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Abstract: In this paper, we present the architecture of a smart imaging sensor (SIS) for face recognition,
based on a custom-design smart pixel capable of computing local spatial gradients in the analog
domain, and a digital coprocessor that performs image classification. The SIS uses spatial gradients
to compute a lightweight version of local binary patterns (LBP), which we term ringed LBP (RLBP).
Our face recognition method, which is based on Ahonen’s algorithm, operates in three stages: (1) it
extracts local image features using RLBP, (2) it computes a feature vector using RLBP histograms,
(3) it projects the vector onto a subspace that maximizes class separation and classifies the image
using a nearest neighbor criterion. We designed the smart pixel using the TSMC 0.35 µm mixed-
signal CMOS process, and evaluated its performance using postlayout parasitic extraction. We also
designed and implemented the digital coprocessor on a Xilinx XC7Z020 field-programmable gate
array. The smart pixel achieves a fill factor of 34% on the 0.35 µm process and 76% on a 0.18 µm
process with 32 µm × 32 µm pixels. The pixel array operates at up to 556 frames per second. The
digital coprocessor achieves 96.5% classification accuracy on a database of infrared face images, can
classify a 150× 80-pixel image in 94 µs, and consumes 71 mW of power.

Keywords: smart image sensor; smart pixel; vision chip; intelligent sensor; feature extraction; face
recognition; linear binary patterns; linear discriminant analysis; field-programmable gate array; very
large-scale integration

1. Introduction

The attention of the scientific and industrial community in image-based biometric
methods has fostered a growing interest in smart imaging systems (SIS) that can handle
the computational requirements of real-time video analysis. Biometrics is described as
a pattern-recognition technique for individual identification, based on their physical,
chemical, or behavioral characteristics [1,2]. One of the most popular biometric techniques
is face recognition [2], which has abundant applications [3–5] in various areas, such as:
(1) security, including identity verification [6,7], computer or mobile device unlock [7,8],
criminal records search, and voter registration; (2) surveillance, such as cameras used
on closed circuit television (CCTV) [9]; and (3) access control that could grant access to
a specific place or an electronic account to a group of people [10] using their faces as a
credential. As described by Das et al. [11], there is a growing attention from the scientific
community on mobile devices with biometric recognition. This attention is mainly fueled
by the commercial interest in robust authentication methods for smartphones, laptops,
tablets, and other mobile devices [7,8].

Different low-power biometric sensors have been reported in the literature, such as
adaptive wireless body sensor networks for biometrics and healthcare applications [12]
for long-time monitoring, sensors for age and gender classification which monitor brain
signals using electroencephalography (EEG) [13], biometric recognition systems for mobile
Internet-of-things (IoT) devices [14], and an ultra-low-power hybrid face recognition
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processor integrated with a CMOS image sensor (CIS) [15] applied to mobile devices [16,17].
Common to all these designs are two technological challenges: low power consumption
and circuit area reduction. Both are intimately related to key features of mobile devices,
such as energy autonomy and size [12].

Although face recognition is a popular method of security and authentication, it is
vulnerable to presentation attacks (PAs), especially when the face images are acquired
in the visible spectrum. PAs are different techniques and methods that intruders use to
infringe and deceive face recognition systems, such as presenting the system with an
authorized face image using a 3D silicon mask [18] or a 2D image on a printed photograph
or even a mobile device screen [19]. Modern devices implement presentation attack
detection (PAD) methods using complementary information from near-infrared (NIR) [20]
or thermal [21] image sensors, or using deep convolutional neural network methods for
anomaly detection [22]. Infrared (IR) face recognition is particularly attractive [23,24]
because it has shown to be more robust against variations in global illumination than
using images in the visible spectrum, and because thermal IR face images are also more
difficult to forge [25]. Therefore, implementing fast and robust face recognition algorithms
in resource- and power-constrained portable and mobile devices is an important area of
research [19,26].

To reduce power consumption and increase hardware integration, designers often
turn to dedicated hardware architectures specifically designed to perform a singular task of
interest. In image processing, there is visible progress in the development of smart imaging
sensors (SIS), also referred to as vision chips. The SIS are dedicated electronic devices that
combine conventional image sensors with additional circuitry on the same die [27]. The ad-
ditional circuitry performs, either partially or totally, operations and algorithms associated
with different image processing methods. We can organize image processing methods and
hardware into three levels, depending on where the data is processed: pixel level process-
ing, column/row level processing, and data-sequence level processing, i.e., processing that
occurs outside the pixel array after digital conversion [27]. Of these three levels, the most
challenging when designing the architecture of a SIS is the pixel level. This is because there
is a limited area available inside each of the pixels, and the design of the processing circuits
must minimize the overhead imposed on the pixel size. Therefore, the complexity of the
circuitry is limited by the space that can be occupied and, as a consequence, the complexity
of the image-processing operations that can be introduced into the pixel is also limited.
This difficult tradeoff can be observed on the SIS work available the literature. Some
examples of image processing methods implemented as a SIS are edge detection [28–30],
image classification using analog lightweight convolutional neural networks [31], on-chip
nonuniformity compensation on IR image sensors [32,33], target tracking [28,30], motion
detection [28], feature extraction [34–38], and face recognition [15–17], among others [39].

When a pixel sensor performs a significant level of data processing, such as complex
mathematical operations or feature extraction, then it is frequently referred to as a smart
pixel. Smart pixels have the capacity to deliver a high level of fine-grained parallelism,
where each smart pixel of the focal plane array (FPA) in a SIS performs computation
simultaneously on different data [27]. Fine-grained parallelism can improve the execution
time, lower the latency, reduce the amount of memory required to store temporary results,
and maximize throughput [36,37]. Moreover, when the smart pixel operates in the analog
domain, they can also reduce power consumption and die area [40].

In previous work, we proposed an intelligent readout integrated circuit (iROIC) that
computes local gradients on-chip [41]. This iROIC includes the architecture of an analog
smart pixel that can be programmed to compute the local differences between neighbor
pixels during integration time. We showed the design and circuit-level simulations of a
smart pixel that computes the local gradients, and proposed a face recognition algorithm,
implemented in software, that uses local gradients to extract features from the input image.

In this paper, we present the design and evaluation of a complete SIS architecture
based on the algorithm and smart-pixel design in [41] to perform face recognition during
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image capture. The proposed SIS design is suitable for mobile devices, where the SIS can
be operated as a conventional sensor to capture images of a scene, or as a face recognition
system to obtain the identity of a subject. The smart pixel is based on a capacitive tran-
simpedance amplifier (CTIA) integrator, which is widely used in thermal IR imagers, but
our face recognition method can be used in visible and NIR images as well. Our smart
pixel adds a small number of transistors to the CTIA integrator, thereby minimizing the
added cost in area and power compared to a regular image sensor.

Our results show that it is possible to use analog pixel-level processing with a minimal
penalty on fill factor, and obtain results that are comparable to a fully digital implementation
of the algorithm. The heterogeneous SIS architecture is composed of two processing stages,
in the analog and digital domains. The analog stage is a bidimensional smart-pixel array,
which can be configured to capture a scene as a conventional CIS or to extract the features
of the captured image during the integration time. The digital stage is composed of the
standard circuitry for readout, and a digital coprocessor that uses the extracted features to
compute facial recognition. We validated the complete design of the SIS, simulating the
analog smart-pixel array after parasitic extraction of the complete circuit layout using the
TMSC 0.35 µm process. We also designed and implemented the digital coprocessor on a
Xilinx XC7X020 field-programmable gate array (FPGA). We tested the performance of the
complete SIS using a database of faces in the thermal IR spectrum, which consists of 605
images of 53 different individuals. In the 0.35 µm TSMC process, the smart-pixel circuit
measures 30 µm × 22.5 µm. Without the image processing circuitry, the base design of a
32 µm × 32 µm pixel achieves a fill factor of 47.6%, while adding all our local gradient
computation circuits reduces the fill factor to 34%. Moreover, when porting the design to
the TMSC 0.18 µm process, the smart pixel achieves a fill factor of 76%. Using an array of
151× 80 pixels, the SIS acquires and computes local gradients at 556 frames per second.
The digital coprocessor classifies a face image in 94 µs with 96.5% accuracy, compared to
98.5% for a floating-point software version of the algorithm that uses linear binary patterns
(LBP), and consumes 71 mW.

The rest of the paper is structured is as follows. In Section 2, we discuss related
work. In Section 3, we describe the face recognition method used in the SIS. In Section 4,
we describe the proposed SIS architecture, including the smart pixel and the coprocessor
and digital controller. In Section 5, we present our performance and classification results.
Finally, in Section 6, we conclude with a discussion of the results and possible outcomes
related to our work.

2. Related Work

The technological advances in high-performance computing have enabled the devel-
opment of fast and highly accurate biometric systems. Most frequently, this performance
is achieved using power-hungry processors and graphics processing units (GPUs) [42,43].
While this cost in power and space may not be important in big data applications that
require high precision, it is normally not acceptable in mobile or portable biometric sys-
tems [11], which require compact, power-efficient electronics.

In the particular case of facial recognition, researchers have developed special-purpose
systems focused on speed, portability, and low power consumption. In the case of fully
digital systems, FPGAs are popular implementation platforms because of their high level
of fine-grained parallelism and low power consumption, compared to traditional pro-
grammable solutions. Šušteršič et al. [44] show a face recognition algorithm based on
the fast Fourier transform (FFT) and implemented on a Spartan-3E FPGA, which reaches
an accuracy of 79%. Bonny et al. [45] implemented a histogram-based face recognition
method on a Zynq-7000 FPGA using 320× 243-pixel images, with less than 20% resource
utilization and a throughput of one face identification per second with a 100 MHz clock.
Ahmed et al. [46] proposed a neural network (NN) classifier using features based on a his-
togram of oriented gradients (HOG). They implemented the algorithm on a Xilinx Virtex-7
FPGA with a 157 MHz clock, and they report 90% accuracy with 27× 18-pixel images at
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native video frame rate. Qu et al. [47] proposed a convolutional neural network (CNN) for
face recognition implemented on a PGT-180H FPGA with a 50 MHz. The circuit reaches
99.25% accuracy with 540× 480-pixel images at 400 frames per second. The architecture
proposed by Mahale et al. [48] implements a combination of weighted modular principal
component analysis (WMPCA) and a radial basis function neural network (RBFNN). It uses
a Virtex-6 LX550T FPGA to process 450 128× 128 pixel images per second. Soto et al. [49]
proposed an embedded face classification circuit for IR images on an FPGA that uses
LBP and linear discriminant analysis (LDA), achieves 98.6% accuracy using a thermal IR
database of 53 subjects, and can classify 8230 images per second with a power consumption
of 309 mW.

FPGA-based solutions require a dedicated interface to communicate the FPGA and
the CIS. This requires additional resources, consumes extra power, and, because pixel
values are read serially, it limits the parallelism that can be exploited by the algorithm. An
alternative to optimize power and performance is to include custom processing hardware
on the image sensor [50]. A SIS combines highly parallel analog computation and logic
circuits in a single die to execute part of the face recognition algorithm on the image sensor,
improving area and power efficiency when compared to programmable or FPGA-based
solutions [27], and achieving similar performance. Kim et al. [17] integrates a CIS and a
hybrid analog–digital CNN on a single chip to perform face detection and recognition.
Performing the first layer of the CNN in the analog domain eliminates the need of an analog-
to-digital converter (ADC), which consumes more than half of the power in a conventional
CIS [51]. Using analog circuits to perform some of the operations of the algorithm reduces
power by 15.7% with a 1.3% reduction in accuracy. Jin et al. [29] proposed a SIS with
built-in mask circuits that can be programmed for edge detection. The SIS implements
part of the edge detection computation at the column level, integrating static memory
(SRAM) and additional circuitry to compare the pixels of two adjacent columns. Limiting
the comparison to horizontally neighboring pixels reduces the amount of computation and
enables parallelism at the column level. They demonstrate that the SIS can be configured to
capture either normal 8-bit images or image edges, with a power consumption of 9.4 mW
at 60 frames per second (fps). Zhong et al. [35] describes a SIS with a multimode 128× 108-
pixel SIS array with omnidirectional LBP and edge detection, which reaches a fill factor of
55% and consumes 12.7 µW at 30 fps. Similarly, Gottardi et al. [52] presents a multimode
SIS which computes a 3 × 3-pixel LBP kernel that uses four neighbors. The SIS array
dimensions are 64× 64 pixels, and it consumes 35 µW at 15 fps with a fill factor of 15%.

The SIS architectures described above use different techniques to integrate computa-
tion into the image sensor efficiently, including column-level processing, computing in the
analog domain, limiting LBP kernel size, and reducing the number of comparisons in the
kernel. These trade-offs mainly aim to reduce computation time and maximize fill factor. It
is also important to note that some of the computation can be performed at integration time
without waiting for the entire image to be acquired. Indeed, Gottardi et al. [52] computes
the difference between neighboring pixels during integration to obtain a simplified version
of LBP. In our own previous work [41], we propose analog circuits at the pixel level to
compute local spatial gradients during integration, which can be used to perform face
recognition using external circuitry.

The literature also shows that infrared face recognition is a good option for enhanced
security or PAD [19]. Popa et al. [20] improve PAD performance using a combination of IR
and conventional cameras. Hoon et al [26] proposed NIRFaceNet, a variation of the FaceNet
method tailored for NIR images. Tested on different NIR data sets, NIRFaceNet achieves
accuracies between 73.1% and 94.8%. Hermosilla et al. [53] tested different methods of face
recognition on two thermal IR databases, and they achieved their best accuracies using
Gabor jet descriptors (96.6%), Weber local descriptors (94.9%), and LBP histograms (92.0%).
To the best of our knowledge, none of the smart pixel circuits in the literature have been
designed for or tested on IR images. The pixel-level circuit that we present in this paper
is based on a CTIA pixel architecture, which is suitable for IR and low-light applications;
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therefore, our SIS architecture is an attractive solution for IR face recognition in embedded
and mobile systems.

3. Methods

Typically, object recognition algorithms operate in two stages [3,54]. The first stage
extracts features from the image using methods such as LBP [55–57], deformable part-based
models (DPM) [58,59], or a histogram of oriented gradients (HOG) [60–62]. The second
stage uses the feature vector to label the image, using classification methods such as nearest
neighbors [63,64], support vector machines (SVM) [64,65], or deep neural networks [66,67].

Figure 1 depicts a block diagram of the research proposed in this paper. The left hand
side of the figure shows the steps of our proposed face classification algorithm, which is
described below. The right hand side of the figure relates each step of the algorithm to the
component of our proposed SIS that implements it. The architecture of the SIS is described
in Section 4.
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Figure 1. Proposed method and hardware accelerator. The left hand side illustrates the steps of our
face recognition algorithm. The right hand side shows the elements of our SIS, namely smart-pixel
array, pattern generator, and digital coprocessor, which execute the stages of the algorithm.

Algorithm 1 describes our proposed face recognition method, which is based on
Ahonen’s LBP-based algorithm [68]. The feature extraction stage replaces LBP with our
custom RLBP descriptor and projects the feature vector onto a reduced space using LDA.
The classification stage compares the projected vector to a stored database of known faces
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and selects an ID for the input image using a nearest neighbor criterion. As shown in
Algorithm 1, the feature extraction stage first computes an 8-bit RLBP value for each
pixel in the image using Algorithm 2. Figure 2 compares regular LBP to RLBP for a
3× 3-pixel kernel: LBP, shown in Figure 2a, compares each pixel to its eight neighbors,
and concatenates the results to build a binary pattern for the pixel. Thus, LBP requires
eight comparisons per pixel. In our RLBP method [41], shown in Figure 2b, each pixel is
compared only to its rightmost neighbor and the results from the comparisons of the eight
neighbors are concatenated to build the pattern vector. Unlike LBP, RLBP requires only
one comparison per pixel, because the result of each comparison is used in eight different
kernels. Moreover, all the comparisons in the image can be performed in parallel using only
one comparator per pixel. While the features extracted by RLBP contain less information
than LBP, the method provides a sufficiently accurate texture representation of the image
that achieves a similar performance in face recognition, as shown in Section 5.3.

Algorithm 1: Proposed method using RLBP + LDA.
input : Input frame Im×n, LDA projection matrix W, face database FD, number of

subjects N, distance threshold THR
output :Subject ID

begin
Um×n ← URLBP(I) using Algorithm 2;
for i← 0 to 7 do

for j← 0 to 7 do
Region Ri,j ← U(m

8 i : m
8 (i + 1)− 1, n

8 j : n
8 (j + 1)− 1);

Histogram Hi,j ← Histogram(Ri,j);

Feature vector X ← Concatenate {H0,0 to H7,7};
Projected vector Y ←WTX;
for k← 1 to N do

Distance Dk ←
√

∑N−1
i=1 (Yi − FDk,i)2;

if min(Dk) >THR then return unknown;
else return ID of min(Dk);

Algorithm 2: Uniform RLBP computation.
input : Input image Im×n, LUT of uniform RLBP values
output :Uniform Ringed LBP URLBP

begin
for Ii,j ∈ I do

if Ii,j − Ii+1,j > 0 then ∇Ii,j ← 1;
else ∇Ii,j ← 0;

for Ii,j ∈ I do
RLBPi,j ← {∇Ii−1,j−1,∇Ii,j−1,∇Ii+1,j−1,

∇Ii−1,j,∇Ii+1,j,
∇Ii−1,j+1,∇Ii,j+1,∇Ii+1,j+1};

URLPB← LUT(RLBP);
return URLPB(X)

After computing the binary patterns, the algorithm divides the image into 8 × 8
nonoverlapping regions, and computes a histogram of the binary patterns in each image,
as shown in Figure 3. The 64 resulting histograms are concatenated to produce the feature
vector that represents the input image. Ahonen [68] uses uniform LBP to reduce the number
of labels in the histogram. Uniform LBP assigns a label only to those patterns that have at
most two 0-1 or 1-0 transitions between adjacent positions in the 8-bit pattern. As shown in
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Algorithm 2, we use the same technique, using a 256-entry lookup table (LUT) to map the
RLBP values onto uniform RLBP patterns.

56 55
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Pattern

11001100

LBP

(a)

56 55

526560

50

70 5648
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51

55
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1 1

010

0

1 10

(b)
Figure 2. Examples of LBP and RLBP operators on a 3× 3-pixel window. (a) LBP operator with label
11001100. (b) RLBP operator with label 01011100.

Uniform

RLBP(8,1) Histogram

Figure 3. Ahonen’s algorithm using uniform RLBP.

After computing the histogram vector, Algorithm 1 uses LDA to map the vector onto
a lower-dimensional subspace, as in the Fisherfaces method [69]. LDA applies a linear
transformation to the histogram vector, where the transformation matrix W is computed to
minimize the variance between vectors belonging to the same class (images of the same
person) and maximize the variance between vectors of different classes. Using LDA allows
us to improve the performance of the classifier, use a simple distance metric, and reduce
the dimension of the feature vector, reducing the computational complexity of the classifier.
The transformation matrix is computed off-line using a labeled training set, and is used to
project the histogram vector X onto the new feature space as shown in Equation (1):

Y = WTX (1)

where Y is the linear projection, X is the uniform RLBP histogram vector, and W is the LDA
projection matrix.

Finally, in the classification stage, we compute the Euclidean distance between the
projected feature vector and each element of the stored data set FD of known subjects. FD
contains one feature vector for each know face, which is computed as the centroid of all
feature vectors obtained from the same subject in the training set. The vectors in FD have
also been projected using LDA, and the training set can be the same used to compute the
LDA matrix W. Using the nearest neighbor criterion, we label the input image with the
identity of the subject with minimal distance to the projected vector if that distance is larger
than a predefined threshold THR. If the minimum distance is larger than THR, we label the
input image as an unknown subject.

4. SIS Architecture

Figure 4 shows our proposed SIS architecture for face recognition, which can be
configured to operate as a conventional image sensor or as a face recognition system. The
main components are an array of smart pixels, an RLBP generator (RPG), and a digital
coprocessor. The pixel array acquires image data and, in parallel, subtracts the values of
horizontally adjacent pixels. The row-select and column-select circuits sequentially read
the pixel values and send them to the RPG, which constructs an 8-bit RLBP for each pixel
in the image. Dividing the image into 8× 8 regions, the digital coprocessor computes a
histogram of uniform RLBPs for each region and concatenates them to form the feature
vector. Them, it projects the vector using LDA, computes its Euclidean distance to a set
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of stored vectors corresponding to the known faces, and labels the image using a nearest
neighbor criterion.
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Figure 4. Architecture of the proposed SIS. An array of smart pixels outputs either the pixel value or
the difference between horizontally adjacent pixels. An RLBP generator (RPG) reads pixel values
and creates an 8-bit RLBP for each pixel in the image. The digital coprocessor computes histograms
of RLBP patterns to construct the feature vector, executes the LDA projection on each vector, and
selects the nearest neighbor from a stored set of projected vectors using the Euclidean distance.

The SIS can also output a conventional image, in which case each smart pixel outputs
the analog voltage output of its readout circuit, and the row- and column-select circuits
read the voltages to an ADC that outputs the digital value of the pixels.

4.1. Smart Pixel

Figure 5 shows the circuit that implements the smart pixel. It consists of a photodetec-
tor, a pair of input-select switches, a programmable CTIA, and a row-select switch. The
input of the CTIA are the currents from the local or horizontally-adjacent pixel, selected by
the input-select switches. The CTIA computes a voltage that represents either the current
pixel value of the difference between adjacent pixels, configured by the global control lines
NegInt and PosInt.

Although it uses more area than alternative pixel circuits, using a CTIA for photocur-
rent integration is a preferred method for low-light environments and IR cameras [70–73]
because its low input impedance offers offers good injection efficiency with weak photodi-
ode currents. In particular, as discussed in Secion 5.3, we are interested in using the smart
pixel to recognize faces in thermal IR video. Moreover, when compared to other pixel
circuits, a CTIA features a wide linear output voltage range [74], small frame-to-frame lag,
and reduced noise through better control of the photodiode bias [75].
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Figure 5. The smart pixel consists of an analog input-select multiplexer, a configurable CTIA, and
a row-select switch. All the smart pixels in the array share the control signals placed above in the
figure, and all the pixels in the same column share the column output signal. The input to the CTIA
can be selected from the photodetector in the local or adjacent pixel.

Figure 6 shows the schematic of the CTIA. It integrates its input current to produce an
output voltage, and a set of four switches, implemented as conventional CMOS transmis-
sion gates, can control the orientation of the integration capacitor [76]. The input current
comes from the photodetectors in the local or adjacent pixel.

Sp1
PD1

Sp2
PD2

Vbias

Cint

S1 S2

S1S2

S2

S1 S2

S1

Srow

Input select

Custom CTIA

Row select

sw1 sw2

sw3 sw4

-

+

Column

output

Figure 6. Schematic diagram of the configurable CTIA. The CTIA integrates the photodetector
currents and outputs a voltage that represents either the pixel value or the difference between
horizontally-adjacent pixels.

Figure 7a shows the CTIA operating in conventional mode. During the entire in-
tegration time, input-control switch connects the CTIA input to the local photodetector
PD1. The CTIA is configured in direct mode: sw1 and sw4 are closed, and sw2 and sw3
are open. The equivalent circuit of Figure 7b shows the CTIA acting as a conventional
integrator, and Equation (2) shows how it computes the output voltage that represents the
local pixel value:

V = I∆t/Cint, (2)
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where V is the output voltage, I is the input current from photodetector PD1, ∆t is the
integration time, and Cint is the capacitance value.

PD1

PD2
-

+0 [V]

CintInput select

Configurable CTIA

(a) Switch states and signals.

PD1
-

+0 [V]

Cint

Configurable CTIA

(b) Equivalent circuit.

Figure 7. Smart pixel in conventional mode: the input-select switches pass the current from PD1, sw1
and sw4 are closed to integrate the current, and sw2 and sw3 stay open.

Figure 8 shows the smart pixel when configured to compute local horizontal gradients.
The global bias input of the CTIA is set to the midpoint between the rails (1.65 V for a
3.3 V supply voltage). The integration time is divided into two phases of equal duration:
direct and inverse. During the direct phase, shown in Figure 8a, the CTIA operates in
conventional mode by integrating the current from the local PD1 detector, starting from
1.65 V. During the negative phase, shown in Figure 8b, the input switches select the current
from the local neighbor pixel PD2, sw1 and sw4 are open, and sw2 and sw3 are closed.
Therefore, during the inverse phase, the CTIA integrates the negative current value of the
PD2 photodetector. The output voltage at the end of the integration period is computed as
shown in Equation (3):

V = (I1∆ts + I2∆ts)/(2Cint), (3)

where V is the output voltage, I1 is the input current from the local detector PD1, I2
is the current from the adjacent detector PD2, ∆ts is the integration time, and Cint is
the capacitance.

PD1

PD2

-

+Vdd/2 

Cint
Input select

Configurable CTIA

(a) Positive phase.

-

+

PD1

PD2

Vdd/2

Cint

Configurable CTIA

Input select

(b) Negative phase.
Figure 8. Simplified view of positive and negative integration. During positive integration: sw1 and
sw4 stay closed, sw2 and sw3 stay open. During positive integration: sw2 and sw3 stay closed, sw1
and sw4 stay open.

In local-gradient mode, the integration time per pixel is reduced by 50% compared to
normal operation, which decreases the signal-to-noise ratio. However, this allows us to
compute local spatial gradients in parallel on the entire FPA with very small area overhead
compared to a conventional integrator. These local gradients are then used by the RPG to
compute the RLBP for each pixel.
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4.2. RLBP Generator

Figure 9 shows the topology of the RPG circuit. An input opamp compares the
readout value Vpixel , which represents the difference between two adjacent pixels, to a
global reference voltage Vre f . When Vpixel > Vre f , the digital output of the comparator is 1,
and 0 otherwise. The output of the comparator is written into an array of 3× 3 flip-flops
configured as 3 shift registers, which is used to create the RLBP.

Vpixel

Vref

RLBP generator (RPG)

Vdd

Gnd

Sample clk

Sample clk

Sample clk

D1_3 D1_2 D1_1

D2_3 D2_2 D2_1

D3_3 D3_2 D3_1

RP7

RP6

RP5

RP4

RP3

RP2

RP1

RP0

To digital

coprocessor

+

-

Figure 9. Architecture of the RPG. An input comparator compares the local gradient value for each
pixel to a reference voltage. The digital comparator outputs are sequentially stored in an array of
3× 3 flip-flops, organized as three shift registers. The RPG outputs an 8-bit RLBP with the output of
all the flip-flops except for the one at the center.

To compute the RLBPs in each region, the RPG performs a row-wise read of the FPA.
For each pixel, the RPG reads the pixel value and its two vertically-adjacent neighbors. The
comparator output for these values is written into flip-flops D1_3, D3_3 and D3_3. The
register array then performs a right shift, and the next 3 pixels are read from the FPA. When
9 reads have been completed, the array holds the RLPB for the central pixel, which is then
sent to the digital coprocessor to compute the histogram. Because the 3× 3-pixel windows
used to compute the RLBP overlap for adjacent pixels, the next RLBP is completed after
3 reads. The process continues until all pixel values in the region have been read, and the
RPG moves to the next region in the image (as shown in Figure 3).

Because the FPA directly outputs the local pixel differences, computing the RLBP
requires only a 3× 3-bit array instead of the large line buffers that would be required to
compute the differences in the RPG. Each RLBP requires 3 reads from the FPA, but because
these reads are only used for a 1-bit comparison instead of a complete analog-to-digital
conversion, these reads complete significantly faster than when the array operates in
conventional mode.

4.3. Digital Coprocessor

The digital coprocessor is responsible for computing the histograms of RLBPs from the
image, normalizing and centering the data, projecting the resulting histogram vector using
LDA, computing the Euclidean distance between the projected vector and a stored database
of known faces, and selecting a label for the input image using a nearest neighbor criterion.

Figure 10 shows the architecture of the face recognition coprocessor. It receives as
input the 8-bit RLBP vector RP from the RPG module. The memory controller reads the
LDA coefficients from external RAM and sends them to the LDA projection module. This
module reads the patterns computed by the RPG for each region of the image, and computes
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the histogram vector and projects it using the LDA coefficients. Histogram computation
and LDA projection are fused into a single step to save memory and arithmetic resources.
The output of the LDA module is the feature vector of the input image projected onto the
LDA subspace. The face recognition module computes the Euclidean distance between this
vector and a set of stored vectors that represent the known faces. The module selects the
minimal distance and compares it against a chosen threshold. When the distance is smaller
than the threshold, the module outputs the ID of the selected known face. Otherwise, it
outputs a null value.

RP7,0

Digital coprocessor: Face recognition

LDA projection

From

RPG

Memory controller RAM

Face classifier

Im
a

g
e

 I
D

Figure 10. Architecture of the digital coprocessor. The processor receives a stream of RLBPs from the
RPG, and simultaneously builds the histogram vector and projects it using LDA. A memory controller
retrieves the LDA coefficients from RAM. The Euclidean distance between the projected vector and
the contents of database of stored faces is used for classification with the nearest neighbor criterion.

Figure 11 shows the architecture of the LDA projection module. The module receives
a stream of 8-bit RLBPs from each region of the image. The first step converts the RLBP
into a 6-bit uniform RLBP (uRP) using a 256-entry lookup table. In order to avoid the use
of multipliers and reduce the amount of local storage required by the LDA projection, the
module computes the histogram vector and the multiplication by the projection matrix W
simultaneously. Each uRP value denotes a position in the histogram vector, for the current
region, that must be incremented to build the histogram. The final value stored in this
position should then be multiplied by the corresponding set of coefficient values in W when
the vector is multiplied by the matrix. Instead, every time a new uRP is received, we obtain
the value of the coefficient associated with the uRP using a 64-entry coefficient buffer and
accumulate the values of the coefficients to directly produce an element of the projected
vector. For illustration purposes, let us assume a histogram vector of size 3 and a projection
matrix of size 2× 3. The traditional projection is computed as shown in Equation (4):

y = WTx =

(
w1,1 w1,2 w1,3
w2,1 w2,2 w2,3

)
·

x1
x2
x3

 =

(
w1,1x1 + w1,2x2 + w1,3x3
w2,1x1 + w2,2x2 + w2,3x3

)
(4)

where W is the LDA projection matrix, x is the histogram vector, and y is the projected
feature vector. Instead, whn the LDA module receives the uRP pattern 1, it retrieves the
coefficients w1,1 and w2,1 from the two coefficient buffers in Figure 11, and accumulates
these values in the corresponding registers in the figure. When the module receives the
uRP pattern 2, it accumulates the coefficient values w1,2 and w2,2. If the uRP value is 3,
the module adds the values w1,2 and w2,2 to the registers. When all the uRP values have
been read, the registers store the coefficient values of the projected vectors. Thus, for a
n×m coefficient matrix, the LDA module requires n coefficient buffers of m elements. The
memory controller block is responsible for reading the coefficient values stored in external
RAM storing them in the coefficient buffers.
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Figure 11. Architecture of the LDA projection module. The module transforms the 8-bit RLBP into
a 6-bit uniform RLBP (uRP). For each uRP value received, the module accumulates the value of its
corresponding LDA coefficient, thus performing histogram computation and LDA projection in a
single step.

Projecting the histogram vector x with LDA requires normalizing and centering the
value of x. Because the centering operation is linear, it can be performed in the projected
subspace to reduce the arithmetic hardware required to perform the operation, as shown
in Equation (5):

y = ηWT(x− µ) = ηWTx− ηWTµ, (5)

where WT is the LDA projection matrix, η is the scalar normalization coefficient, and µ is
the mean value of the training data vectors. We perform these operations in the projected
subspace, locally storing the value of η and the precomputed value of ηWTµ.

The Euclidean distance between two vectors p and q can be computed as shown in
Equation (6):

d(p, q) =

√√√√ N

∑
i=1

(pi − qi)2 =
√

∑ p2
i − 2 ∑ piqi + ∑ q2

i , (6)

where d(p, q) represents the Euclidean distance between vectors p and q, pi and qi are the
ith components of vectors p and q, respectively, and N is the dimension of the vectors.
Because we are only interested in determining the vector q in the database that is closest
to the projected input vector p, we can use the square of the distance d(p, q)2 and avoid
computing the square root.

Figure 12 shows the architecture of the Euclidean distance module, which computes
∑ p2

i − 2 ∑ piqi + ∑ q2
i . The inputs to the module are the projected vector and the LDA

normalization coefficient. As described above, the input vector is normalized and centered
in the LDA projected space, and stored into a local buffer. Then, the module sequentially
computes the distance between the input vector p and each vector q in the database of
known faces. It first computes p2

i , piqi and q2
i , and accumulates their values for 1 ≤ i ≤ N

in three registers. Finally, the values of the registers are added in a two-stage pipeline to
compute d(p, q), where the value of ∑ piqi is shifted 1 bit to the left to multiply it by 2. The
process is repeated for each know-face vector stored in the local database.
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Figure 12. Euclidean distance module. It normalizes and centers the input vector and computes the
distance between vectors p and q as ∑ p2

i − 2 ∑ piqi + ∑ q2
i .

Figure 13 shows the final stage of the classifier in the digital coprocessor. The module
receives a sequence of distances between the input image and each projected vector stored
in the database of known faces. It sequentially computes the minimum value of these
distances by comparing the currently-stored distance to the incoming value, and updating
the register with the smallest value. Finally, the minimum value is compared to a user-
supplied threshold. If the value is smaller than the threshold, the module outputs the face
label corresponding to the stored minimum value. Otherwise, it outputs a zero to indicate
that the input face is not in the database.
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Figure 13. Classification module. The module implements a nearest neighbor criterion by selecting
the face label that corresponds to the minimum distance computed between the input image and the
stored database of know faces.

5. Results

In this section, we describe the results obtained from a complete system design
that comprises the SIS and coprocessor described in Section 4. First, we discuss the
physical design of the smart pixel and the implementation of the digital coprocessor on an
FPGA. Then, we analyze the classification performance of our proposed method and SIS
architecture using a postlayout simulation of the pixel array and the FPGA.

Figure 14 shows an experimental setup used to validate our face recognition method
using an FPGA connected to a thermal IR FLIR Tau 2 camera core. In this case, the
FPGA runs a face detection algorithm to locate faces in the acquired image, emulates the
smart pixel array that computes the local spatial gradients on the image and the RPG that
generates the URLBP values for each pixel, and implements the digital coprocessor. The
FPGA outputs the acquired image on an external monitor, and sends out the labels of the
recognized faces via an Ethernet link.
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(a) Camera connected to the FPGA board. (b) Monitor displaying identified faces.

Figure 14. Experimental setup to test the face recognition algorithm. An FPGA board receives IR
images from a FLIR Tau 2 camera core and uses a HOG algorithm to detect face locations. The
FPGA emulates the smart pixel array and the digital coprocessor. A monitor connected to the FPGA
displays the image acquired by the smart pixel array, and the location and number of identified faces.
The FPGA sends the labels of the recognized faces to a remote computer via Ethernet.

5.1. Smart Pixel and RPG Implementation

Figure 15 shows the layout of the smart-pixel circuit depicted in Figure 6 using the
TSMC 0.35 µm mixed-signal process with a 3.3 V supply voltage. We used a poly1-poly2
capacitor for integration, which has a capacitance per area of 950 aF/µm2. Assuming an
integration time of 40 µs and a maximum photodetector current of 8nA, the pixel requires
a 100 fF integration capacitor of 13.6 µm × 7.7 µm. The dimensions of the complete circuit,
including all passive and active elements, are 30 µm × 22.5 µm. Assuming a standard
32 µm × 32 µm pixel [34], the circuit achieves a fill factor of 34%. The extra transistors used
to compute local gradients increase the area of the circuit by 26%. Without the switches
used to operate in smart mode, the fill factor is 47.6%.

Figure 15. Layout of the smart pixel. We used the design shown in Figure 6, implemented on the
TMSC 0.35 µm mixed-signal process. The opamp and integration capacitors are implemented using
two poly layers.

We also ported the design the smart pixel to the 0.18 µm TMSC process, which is more
commonly used in the literature [34,35,37]. With a 1.8 V supply voltage and 2 fF/µm2

metal capacitors, the total area of the circuit is 243 µm2, which allows us to achieve a fill
factor of 76% in the same 32 µm × 32 µm pixel. In comparison, the integration circuit
without the switches for local gradient computation has a fill factor of 79.9%. In summary,
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our smart pixel is capable of computing spatial differences during integration with a small
impact on the fill factor.

Table 1 compares our smart pixels to other designs reported in the literature and
discussed in Section 2. Even though the smart pixel described in [34], which computes local
differences for edge detection, uses a CTIA only at the column level, it reaches a fill factor
of 19%, which is much lower than the 76% reached by our solution in a similar CMOS
process. The other designs shown in the table use a much simpler 2-transistor integrator,
which is only suitable for capturing images in the visible spectrum. Nevertheless, our
design achieves a better fill factor in all cases.

Table 1. Comparison of our smart-pixel design to other circuits in the literature.

SIS Technology Pixel Pitch
µm × µm Fill Factor Tested Spectrum Type of Integrator

Proposed

RLBP+LDA
face recognition

0.35 µm
TMSC 32×32 34%

Visible
Thermal IR

NIR
CTIA

0.18 µm
TMSC 32×32 76%

Visible
Thermal IR

NIR
CTIA

Edge detection [34] 0.18 µm
1P4M CMOS 31×31 19% Visible 2T-integrator, CTIA at

column level

LBP Edge detection [35] 0.18 µm
CMOS 7.9× 7.9 55% Visible 2T-integrator

Spatial contrast LBP [77] 0.35 µm 26 × 26 23% Visible 2T-integrator

4-neighbor LBP [52] 0.35 µm
CMOS 64×64 15% Visible 2T-integrator

Figure 16 shows a postlayout simulation of the CTIA during the positive and negative
integration phases, as illustrated in Figure 8. The figure depicts the capacitor voltage VCint
for five different pixels in the FPGA. During the positive integration phase, the output
voltages increase proportionally to the local photodetector current of the pixel. Then, during
the negative phase, the voltage decreases at a rate proportional to the photodetector current
of the horizontally adjacent pixel. The voltage after the negative phase is proportional
to the difference between the two pixel values. The output voltage VCint + Vbias is then
sampled when reading the pixel value.

The simulation plot in Figure 17 shows the operation of the input comparator of the
RPG in Figure 9. During the integration phase, the all pixels compute their local horizontal
gradient in parallel. For clarity, Figure 17 shows the output voltage of two pixels (Pixel A
and Pixel B). During the comparison phase, the controller performs a row-wise read of the
pixel array, sequentially reading the values of three vertically-adjacent cells for each pixel,
as described in Section 4.2. The voltage labeled Vcolumn shows the array output voltage,
which is the input to the comparator. The output values of Pixel A and Pixel B are the first
and third voltages presented to the comparator, respectively, and are sampled at the times
circled in red in Figure 17. When the input voltage is higher than Vref, the comparator
outputs Vdd, or a logic 1. Otherwise, it outputs 0 V, or a logic 0. In the simulation shown in
the figure, the comparator outputs the logic sequence 00110001011, which is delivered to
the shift registers of the RPG generator to create the RLBP values.
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Figure 16. Postlayout simulation of five pixels in the SIS operating in local gradient mode. The graph
shows the voltage across the integration capacitor of the CTIA in Figure 7 during the positive and
negative integration phases shown in Figure 8.
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Figure 17. Postlayout simulation of the RPG input comparator while reading multiple pixels. The
plot shows the integration phase for the first and third pixel, the voltage input to the comparator, the
reference voltage, and the voltage output. Gradient values are read every 50 ns.

When simulating the operation of an array of 150× 80 pixels in the 0.35 µm process,
including postlayout parasitics, the readout time of one pixel is 50 ns. Considering that
we read each pixel three times in smart mode, the readout time for the complete array is
1.8 ms, which allows us acquire and process images at 556 fps.

5.2. FPGA Implementation of the Digital Coprocessor

We modeled the architecture of the digital coprocessor at the register-transfer level
using the System Verilog hardware design language, and synthesized the design onto a
Xilinx XC7Z020 FPGA. Table 2 shows the resource utilization of our design. The copro-
cessor uses less than 10% of the logic and distributed memory available on the chip. We
used distributed memory to implement the coefficient buffers in Figure 11, because the
buffers are small (64 entries), and they need to be accessed in parallel to obtain a new
set of coefficients with each uniform RLBP element. The buffer in the Euclidian distance
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module of Figure 12 uses two embedded RAM blocks, which account for 1.4% of the
blocks available on the chip. Finally, the same module uses 6 out of the 220 DSP slices
available on the FPGA. This small hardware resource usage leaves ample space on the
FPGA to implement additional image processing algorithms. The coprocessor operates at
a maximum clock speed of 128 MHz, mostly due to the need to access external memory
for the LDA coefficients and the database of stored faces. At this clock rate, the circuit
can process 127× 106 pixels per second or one 150× 80-pixel image in 94 µs. The power
consumption of the circuit operating at this clock frequency, estimated using Xilinx Power
Analyzer, is 71 mW.

Table 2. Resource utilization of the digital coprocessor on a Xilinx XC7Z020 FPGA.

Slice LUTs Distributed Memory Block RAMs DSP Slices

Total used 4345 1298 2 6
Available 53,200 17,400 140 220

Percentage 8.2% 7.6% 1.4% 2.7%

5.3. Method Classification Performance

To test the classification performance of our method, we used four databases: UCHTher-
malFace database [78], the CBSR NIR face data set [79], the Université Laval Face Motion
and Time-Lapse Video Database (UL-FMTV) [80,81], and the Yale Face Database B [82].
Table 3 summarizes the information of spectrum, image size in pixels, number of subjects,
number of images per subject, variations in face position, and other conditions of the
images in each database.

Table 3. Databases used to test the performance of the proposed method.

Database Spectrum Image Size (Pixels) Number of Subjects Images per Subject Face Positions and Conditions

UCH-TF Thermal IR 150× 81 53 28 Rotations and expressions
CBSR NIR Near IR 640× 511 197 20 Frontal, with and without glasses
UL-FMTV Thermal IR 128× 128 238 Short video sequence Rotations
YaleFace B Visible range 192× 168 38 64 Frontal, expressions and light variations

To evaluate the classification performance of the algorithm on each database, we used
60% of the images for training, that is, to compute the LDA transformation and the stored
database of projected faces, and 40% for testing. To reduce overfitting, we used a standard
k-fold cross-validation technique with 10 iterations. We quantified the performance of
the algorithm using the accuracy score, which is defined in Equation (7) for a multiclass
classification problem with N classes:

Accuracy =

N
∑

i=1
Hi

N
∑

i=1
Hi + Fi

× 100, (7)

where Hi and Fi are the number of correctly and incorrectly labeled samples of class i,
respectively. In other words, the accuracy is the percentage of correctly classified images in
the test set, computed as the sum of the diagonal elements of the confusion matrix divided
by the sum of all the elements in the matrix.

Table 4 shows the accuracy of our method on the four databases, using both RLBP
and conventional LBNP to compute the local features. As the table shows, our method
performs best with the UCH-TF and CBSR NIR databases, which consist mainly of frontal
images with small variations in rotation. Our accuracy is lower, but still above 80%, for
YaleFaceB, which is a challenging data set with significant variations in illumination among
images. The UL-FMTV contains short video sequences, of which we extracted 24 images
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for training and 16 for testing, for each subject. The classification accuracy depends largely
on which video frames we used to train and test the algorithm: The accuracy is lowest, but
still around 75%, when the training and testing frames are far apart in the video frame,
mostly due to large variations in rotation angle. When the sets are taken from closer video
frames, the algorithm achieves accuracy above 95%.

Table 4. Accuracy of our method with RLBP and LBP using different databases.

UCH-TF CBSR NIR UL-FMTV YaleFaceB

RLBP+LDA 96.7% 96.0% 75–95.9% 76.4%

LBP+LDA 98.5% 98.1% 79–97.1% 82.9%

Table 4 also shows that replacing conventional LBP with our lightweight RLBP de-
scriptor reduces classification accuracy in approximately 2–5%, depending on the database.
LBP considers gradients in all directions in a 3× 3-pixel window, while RLBP groups only
horizontal gradientes in the same window. Therefore, LBP contains more information than
RLBP, but we can still capture significant texture information by considering the spatial
distribution of horizontal gradientes within a small neighborhood of each pixel. As a result,
we can significantly reduce the number of operations at the pixel level with a small loss
in accuracy.

Tables 5–7 compares the accuracy of our method to other algorithms in the literature
using the databases with which they were published. Table 5 reports the algorithms
evaluated by Hermosilla et al. [53] using the UCHThermalFace database. Table 6 shows
the accuracy achieved with the algorithms reported by Jo et al. [26] with the CBSR NIR
database. In all these cases, our method achieves similar or better accuracy than the
algorithms reported in the literature. Finally, Table 7 compares the results of our method
with YaleFace B database against the algorithms evaluated by Sun et al. [83]. The results
show that the accuracy of our algorithm is lower than the reported methods. The main
reason for this is that Ahonen’s algorithm does not perform well when there are large
variations in illumination between the images in the training and test set. Sun’s algorithm
shows more robustness under these conditions, but it requires more computation per pixel.
Moreover, this computation can not be easily mapped onto a smart pixel design in the
analog domain to exploit pixel-level parallelism in the imager. For NIR and thermal IR
images, for which our smart pixel is better tailored, our method delivers better results than
the state of the art.

Table 5. Accuracy of our RLBP+LDA and LBP+LDA methods compared to other face classification
algorithms discussed in [53], using the UCH-Thermalface [78] database.

Method RLBP+LDA LBP+LDA GJD WLD LBP

Accuracy 96.7% 98.5% 96.6% 94.4% 92.0%

Table 6. Accuracy of our RLBP+LDA and LBP+LDA methods compared to other face classification
algorithms discussed in [26], using the CBSR NIR [79] database.

Method RLBP+LDA LBP+LDA NIRFaceNet+Aug NIRFaceNet FaceNet

Accuracy 96.0% 98.2% 96.6% 94.8% 84.1%

All the experiments described above were executed as a closed-set problem, that is, the
test set contains only images of subjects that are also present in the training set. In order to
test the performance of our method in an open-set problem, we trained the classifier using
only 40 subjects from the UCHThermalFace database, and used a test set with images from
all 53 subjects. We used the threshold THR described in Algorithm 1 to label the image
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as unknown if the distance to its nearest is larger than this threshold. In this experiment,
using THR = 8, the accuracy of LBP+LDA is 95.5%, which is reduced to 93.1% when using
RLBP to compute the local features. That is, the accuracy of both methods is reduced by a
approximately 3% compared to the closed-set problem.

Table 7. Accuracy of our RLBP+LDA and LBP+LDA methods compared to other face classification
algorithms discussed in [83], using the Yale face database B [82].

Method RLBP+LDA* LBP+LDA* Sun’s Kernel CRC ELM Tanh

Accuracy 76.4% 82.9% 98.33% 96.82% 96.44% 96.34%

5.4. SIS Classification Performance

A circuit parameter that affects classification performance is the reference voltage in
the comparator of Figure 9, which computes a digital value for the difference between
adjacent pixels. The images in Figure 18 illustrate the effects of Vre f in the RLBP values
generated by the comparator, for thermal IR images of three different subjects. Figure 18a
shows the original image, Figure 18b is the image generated by replacing the pixel values
with the RLBP values computed in software, and Figure 18c–e are the RLBP images
generated by the hardware setting the value of Vre f to 1.665 V, 1.650 V, and 1.645 V.
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Figure 18. Effect of Vref in the RLBP values generated by the RPG for 3 images acquired using a
FLIR Tau 2 thermal IR core. (a) original IR image, (b) RLBP image generated by software, (c–e) RLBP
images generated by the RPG for Vref values of 1.665 V, 1.650 V and 1.645 V, respectively.

Figure 19 shows the accuracy achieved in our simulations by the complete circuit as a
function of Vre f using the UCHThermalFace database [78]. For comparison, the figure also
shows the classification accuracy achieved by a software implementation of the algorithm,
and by the same algorithm in software, using conventional LBP instead of our proposed
RLBP. When programmed in software, our algorithm achieves 96.7% accuracy on the
test data set, while using LBP achieves 98.5%, but requires 8 times as many comparisons.
Varying Vre f between 1.63 V and 1.68 V, our hardware implementation using the SIS and
digital coprocessor on the FPGA achieves an accuracy above 93%. Setting Vre f between
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1.655 V and 1.665 V achieves a mean accuracy of 96.5%. These values are slightly higher
than the expected value of Vre f = Vdd/2 = 1.65 V, mostly because of change injection in
the feedback and parasitic capacitors of the comparator.
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Figure 19. Classification accuracy as a function of the value of the comparator input Vre f in Figure 9.

6. Conclusions

We have presented a SIS architecture for face recognition that uses local gradients
to extract image features based on a lightweight version of LBP. The analog smart pixel
sensor computes spatial gradients in the image in parallel during photocurrent integration,
and can be configured to output the regular pixel value or the local gradients. A digital
coprocessor computes a modified version of Ahonen’s algorithm, where we use LDA to
reduce the feature space dimensions and improve class separability.

Postlayout simulations of an array of 150× 80 pixels of 32 µm × 32 µm show that the
array can deliver up to 556 frames per second. Modifying the integration readout circuit to
compute the local gradients allows us to extract local features with a very small impact on
fill factor. The digital coprocessor, implemented on a Xilinx XC7Z020 FPGA, can classify
a face image in 94 µs, or 10,638 images per second, while consuming 71 mW of power.
We use several techniques to reduce on-chip resource utilization, such as storing the LDA
coefficients on external memory, and simultaneously building the RLBP histograms and
mapping them to the LDA subspace to avoid computing matrix-vector multiplications. As
a result, the coprocessor uses less than 10% of the slice LUTs of the FPGA, less than 2% of
the on-chip block memory, and less than 3% of the multipliers.

The proposed system has low power consumption and low area utilization, making it
suitable for mobile devices and portable systems. Although the CTIA integrator used in
the smart pixel is larger than alternative readout circuits, it is suitable for IR and low-light
imagers. Computing local differences during photocurrent integration minimizes the
impact on circuit area and fill factor, even though by cutting the integration time in half, it
may reduce the signal-to-noise ratio of the image sensor in face recognition mode.

When classifying faces using different databases, we observe that our algorithm
outperforms other methods in the literature, except when there are large variations in
illumination between the training and test data sets. These variations are significantly
smaller in IR images, for which our smart pixel has been designed. The results also show
that replacing conventional LBP with our proposed RLBP still captures sufficient texture
information to perform face classification with a small degradation in accuracy.

We are currently exploring other applications of smart pixels with local difference
computation. Specifically, we are exploring using local gradients to correct the fixed-pattern
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noise present in IR sensors due to nonuniformity in the array. We are also working on other
smart pixel designs with local computation for edge detection, image filtering, bad pixel
detection and correction, and face detection. We expect that the low resource utilization of
the digital coprocessor and the offloading of pixel-level computation to the sensor array
will make it possible to integrate multiple algorithms on the same chip or FPGA.
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