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Abstract: Size-based routing policies are known to perform well when the variance of the distribution
of the job size is very high. We consider two size-based policies in this paper: Task Assignment with
Guessing Size (TAGS) and Size Interval Task Assignment (SITA). The latter assumes that the size
of jobs is known, whereas the former does not. Recently, it has been shown by our previous work
that when the ratio of the largest to shortest job tends to infinity and the system load is fixed and
low, the average waiting time of SITA is, at most, two times less than that of TAGS. In this article, we
first analyze the ratio between the mean waiting time of TAGS and the mean waiting time of SITA
in a non-asymptotic regime, and we show that for two servers, and when the job size distribution
is Bounded Pareto with parameter α = 1, this ratio is unbounded from above. We then consider a
system with an arbitrary number of servers and we compare the mean waiting time of TAGS with
that of Size Interval Task Assignment with Equal load (SITA-E), which is a SITA policy where the
load of all the servers are equal. We show that in the light traffic regime, the performance ratio under
consideration is unbounded from above when (i) the job size distribution is Bounded Pareto with
parameter α = 1 and an arbitrary number of servers as well as (ii) for Bounded Pareto distributed job
sizes with α ∈ (0, 2)\{1} and the number of servers tends to infinity. Finally, we use the result of our
previous work to show how to design decentralized systems with quality of service constraints.

Keywords: parallel servers; size-based routing; queuing theory

1. Introduction

We explore the performance of a system composed of parallel servers in which the job
size distribution satisfies the heavy-tailed property. This property means that the arrival of
extremely large jobs occurs with a non-negligible probability and, therefore, a very small
portion of the jobs account for half of the system load. For instance, jobs submitted to
modern data centers follow a heavy-tailed distribution [1]. Consequently, if we model
the servers of data centers as First-Come-First-Served (FCFS) queues, the presence of
very long jobs might cause a substantial performance degradation as many short jobs
must wait behind a large job for a long time. This problem is solved by using size-based
routing policies, in which job sizes are divided into intervals. We consider that two popular
size-based routing policies, the Size Interval Task Assignment (SITA), which designates
an interval to each server and jobs whose size are in the interval, are executed on the
corresponding server. The second size-based routing policy is called Task Assignment with
Guessing Size (TAGS). Under this policy, all incoming jobs are routed to server 1 and, for
each server i, if its execution time in server i time exceeds a given server-assigned threshold
si, it is stopped and placed in the last position of the queue of server i + 1. As SITA assumes
that the size of tasks is known and routes directly to the end server, while TAGS incurs
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overheads, it is clear that SITA outperforms TAGS. An important result comparing the
performance of these two policies [2] states that in the asymptotic regime, where the ratio
of the largest to shortest job tends to infinity and the system load is fixed and low, the
average waiting time of SITA with optimal intervals is, at most, two times that of TAGS
with optimal intervals.

The main contributions of this article are summarized as follows.

• We provide a non-asymptotic comparison of the mean waiting time of SITA and
TAGS. We analyze a system with two servers and a job size distribution that follows
the Bounded Pareto distribution with the tail parameter one. We provide a job size
distribution-dependent lower bound on the ratio of average waiting times between the
TAGS and SITA systems at very low rates. We compute a good estimate for the bound
when the job size is an arbitrary Bounded Pareto distribution and show that unlike
the case of a fixed and low load, when the load is low but not fixed, the performance
ratio is unbounded. We also analyze numerically this performance ratio for bounded
Pareto distributions with different tail parameters.

• For any number of servers K ≥ 2, we compare the performance of the TAGS system
with the Size Interval Task Assignment with Equal load (SITA-E) system, i.e., with a
SITA policy in which the thresholds are set to load balance the servers. We analyze
this system in light traffic, and we show that in this regime, asymptotically, the
average waiting times of TAGS with optimal intervals and of a single server coincide.
Consequently, we can use the results of [3] in which they compare the performance of
SITA-E and a single server and conclude that the ratio of the average waiting time of
the TAGS and SITA-E system is unbounded in a wide range of cases: (i) when the job
size distribution Bounded Pareto with α = 1 and K ≥ 2, and (ii) when K → ∞ and the
job size distribution is Bounded Pareto with α ∈ (0, 2)\{1}.
The stability condition for TAGS systems [2] says that the arrival rate times and the

mean job size must be less than a critical load that depends on the job size distribution. Let
us note that this stability condition does not depend on the number of servers present in the
system. Therefore, if we increase the number of servers and the arrival rate proportionally
in a TAGS system, the system will become unstable, which is not the case for other routing
policies such as Bernoulli or SITA [4]. Therefore, for the design of a system with a large
number of servers it is preferable to consider a decentralized system, as in [3], in which
the system is divided into n load balanced and equal sized groups which can operate
under either SITA or TAGS. The goal is to elucidate the maximum number of groups that
can operate under TAGS so as to satisfy a quality of service constraint that states that the
average waiting time of the system does not exceed a given threshold. As the performance
of TAGS and SITA is very difficult to analyze in a precise manner, we focus on a suboptimal,
yet reasonable solution which uses the results of [2].

A conference version of this paper appeared in [5].
The rest of the article is organized as follows. In Section 2, we present the related work.

In Section 3, we describe the model we study. In Section 4, we perform the non-asymptotic
comparison of the performance of TAGS and SITA for two queues, and in Section 5 we
consider asymptotically an arbitrary number of queues. In Section 6, we explore how
to design a decentralized system with our quality of service constraints. We discuss the
results and conclude in Section 7.

2. Related Work

Modern communication systems integrate distributed computing architectures, in
which jobs are processed in parallel. Therefore, many researchers have studied how to
optimally balance the load in a system with parallel servers, see in [6]. Most of the analysis
assumes that the state of the servers is always known. A large class of policies which
utilizes this assumption is known as the SQ(d) framework. Policies in this family operate
as follows: for each incoming job, d ≥ 2 servers are picked uniformly at random and their
states are observed. The job is routed to the server whose state (number of packets or
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the workload, for instance) is minimal. This family of routing policies has been studied
extensively as such policies often perform well [7–11]. However, it is important to note
that in [12], it was shown that when the variance of the job size distribution is very large,
SQ(d) policies are not optimal. The size-based routing policies which we consider often
have good performance under precisely such circumstances.

Size-based routing splits the service time distribution into intervals. By using these
intervals, when the servers are FCFS, short jobs do not wait for a long time behind a long
job. This is a clear advantage with respect to other routing policies that have been studied
in the literature such as Bernoulli routing, for instance.

The first size-based routing policy presented in the literature was the SITA policy [13].
Under this policy, each host receives jobs whose job size is in a designated range [13].
This implies a reduction in the variability of the jobs executed in the servers. The authors
of [14] provide an interesting result that shows that there exists a SITA policy (choice of
intervals) that minimizes mean response time when the state of the servers cannot be
observed; the servers scheduling discipline is FCFS and the size of jobs is available. The
analytical expression for the optimal thresholds of a SITA policy is not known in general,
even for a system with two servers. Therefore, some authors have studied alternatives
such as the SITA-E policy, where the intervals are chosen to equalize the load in all the
servers [3,15]. Asymptotic analysis of the optimal thresholds of a SITA policy for Bounded
Pareto distributions has been carried out in [16,17] and for a large number of servers in [4].
The performance of SITA policies with two servers has been studied in [18], where the
authors provide conditions under which the load should be unbalanced to minimize system
performance. In [19], the authors compare the SITA policy with that of Least-Work-Left
when the coefficient of variation of job sizes is large and show that the Least-Work-Left
policy outperforms SITA in several scenarios.

The TAGS policy was introduced in [20] as a size-based routing policy in the setting
where the sizes of incoming jobs does not need to be known. The authors of [2,21] prove
that for Bounded Pareto distributions, when the ratio between the largest job size and the
shortest job size tends to infinity and the system load is fixed and less than one, the ratio
between the average waiting times of TAGS and SITA systems with optimal intervals is
at most two. This result means that, in that regime, the penalty for not knowing the job
size of incoming tasks is, at most, 2. In this work, we address a similar question but in a
non-asymptotic regime.

3. Model Description
3.1. Notations

We investigate a parallel server system with K homogeneous servers. The servers
are modeled as FCFS queues. Jobs arrive to the system following a Poisson distribution
with rate λ. The job size is assumed to be given by a sequence of i.i.d. random variables,
whose distribution we denote by X. We denote by E[X] the average job size and by
F(s) = P[X < s] the cumulative distribution function of the job size distribution. We
assume that F(·) is differentiable, and we let f (s) = dF(s)

ds be the density function of the
job size distribution. We assume that the size of the smallest job is equal to one and of the
largest job is r, where r > 1. The system load is denoted by ρ = λE[X].

3.2. TAGS Routing

We consider the TAGS routing policy. We assume that the servers of the system
are labeled from 1 to K. Let s0 = 1 and sK = r. The set of parameters of the policy
(intervals) is given by a vector of K− 1 cut-off values s = (s1, s2, . . . , sK−1) verifying that
xS = s0 < s1 < s2 < · · · < sK−1 < sK = xL.

All jobs are sent to server 1. If the job completes before s1 time units, the job leaves
the system; otherwise, the job is stopped after a runtime of s1 and is sent to the end of
the buffer of server 2, where execution starts from scratch and the process repeats. Thus,
for server i, jobs that are executed in that server have already been executed in servers
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1, 2, . . . , i− 2 and i− 1 for s1, . . . , si−1 time units, respectively. If a job at server i completes
before si time units, it leaves the system, and if not, it is terminated after si units of time
and placed at the last position of the buffer of the next server. Finally, at the last server, K,
jobs always run to completion.

We denote by WTAGS(s) the waiting time of jobs for TAGS routing with vector of
cut-offs s. In this work, we denote by sT the optimal vector of cut-offs,

sT = arg min
s

E[WTAGS(s)].

3.3. SITA Routing

We consider the SITA routing policy. Let s0 = 1 and sK = r. Under the SITA policy,
the servers are also labeled from 1 to K and, as in the TAGS policy, the set of parameters is
a vector of thresholds s = (s1, s2, . . . , sK−1) satisfying xS = s0 < s1 < s2 < · · · < sK−1 <
sK = xL. However, the SITA policy uses the job size of incoming tasks to perform the
routing. Therefore, jobs ranging in size between si−1 and si are sent directly to the ith server
where they complete service.

We denote by WSITA(s) the waiting time of tasks when the system operates the SITA
routing with the vector of thresholds s. The optimal vector of the cut-offs is denoted by
s∗, i.e.,

s∗ = arg min
s

E[WSITA(s)].

We will sometimes be interested in a SITA policy whose thresholds s1, . . . , sK−1 satisfy
that the load of all the servers is the same, i.e.,∫ si

si−1

x f (x)dx =
∫ si+1

si

x f (x)dx,

for all i = 2, . . . , K − 1. This policy is called SITA-E, and in this work, we denote by
E[WSITA−E] the mean waiting time of incoming jobs under this policy.

Remark 1 (Advantages and Disadvantages of TAGS and SITA). Before going further, it is
worth explaining the major advantages and disadvantages of the presented routing policies. First, we
would like to remark that both are open loop policies, i.e., they do not require information exchange
between the servers and the dispatcher. This is an important advantage with respect to other routing
policies such as Join the Shortest Queue, for instance. Moreover, SITA and TAGS are size-based
routing policies, i.e., they both use cut-offs to determine how jobs are executed in the servers. The
main advantage of SITA is the optimality result in [14]. However, SITA routing uses the size of
incoming tasks to assign jobs to servers. Finally, we remark that TAGS do not use the information
of the size of incoming jobs to balance the load.

3.4. Bounded Pareto Distributions

Let r > 1 and a = 1
r . If 1 ≤ s ≤ r, then a distribution follows the Bounded Pareto

distribution with parameters 1, r, and α if its density function is

f (s) =
αs−α−1

(1− aα)
,

and f (s) = 0 otherwise. Note that this distribution consists of the Pareto distribution
with tail parameter α, but restricted to a bounded domain, i.e., 1 ≤ s ≤ r. The cumulative
distribution function is given by

F(s) =


0, s ≤ 1,
1−(1/s)α

1−aα , 1 ≤ s ≤ r,
1, s ≥ r.
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When α 6= 1, it is easy to see that

E[X] =
α

α− 1
1− aα−1

1− aα
(1)

whereas when α = 1

E[X] =
ln(r)
1− 1

r
. (2)

We remark that the distributions under consideration when r is large and 0 < α < 2 are
known to model well job size distributions with large variability [22]. Another interesting
property of these distributions is that when α = −1, they coincide with the uniform
distribution on the interval [1, r].

3.5. Application of This Theory to the Result

In this article, we are interesting in investigating the following ratio:

E[WTAGS(sT)]

E[WSITA(s∗)]
.

The analysis of this ratio can be seen as the penalty for not knowing the size of
incoming tasks. The authors of [2] showed that, when r is large, this ratio is upper-bounded
by 2. Therefore, they conclude that the penalty for not knowing the size of incoming jobs
is, at most, 2 in the regime they consider. In this work, we also study this ratio but in a
different regime. In Section 4, we consider a system with two queues, whereas in Section 5
an arbitrary number of queues.

4. Performance Comparison of TAGS and Optimal SITA with K = 2 Servers

We study the ratio of the mean waiting times of TAGS and SITA for Bounded Pareto
distributions when r is finite. We recall that Theorem 9 in [2] says that the aforementioned
performance ratio is upper-bounded by 2 when the system is at a fixed low load and r
tends to infinity. In this section, we consider a system with two servers, and we show that
this ratio is unbounded from above. We first provide an analysis for the case of Bounded
Pareto with α = 1. Then, we present numerical experiments that show that the ratio is also
unbounded from above for Bounded Pareto-distributed jobs sizes with α 6= 1.

4.1. Performance of the Optimal TAGS System

We consider a system with two servers operating under the TAGS policy (see Figure 1).
In a system with two servers, the vector of thresholds s is reduced to a unique value;
therefore, we denote by E[WTAGS(s)] the mean waiting time of TAGS for the threshold s.
Here, we denote by sT the threshold value that minimizes the mean waiting time of the
TAGS system, i.e.,

sT = arg min
s

E[WTAGS(s)].

From the definition of the TAGS system, it follows that

E[WTAGS(sT)] =E[WTAGS
1 (sT)] +

(∫ r

sT

f (x)dx
)

sT +

(∫ r

sT

f (x)dx
)
E[WTAGS

2 (sT)], (3)

where E[WTAGS
i (sT)] is the mean waiting time of jobs at server i when the threshold value

is sT .
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TAGS

[1,s
T 
)

[s
T
,r

 
)

Figure 1. A system with two servers that operates under Task Assignment with Guessing Size (TAGS).

4.2. Performance of the Optimal SITA System

We now consider a system with two servers operating under the SITA policy (see
Figure 2). For SITA routing, in a system with two servers, the vector of thresholds s is also
reduced to a unique value. In this case, we denote by E[WSITA(s)] the mean waiting time
of the SITA routing system with the threshold s. We let s∗ be the value of s such that the
mean waiting time of the SITA system is minimized, i.e.,

s∗ = arg min
s

E[WSITA(s)].

The mean waiting time of jobs under the SITA policy with cutoff s∗ is given by

E[WSITA(s∗)] =
(∫ s∗

1
f (x)dx

)
E[WSITA

1 (s∗)] +
(∫ r

s∗
f (x)dx

)
E[WSITA

2 (s∗)], (4)

where E[WSITA
i (s∗)] is the mean waiting time of jobs at server i.

SITA

[1,s*
 
)

[s*,r
 
)

Figure 2. A system with two servers that operates under Size Interval Task Assignment (SITA).

4.3. Bounded Pareto Distribution with α = 1

We consider the Bounded Pareto distribution with α = 1 and compare the mean
waiting time of a system with two servers operating under TAGS routing with that of a
system with two servers operating under SITA routing. In the following result, we provide
a lower-bound for the average waiting time of the TAGS system.

Lemma 1. For the Bounded Pareto distribution with α = 1, if λr < 1,

E[WTAGS(sT)] > λr.

Proof. It follows from (3) that

E[WTAGS(sT)] ≥E[WTAGS
1 (sT)] +

(∫ r

sT

f (x)dx
)

sT .
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For the Bounded Pareto distribution with α = 1, we have that

E[WTAGS
1 (sT)] +

(∫ r

sT

f (x)dx
)

sT =
λ(sT − 1)

2(1− ρ)(1− 1
r )

+
1− sT

r

1− 1
r

≥ λ(sT − 1)
2(1− 1

r )
+

1− sT
r

1− 1
r

=
sT(λ− 1

r ) + 2− 2λ

2(1− 1
r )

.

If λr < 1, then
x(λ− 1

r )+2−2λ

2(1− 1
r )

decreases with x. Thus,

sT(λ− 1
r ) + 2− 2λ

2(1− 1
r )

≥
r(λ− 1

r ) + 2− 2λ

2(1− 1
r )

=
λ(r− 2) + 1

2(1− 1
r )

>
λ(r− 2) + λr

2(1− 1
r )

= λr.

Note that, unlike previous work [2], we do not need to assume Poisson arrivals to all
the servers in the above result. In the following result, we estimate, non-asymptotically,
the mean waiting time of the SITA system.

Lemma 2. For the Bounded Pareto distribution with α = 1, when λr < 1 and r is large,

E[WSITA(s∗)] ≤ λ(
√

r− 1)2
√

r(1− 1
r )

2
.

Proof. We first note that the load of each server is upper bounded by ρ. Therefore, for the
Bounded Pareto distribution with α = 1, we have that

E[WSITA
1 (s∗)] ≤ λ(s∗ − 1)

2(1− ρ)(1− (1/r))

and

E[WSITA
2 (s∗)] ≤ λ(r− s∗)

2(1− ρ)(1− (1/r))
,

where ρ = λ ln(r). We now note that

λr < 1 ⇐⇒ λ ln(r) <
ln(r)

r
.

When r is large, ln(r)
r tends to zero and ρ = λ ln(r); it follows that ρ tends to zero when

λr < 1. As a result,

E[WSITA
1 (s∗)] ≤ λ(s∗ − 1)

2(1− (1/r))

and

E[WSITA
2 (s∗)] ≤ λ(r− s∗)

2(1− (1/r))
.

We know from [18] that for the Bounded Pareto distribution with α = 1, s∗ balances the
load of both servers, and therefore∫ s∗

1
f (x)dx =

∫ r

s∗
f (x)dx ⇐⇒ s∗ =

√
r.
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As a result,

E[WSITA
1 (s∗)] ≤ λ(

√
r− 1)

2(1− (1/r))

and

E[WSITA
2 (s∗)] ≤ λ(r−

√
r)

2(1− (1/r))
.

Therefore, from (4), it follows that

E[WSITA(s∗)] ≤
(∫ s∗

1
f (x)dx

)
λ(
√

r− 1)
2(1− (1/r))

+

(∫ r

s∗
f (x)dx

)
λ(r−

√
r)

2(1− (1/r))

=

(∫ √r

1
f (x)dx

)
λ(
√

r− 1)
2(1− (1/r))

+

(∫ r
√

r
f (x)dx

)
λ(r−

√
r)

2(1− (1/r))

=
λ(1− 1√

r )(
√

r− 1)

2(1− (1/r))2 +
λ( 1√

r −
1
r )(r−

√
r)

2(1− (1/r))2

=
λ( 1√

r −
1
r )(r−

√
r)

(1− (1/r))2

=
λ(
√

r− 1)2
√

r(1− (1/r))2 .

From the above lemmas, it follows that for λr < 1 and large enough r,

E[WTAGS(sT)]

E[WSITA(s∗)]
≥ λr

λ(
√

r−1)2
√

r(1−(1/r))2

=
(
√

r + 1)2
√

r
,

where the equality is obtained by simplifying the derived expression. Interestingly, the last
expression does not depend on λ. We now show that it is increasing with r.

Lemma 3. The function (
√

r+1)2
√

r is increasing with r.

Proof. We aim to show that (
√

r+1)2
√

r is increasing with r, which is true if and only if

((
√

r + 1)2)′
√

r− (
√

r)′(
√

r + 1)2 > 0 ⇐⇒

2(
√

r + 1)
2
√

r
√

r− 1
2
√

r
(
√

r + 1)2 > 0 ⇐⇒

√
r + 1− 1

2
√

r
(
√

r + 1)2 > 0 ⇐⇒

1− 1
2
√

r
(
√

r + 1) > 0 ⇐⇒

2
√

r− (
√

r + 1) > 0 ⇐⇒
√

r− 1 > 0

Therefore, the desired result follows.

From the above results and using that (
√

r+1)2
√

r tends to infinity when r → ∞, it follows
that when λr < 1 and r is large, the ratio between the mean waiting time of the TAGS
system and that of the SITA system is lower bounded by a function that is unbounded and
the following result follows.
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Theorem 1. The ratio of the mean waiting time of the TAGS system and the mean waiting time of
the SITA system is unbounded.

4.4. Bounded Pareto with α 6= 1

We now study the ratio between the mean waiting time of the TAGS system and that
of the SITA system for Bounded Pareto distributions with α 6= 1. We consider the evolution
of this ratio when we vary r from 10 to 1000 for different values of α.

In Figure 3, we consider an arrival rate of 0.001, and we plot the ratio between the
mean waiting time of the TAGS system and that of the SITA system when we vary r for
several values of α larger than one. We observe that the performance ratio under study is
increasing with r for the considered values of r. Therefore, this illustration shows that the
result of Theorem 1 generalizes to values of α which are not equal to 1.

r
0 100 200 300 400 500 600 700 800 900 1000

E
[W

T
A

G
S
] /

 E
[W

S
IT

A
]

2

4

6

8

10

12

14

16

18

,=1.1
,=1.3
,=1.5
,=1.7

Figure 3. The ratio E[WTAGS(sT)]/E[WSITA(sT)] as a function of r for different values of α. y-axis
without units (it is the ratio of two values with the same unit) and for the x-axis the units are ms.

5. Performance Comparison of TAGS and SITA-E with K ≥ 2 Servers

In this section, we compare the performance of TAGS and SITA-E for an arbitrary
number of servers. Specifically, we study the ratio of the mean waiting time of TAGS to

that of SITA-E, i.e., E[WTAGS(sT)]
E[WSITA−E ]

.

Let us denote by E[WSINGLE(λ)] the mean waiting time of a single server with arrival
rate λ. We note that the above ratio can be written as

E[WTAGS(sT)]

E[WSITA−E]
=

E[WTAGS(sT)]

E[WSINGLE(λ)]

E[WSINGLE(λ)]

E[WSITA−E]
. (5)

We now focus on the term E[WTAGS(sT)]
E[WSINGLE(λ)]

. In the following result, we show that, when
the arrival rate tends to zero, this ratio tends to one.

Proposition 1. Let X be a distribution with support in t ≥ 1. When λ→ 0, then E[WTAGS(sT)]
E[WSINGLE(λ)]

tends to one.

Proof. A single server system is a special case of a TAGS system with degenerate cut-offs,
which implies by the definition of sT that E[WSINGLE(λ)] ≥ E[WTAGS(sT)]. Let sT,1 be the
first component of the vector sT and p(sT,1) be the probability of jobs larger than sT,1. The
contribution to the mean waiting time waiting time of TAGS in the first server coming from
jobs bigger than sT,1 is p(sT,1)sT,1 ≥ p(sT,1), as sT,1 ≥ 1. Therefore, as the waiting time of
a single server goes to 0 with λ and, by the definition of sT , sT,1 is optimal, we conclude
that, asymptotically, as λ goes to zero, so does p(sT,1), meaning that in the limit all jobs are
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served and finish in the first server and thus the performance of the system is like that of a
single server, i.e., the ratio approaches 1.

From the above result, we conclude that, when λ→ 0,

E[WTAGS(sT)]

E[WSITA−E]
→ E[WSINGLE(λ)]

E[WSITA−E]
.

We now analyze the ratio E[WSINGLE(λ)]
E[WSITA−E ]

when λ→ 0. For this case, as the mean waiting
time of a single server is approximately linear in the arrival rate, it follows that

E[WSINGLE(λ)]

E[WSITA−E]
≈

KE[WSINGLE( λ
K )]

E[WSITA−E]
.

The ratio E[WSINGLE( λ
K )]

E[WSITA−E ]
has been studied in [3]. In that work, the authors conclude

that this ratio grows with the variability of the job size distribution and can be large if the
variability of the job size distribution is large. For example, from Proposition 3 in [3], we

conclude that for Bounded Pareto-distributed job sizes with α = 1, the ratio E[WSINGLE( λ
K )]

E[WSITA−E ]

tends to infinity when the ratio between the shortest and the largest job size tends to zero,
and as this result is true for any value of λ, using (5), the next result follows.

Proposition 2. For Bounded Pareto distributed job sizes with α = 1 and K ≥ 2, when λ→ 0, the
ratio between the mean waiting time of TAGS and SITA-E is unbounded from above.

From this result and using that the mean waiting time of SITA-E is larger than the

mean waiting time of the SITA policy with optimal thresholds, the ratio E[WTAGS(sT)]
E[WSITA−E ]

is a

lower bound of the ratio E[WTAGS(sT)]
E[WSITA(s∗)] . Consequently, we have the following result.

Corollary 1. For Bounded Pareto-distributed job sizes with α = 1 and K ≥ 2, when λ→ 0, the
ratio between the mean waiting time of TAGS and the optimal SITA is unbounded from above.

In [3], the authors also analyze the performance ratio E[WSINGLE( λ
K )]

E[WSITA−E ]
for Bounded Pareto

distributed job sizes with tail parameter α ∈ (0, 2)\{1} and K → ∞, and in Proposition
4, they show that this ratio tends to infinity when the ratio between the shortest and the
largest job size tends to zero. Consequently, we obtain the following result

Proposition 3. For Bounded Pareto distributed job sizes with α ∈ (0, 2)\{1} and K → ∞, when
λ→ 0, the ratio between the mean waiting time of TAGS and SITA-E is unbounded from above.

Furthermore, the corollary below also follows immediately.

Corollary 2. For Bounded Pareto distributed job sizes with α ∈ (0, 2)\{1} and K → ∞, when
λ → 0, the ratio between the mean waiting time of TAGS and the optimal SITA is unbounded
from above.

6. Design of Decentralized Systems

We consider a decentralized system formed by n groups where, in each group, the
incoming jobs are routed to K/n servers. In Figure 4, we represent an example of a
decentralized system formed by 2 groups. We assume that, in each group, there is a
single dispatcher that implements the SITA or TAGS policy and job sizes are Bounded
Pareto-distributed.
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Poi(λ)λ))
Dispatcher K servers

Poi(λ)λ)/2))
Dispatcher K/2) servers

Poi(λ)λ)/2))
Dispatcher K/2) servers

Figure 4. A decentralized system with 2 groups. Each dispatchers receives λ/2 traffic and sends it to
K/2 servers.

In a decentralized system with n groups, when there are t groups that implement
the TAGS policy and n− t groups that implement SITA, the performance of the system is
given by

P(t) =
t
n
E[WTAGS(sT)] +

(
1− t

n

)
E[WSITA(s∗)].

We assume that there is a quality of service (QoS) condition that states that the average
waiting time of the system cannot exceed a given threshold d. Therefore, the system
designers must decide on a policy that satisfies the condition with minimal cost (i.e.,
maximize the number of groups that implement the TAGS policy) and satisfies the QoS
condition P(t) ≤ d. This can be expressed as

max t (6)

s.t. P(t) ≤ d. (7)

We denote by t∗ the solution to the above problem. We assume that P(n) ≤ d;
otherwise, there is no solution to this problem. Given that P(t) is decreasing with t, it
is clear that if P(0) ≤ d, then t∗ = 0, i.e., all the groups implement the SITA policy.
Otherwise, using this monotonicity property, it follows that the solution of this problem is
t∗ =

⌊
P−1(d)

⌋
. However, finding the analytical value of the inverse of P() is difficult as

an analytical expression for the mean waiting time of a system that implements the TAGS
policy is not known. As a result, we focus on a suboptimal solution to this problem that
uses the result of Theorem 9 in [2] to get insights into t∗.

We choose the number of groups n of the decentralized system so that the load of each
group is less than one. As the arrival rate of each group is λ/n, we have that

ρ < 1 ⇐⇒ n >
E[X]

λ
.

We choose the number of groups to be the minimal value of n which is a divisor of K and is
larger than E[X]

λ .
According to Theorem 9 in [2], when r is very large, we have that

2E[WSITA(s∗)] ≥ E[W(sT)].

Thus, for r very large, we have that

P(t) =
t
n
E[WTAGS(sT)] +

(
1− t

n

)
E[WSITA(s∗)]

≤ 2
t
n
E[WSITA(sT)] + (1− t

n
)E[WSITA(s∗)]

=

(
1 +

t
n

)
E[WSITA(s∗)].

Let P̃(t) = (1 + t
n )E[W

SITA(s∗)]. Therefore, an alternative optimization problem to
(6) and (7) consists of considering the constraint P̃(t) ≤ d instead of P(t) ≤ d, i.e.,

max t (8)

s.t. P̃(t) ≤ d. (9)
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The solution of this problem is clearly the minimum between n and
⌊

t ∗
⌋

, where t ∗ is

such that P̃(t ∗) = d, i.e.,(
1 +

t ∗

n

)
E[WSITA(s∗)] = d ⇐⇒ t ∗ = n

(
d

E[WSITA(s∗)]
− 1
)

.

Finally, we can obtain the expression of E[W̄SITA(s∗)] for Bounded Pareto-distributed
job sizes with large r and ρ < 1 using the formula of Theorem 6.3 in [16].

Example

We consider an example with a decentralized system in which r = 104 and α = 1.25.
For this case, we obtain that E[X] = 27.027. Thus, in a system formed by 1000 servers and
arrival rate equal to 5,

λE[X]

n
=

5 · 27.027
n

< 1 ⇐⇒ n > 135.135.

As 200 is the minimum divisor of 1000 that verifies the condition of the last expression,
we assume that the decentralized system is formed by a number of groups equal to 200.
This number of groups meets the condition that establishes that the load of each server is
less than one:

λE[X]

n
=

5 · 27.027
200

= 0.675 < 1.

Using Theorem 6.3 in [16], we get that the normalized mean waiting time of a SITA
system formed by 5 servers with r = 104, α = 1.25, and ρ = 0.675 is given by 0.216.
Therefore, if the limit d of the model is set to 0.4, we get for our example that

t ∗ = 200(
0.4

0.216
− 1) = 170.28.

This result means that if 170 groups of 5 servers implement the TAGS policy and
30 groups implement the SITA policy, we can ensure that the quality of service condition
(7) is satisfied.

7. Conclusions

We have studied the performance of parallel server systems with two size-based task
assignment policies: SITA and TAGS. Both policies use cut-offs to determine how jobs are
executed in the servers. The main difference between them is that SITA uses the size of
incoming tasks to assign jobs to servers, while TAGS does not.

The goal of this paper is to analyze the ratio between the mean waiting time of TAGS
and the mean waiting time of SITA. This ratio can be seen as the penalty for not knowing
the size of incoming tasks. In a previous work [2], we have shown that this ratio is upper
bounded by 2 when the system load is fixed and less than one and the ratio between
the largest and the shortest job tends to infinity. In this article, we extend this result in
several directions.

We first consider a non-asymptotic regime, and we compare the performance of SITA
and TAGS for this regime. For Bounded Pareto-distributed job sizes with tail parameter
1 and two servers, we provide a lower bound on the mean waiting time of TAGS and an
upper bound of the mean waiting time of SITA, in both cases assuming that the arrival
rate times the largest job size is smaller than one. From these results, we provide a lower
bound of the ratio of the mean waiting time of TAGS over the mean waiting time of SITA
of a system with two servers and in the considered regime. We show that this lower bound
has nice properties, for example, it does not depend on the arrival rate and it is increasing
with the size of the largest job. We conclude that the mean waiting time of TAGS divided
by the mean waiting time of SITA is unbounded from above in a system with two servers
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and when the arrival rate time of the largest job size is smaller than one. We also explore
numerically this performance ratio when the tail parameter is not 1, and we observe that
our theoretical findings are not limited to Bounded Pareto-distributed job sizes with tail
parameter 1.

Then, we analyze a system with an arbitrary number of servers, and we study the ratio
of the mean waiting time of TAGS under the mean waiting time of SITA-E. We consider the
light traffic regime in which the arrival rate tends to zero. For this regime, we first show
that the mean waiting time of TAGS and the mean waiting time of a single server coincide.
From this result, it follows that the performance ratio under consideration is proportional
to the performance ratio that the authors of [3] explored. This similitude lets us conclude
that the ratio of the mean waiting time of TAGS to that of SITA-E is unbounded from above
for Bounded Pareto distributed job sizes with α = 1 and K ≥ 2, and for Bounded Pareto
distributed job sizes with α ∈ (0, 2)\{1} and K → ∞.

We would like to remark that the above results show that the parameters of the system
can be set in a way that the mean waiting time of TAGS can be much worse than the mean
waiting time of SITA, and therefore the penalty for not knowing the job size is unbounded
from above.

In this work, we also consider decentralized systems in which the system is divided
into groups, where each group handles the same amount of traffic and sends the traffic to a
subset of dedicated servers. Each group can operate under SITA or TAGS. The goal is to
find the maximum number of groups that can operate under TAGS policy and still satisfy a
given quality of service condition. We provide a suboptimal solution to this problem using
the asymptotic result in [2].

The analysis presented in this article assumes several properties of Bounded Pareto
distributions. A possible extension of this work would be to consider an arbitrary dis-
tributions and to compare the performance of other popular routing policies from the
literature such as Join the Shortest Queue and Power of Two. Finally, we are interested
in studying the application of learning techniques to parallel server systems using the
approach in [23] and the interaction between the techniques presented in this work with
other control methodologies such as fuzzy control or Active Disturbance Rejection Control
as in [24].
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