four UAVs (d) Five UAVs

Figure 7. Assignment results for pentagon.

(a) Two UAVs (b) Three UAVs

(c) Four UAVs (d) Five UAVs

Figure 8. Assignment results for hexagon.
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Table 2. Task assignment results for various polygons.

Triangle Tetragon Pentagon Hexagon

Two UAVs Max. distance [m] 180.31 260.69 238.12 260.38
Avg. distance [m] 165.02 237.57 206.39 243.83

Three UAVs Max. distance [m] 143.98 214.42 175.67 202.30
Avg. distance [m] 142.43 171.08 160.13 182.37

Four UAVs Max. distance [m] 140.76 149.73 153.75 170.59
Avg. distance [m] 134.89 138.83 127.43 145.74

Five UAVs Max. distance [m] 137.20 146.77 148.57 143.45
Avg. distance [m] 130.67 137.16 125.96 133.29

4.2. MATLAB and Gazebo Cosimulation

The purpose of the second simulation is to evaluate the entire system performing
the coverage mission as final verification before the actual flight test. Note that in this
simulation, it is assumed that an arbitrary polygonal area is given by the operator. Therefore,
among various polygons introduced in Section 4.1, the hexagon described in Figure 8 was
selected as the polygonal area for this simulation. MATLAB and gazebo cosimulation was
performed in a ROS environment. To do this, we created a ROS master, and then the task
assignment subsystem on MATLAB connected to the existing ROS mater. Therefore, the
task assignment subsystem could exchange data with other ROS packages implementing
other subsystems through publishers and subscribers. In addition, we used PX4 Software
In The Loop (SITL) and gazebo to simulate the physical model of a quadrotor and to run
PX4 firmware (v1.9.0) as the flight control software. By utilizing PX4 SITL and gazebo, we
customized five quadrotors based on a 3DR IRIS drone, which can imitate the quadrotor
dynamics accurately since it takes into account not only rigid body dynamics but also
complex aerodynamic effects such as rotor-drags [26]. We also utilized MAVROS [27] as
the interface between the path planning subsystem and the flight controller. The velocity
command generated in the path planning subsystem was transferred to the flight controller
at 40 Hz. Other parameter settings for this simulation are as follows. First, the mission
altitude was set to 3 m, and the transition altitude of five UAVs was set to 5 m, 6 m, 7 m,
8 m, and 9 m, respectively. Second, the maximum flight speed was set to 3 m/s. Third,
when the UAV enters a circle with a radius of 1 m from the target waypoint, we determined
that the UAV has reached the target waypoint. Fourth, other parameters related to the task
assignment subsystem were set to the same as in the previous simulations in Section 4.1.

Figure 9 shows the gazebo simulation environment with five UAVs. As shown in
Figure 9, five UAVs were placed at (0 m, 0 m), (0 m, 5 m), (0 m, −5 m), (0 m, 10 m),
and (0 m, −10 m). Each UAV received the waypoint list from the task assignment sub-
system, as shown in Figure 8d. For example, the waypoint list transferred to UAV1 was
1–18–19–17–16–1. The task management subsystem added several virtual waypoints for
safe separation, as mentioned in Section 2.3. After the final waypoint list was generated,
each UAV took off until it reaches the first waypoint and then moved in sequence to a
series of waypoints. The coverage mission ended with all UAVs returning to their initial
position after visiting all waypoints assigned to them. Figure 10 shows the overall flight
process of five UAVs taking off from the ground and visiting the received waypoint list,
then returning to the depot and landing. In Figure 10, the small squares depict the virtual
waypoints added in the task management subsystem for safe separation. The solid lines are
the flight trajectories traveled by the UAVs during the MATLAB and gazebo cosimulation.
It can be seen from Figure 10 that thanks to using the proposed altitude separation, there
were no collisions between members of the team during the mission.
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Figure 9. Simulation environment in Gazebo.

Figure 10. MATLAB and gazebo cosimulation results.

5. Experiments

In this section, we present the outdoor experiment in which two hexacopters perform
the coverage mission when the operator enters the mission through GCS. The most crucial
parts of this outdoor experiment are the operator inputs through GCS, coverage mission
for multiple areas, and real hardware implementation. The experiment was performed in
an open space without any obstacles. Similar to the simulations performed in Section 4,
we built two custom hexacopters with the DJI F550 frame, as shown in Figure 11. We
used a Pixhawk4 running PX4 firmware (v1.9.0) as a Flight Control Computer (FCC). The
FCC was responsible for calculating the motor inputs and controlling the hexacopter’s
motion by estimating the states such as position, velocity, and attitude. Additionally, each
hexacopter was equipped with an NVIDIA Xavier NX, as a companion onboard computer.
The onboard computer was connected to the FCC to receive the list of waypoints, perform
task management and path planning, and transfer the desired position, velocity, yaw,
and yaw rate to the FCC. The laptop computer used as GCS hardware and two onboard
computers mounted on hexacopters were connected to a single network over WiFi. All the
hardware details are listed in Table 3.
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Figure 11. Outdoor experiment environment and quadrotor hardware platforms.

Table 3. Hardware specification.

hexacopter platform

frame DJI F550

motor DJI 2312E

ESC DJI 430 LITE

propeller DJI 9450

battery Lumenier 4S 5200 mAh

sensors GPS ublox M8N

computers
flight controller Holybro Durandal (PX4)

mission computer NVIDIA Xavier NX

Figure 12 shows the outdoor experiment scenario where the operator defined the
coverage mission for three polygonal areas. As shown in Figure 12, the latitude and longi-
tude of the origin of the inertial coordinate were set to 36.379720 deg and 127.364620 deg,
respectively. The launch positions of two hexacopters were (36.379795 deg, 127.364639 deg)
and (36.379852 deg, 127.364654 deg) in the GNSS coordinate, respectively. In addition,
the spacing between waypoints was set to 5 m. Considering the GPS positional error, the
mission altitude was set to 5 m, and the transition altitudes of two hexacopters were set
to 8 m and 11 m, respectively. Figures 13 and 14 show the visualization functions of GCS
for the operator to monitor the mission. Figure 13 shows the optimization results received
by the task assignment subsystem. It can be seen from Figure. 13 that the back-and-forth
movement could be generated in a direction parallel to the longest boundary line even if
the operator did not enter the angle to generate the detailed waypoints within the polygon.
Furthermore, the operator could identify the waypoint list assigned to each hexacopter
before the flight starts and could confirm the progress of the mission. Figure 14 shows
the status of each waypoint provided by the task management subsystem. As shown in
Figure 14, three different colors were used to indicate the three types of the waypoint status;
(1) gray waypoints that the hexacopter has already been reached, (2) green waypoints that
the hexacopter is currently being followed (i.e., the target waypoint), and (3) default color
waypoints that the hexacopter have not yet been reached. The waypoint status could also
be checked with the green icons on the right panel, as shown in Figure 14.
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Figure 12. Mission plans through QGroundControl.

Figure 13. Optimization results shown in QGroundControl.

Figure 14. Waypoint status shown in QGroundControl.
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Figure 15 shows the task assignment results and the flight trajectories of hexacopters
recorded after the flight test was completed. As shown in Figure 15, 28 nodes were gener-
ated by the proposed graph building method to perform the coverage mission for three
polygonal areas. Specifically, the waypoint lists assigned to the first and the second hexa-
copters were 1–14–13–11–12–10–9–7–8–6–5–3–4–1 and 2–27–28–26–25–23–24–22–21–19–20–
18–17–15–16–2, respectively. Therefore, the travel distance of UAV1 and UAV2 calculated
from the task assignment problem are 306.96 m and 306.43 m, respectively. Additionally,
the objective function of the optimization problem was 613.65 m; the maximum flight
distance was 306.96 m and the average flight distance was 306.69 m. The computation time
required to solve the optimization problem was 4.61 s.

Figure 15. Flight trajectories.

Figure 16 shows the time histories of each UAV’s states, including position, velocity,
attitude, and angular rate recorded in the outdoor experiment. The total distance traveled by
UAV1 and UAV2 were 337.64 m and 359.95 m, respectively. Since the virtual waypoints were
added in the task management subsystem for safe separation, there was a slight difference
between the distance the hexacopter actually traveled and the distance calculated in the task
assignment subsystem. From these results, it can be concluded that the proposed system can
perform area coverage missions more autonomously with multiple UAVs and is sufficiently
applicable even in outdoor environments through real hardware implementation.
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(a) UAV1 (b) UAV2

Figure 16. Time histories of states.

6. Conclusions

This study has attempted to establish a complete mission execution framework, from
operator input to drone motor command for the autonomous and optimal area coverage
mission using multiple Unmanned Aerial Vehicles (UAVs). In one communication network,
the hardware system consisted of a laptop computer acting as a Ground Control Station
(GCS) and several UAVs performing the mission. The software system was made up of five
subsystems: (i) GCS to define the mission and monitor the whole progress of the mission,
(ii) task assignment to allocate waypoints to each UAV, (iii) task management to check the
waypoint status, (iv) path planning to generate a feasible path to the target waypoint, and
(v) flight control to make a UAV fly to the desired path. In the task assignment subsystem,
the proposed graph building method could lighten the computational complexity of the
optimization problem determining the optimal pair between waypoints and UAVs while
effectively generate the back-and-forth movement as well as prevent overlapping of flight
areas between UAVs. The performance of the proposed system was verified through
two simulations; one is through MATLAB simulation focusing on the validation of the
task assignment subsystem and the other is MATLAB and Gazebo cosimulation for final
validation before actual flight testing. Finally, outdoor experiments with real hardware
implementations confirmed that multiple UAVs more autonomously cover multiple areas
designated by the operator in the field.

For future work, this study will be expanded to following directions. First, in terms
of task assignment, this study was limited in that all UAVs participating in the mission
have the same capabilities. However, more research is needed to optimally distribute tasks
between heterogeneous UAVs when each UAV has different maximum travel distances
or different sensor specifications. Second, although this study did not consider cases
where UAVs fail to reach the assigned waypoints, considerable work needs to be done
to determine when mission replanning is necessary and how to resolve the replanning
problem. Third, further research should be conducted on path planning strategies for
carrying out the area coverage mission in a dynamic environment with obstacles previously
unrecognized or moving obstacles. Lastly, although the UAV only visits the list of assigned
waypoints in sequence in this study, future studies can be undertaken to perform detailed
tasks at the waypoint (such as taking pictures or acquiring point cloud data). The final
output of the area coverage mission will be 3D maps or 3D models that are increasingly
available in agriculture, construction, mining, inspection, surveying, and public safety.
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