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Abstract: The Internet of things (IoT) has emerged as a topic of intense interest among the research
and industrial community as it has had a revolutionary impact on human life. The rapid growth of
IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart
healthcare, smart industry, smart city, smart grid, among others. IoT devices’ security has become
a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed
damaging IoT security vulnerabilities. Traditional network security solutions are well established.
However, due to the resource constraint property of IoT devices and the distinct behavior of IoT
protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices
and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-
specific tools, methods, and datasets. To address the mentioned problem, we provide a framework
for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The
proposed framework consists of a newly created, open-source IoT data generator tool named IoT-
Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal
and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an
open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset.
Using the proposed framework in this research, we first generated an IoT healthcare dataset which
comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning
techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system
from cyber-attacks. The proposed framework will help in developing the context-aware IoT security
solutions, especially for a sensitive use case like IoT healthcare environment.

Keywords: Internet of Things (IoT); IoT healthcare systems; healthcare monitoring; machine learning;
securing healthcare systems; IoT healthcare dataset; IoT traffic generator; IoT flock; healthcare

security; intrusion detection

1. Introduction

The Internet of things (IoT) refers to real-world objects having communicative and
cognitive capability using smart devices. IoT is a tremendous communication paradigm
where the plethora of heterogeneous devices will connect and talk to each other. These
communication devices will play an essential role in the life of human beings. IoT is
creating a revolutionary impact in the world of technology and the social life of people.
Over time, IoT devices are overgrowing. According to recent statistics, the number of IoT
devices connected worldwide was 23.14 billion in 2018 [1]. Furthermore, it is estimated that
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by 2025 there will be 75.44 billion IoT connected worldwide [1]. IoT footprints have been
identified in various domains such as manufacturing, agriculture, transportation, electric
grid, healthcare, among others [2—4]. In an IoT-based healthcare system, security is the
primary concern as the data is directly related to human beings. An intensive care unit (ICU)
is a special and critically operational department of a hospital where specialized treatment
is given to the patients who require critical medical care. Usually, the patients who are
acutely unwell or injured severely and require continuous medical care are admitted to
the ICU. The equipment and devices concerned in the ICU play a vital role in keeping
the patient alive and healthy. In such a scenario, any communication breakdown due to a
cybersecurity breach may cause severe effects on a patient’s life and even death in some
instances. Therefore, an attack-proof IoT-based healthcare system is a primary need of
the hour. Thus, providing an IoT-based healthcare system with secure and robust data
communication among medical sensors and actuators is obligatory.

So far, a lot of work has been done to automate the patients” monitoring and assist
the medical professional in remotely assessing the patient’s health status [5-9]. To pre-
server patients’ privacy, some approaches rely on fog computing to perform some of the
computation on the edge, so that identifying information is not sent to the cloud [10].
However, the cyber-attacks on IoT healthcare systems have become the primary focus
of the intruders [11]. It is reported that more than 90% of the healthcare systems have
been the victim of the cyber-attacks. In 2017, White House intelligence reported that the
healthcare sector has become attractive for cyber-criminals [12]. Moreover, during the
COVID-19 era, the cyber-attacks exponentially surged across the spread of COVID-19 [13].
The cyber-criminals have now started targeting the IoT healthcare services and systems
actively [13,14].

The confidentiality and integrity of the data have utmost importance in IoT healthcare
environments [15]. Any data breach or data tampering in healthcare systems can revoke
serious health hazards to patients. Likewise, any change to the patient’s medical record
may lead to accidental death if unnoticed by the professional medical [11]. Furthermore,
the cyber-attacks on IoT healthcare systems can cause critical disruption in the medical
treatments [11,14]. For example, if a hacker gains access to an infusion pump and then
changes the infusion pump’s configuration in such a way that it starts releasing a large
amount of insulin to a patient, which can cause severe hypoglycemia. Similarly, suppose a
cybercriminal gains access to a pacemaker and either slows down the heart rate or speeds
up the heart rate. In that case, severe bradycardia or tachycardia may instantly happen to
the patient, ultimately leading to death. Henceforth, the security of healthcare systems has
become the most significant concern of this age.

The IoT devices are resource constraint because of the limited amount of memory,
computational capacity, and power [16,17]. The traditional security solutions are not
adequate for efficiently detecting the malicious attacks in IoT environment due to the
distinct features of IoT devices [17]. Therefore, it is very challenging to design a security
mechanism for IoT devices. The manufacturing industries are producing a massive amount
of IoT products to create low-cost IoT devices in a short period [3,18]. Due to the race to
the market for capturing the market as earlier as possible, the manufacturers are giving
less importance to the device security [3]. Moreover, the IoT device manufacturers also
create back doors to access the machine remotely or use that device for their malicious
intent. Most of the consumer-deployed IoT devices are connected to the network without
any security defense line [19]. Therefore, IoT devices can be compromised easily. Therefore,
the security of IoT devices has become a significant concern nowadays.

The traditional security mechanisms are deployed at two levels, i.e., network-level or
host-level [20]. In the current Internet era, the host-level security approach is considered
more secure than the network level security approach [16]. As IoT devices are low-powered
and resource-constrained, host-level security mechanisms cannot be deployed. Therefore,
the network-based security mechanism is preferable for IoT devices compared to the
host-based security system [16,19].
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An intrusion detection system (IDS) is a compulsory defense line among the existing
security mechanisms responsible for identifying malicious activities in the network. It is
also classified into network-based and host-based IDS. The network-based IDS scrutinizes
network events, while the host-based IDS scrutinizes host events. The network-based IDS
needs to be trained in IoT to protect the IoT networks and network from cyber-attacks.
The IDS are trained either on live traffic or on a recorded network traffic dataset. The IDS
training on live traffic is an expensive and time-consuming procedure. However, the train-
ing of IDS on an appropriate network traffic dataset is a fast and low-cost procedure. Thus,
having an appropriate IoT dataset for the IDS training and testing is a crucial need. Some
approaches, such as in [21], rely on deep learning models for feature extraction, aiming to
perform intrusion detection in network traffic. Although the existing IDS technology is well
entrenched however, it is inadequate for the IoT devices and network [22,23] due to the
limited processing and storage capacity. Moreover, the commonly used IoT protocols like
MQTT, and Constrained Application Protocol (COAP), are not supported by the traditional
IDS solutions. Therefore, it the need of the hour to develop IoT-supported IDS.

Recently, the authors of [4] surveyed the security requirements and various cyber-
attacks of the wireless sensor network (WSN) and IoT environment. The authors conducted
a detailed review of various security solutions proposed for WSN and IoT. Their study
revealed that data generated by IoT devices in an IoT environment varies from use case
to use case, e.g., smart healthcare, smart transportation, etc. Thus, the traditional security
solutions, mechanisms, need to be tailored for IoT use case requirements. Thereby, the re-
searchers need IoT-specific tools, methods, and datasets to enhance security for IoT devices
and networks. The training and testing of IDS require an efficient IoT traffic dataset that
contains both standard and malicious IoT traffic. Only a few researchers are working to
produce a suitable IoT dataset to test and evaluate the IoT-supported IDS. In this work,
we propose the development of IoT context-aware security solutions to detect malicious
traffic in IoT healthcare environments. To efficiently develop the IoT context-aware security
solutions, the proposed framework consists of a newly created, open-source IoT data
generator tool, named IoT-Flock [16,24], for generating IoT use case-specific traffic.

Although the existing IDS technology is well entrenched, it is inadequate for the
IoT devices and network [22] due to the limited processing and storage capacity. Thus,
the traditional security solutions are not adequate for efficiently detecting the malicious
attacks in IoT environment due to the distinct features of IoT devices such as scalability,
processing, memory, and power resource limitations, etc. [17]. Therefore, it is vital to
develop IoT-supported IDS. The training and testing of IDS require an efficient IoT traffic
dataset that contains both normal and malicious IoT traffic. Only a few researchers are
working to produce a suitable IoT dataset to test and evaluate the IoT-supported IDS.
To this aim, we generated a real-time IoT traffic dataset for the development of IoT-based
IDS specifically in ICU-context. Additionally, the proposed framework provides an open-
source utility for converting the captured traffic generated by loT-Flock [16,24] into an IoT
dataset. Finally, by applying different machine learning techniques over the generated IoT
dataset, we demonstrate how the proposed framework can be used to develop an Al-based
cyber-security solution to secure and protect the IoT healthcare systems from cyber-attacks.
The proposed framework will help in developing context-aware IoT security solutions,
especially for the sensitive healthcare environment.

This paper presents a framework for developing IoT context-aware security solutions
to detect malicious traffic in IoT use cases, especially for the IoT healthcare environment.
The proposed framework consists of an open-source IoT traffic generator tool and an IoT use
case dataset to ease the research community. To the best of our knowledge, this is the first
time that an open-source IoT traffic generator tool is introduced. It can also generate both
the normal and malicious IoT traffic based on two loT application layer protocols: Message
Queuing Telemetry Transport (MQTT) and COAP. So far, no IoT traffic generator tool is
capable of generating malicious IoT traffic. We used the IoT traffic generator tool to create
an attacking network and a typical network of IoT devices for generating the network
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traffic to capture the packets and a complete payload for the dataset. We designed a real-life
ICU use case in the IoT traffic generator tool. We created the data profiles and time profiles
of the ICU devices by analyzing real-time value ranges for generating the real-time IoT
traffic. We extracted the network layer features and introduced such an extensive set of
application-layer features and payload features. They have not been done before from an
IoT perspective to generate a widespread and reliable IoT traffic dataset for IoT-supported
IDS training and testing. Finally, we demonstrated the proposed framework’s applicability
and the generated dataset for developing the IoT context-aware security solutions using
six commonly used machine learning algorithms.

The rest of the paper is structured as follows. Section 2 presents the existing IDS
datasets’ literature review. Section 3 describes the framework proposed for developing the
IoT context-aware security solutions and a detailed overview of our IoT traffic generator
tool, IoT healthcare use case conceived for generating the dataset, traffic generation scenario,
data capturing procedure used for recording the generated traffic, and the features of the
dataset. We discussed the results of the proposed framework in Section 4; it ends with the
analysis of generated dataset using machine learning techniques. Last, Section 5 concludes
the paper.

2. Literature Review

The rapid growth of IoT technology has revolutionized many areas of life by familiar-
izing the concept of smart cities, smart health, smart wearables, smart industries, smart
agriculture, among others. IoT-based health monitoring systems are becoming smarter
day by day. In recent years, various loT-based smart health monitoring systems have
been proposed. However, 10T is still in its infancy in the security of healthcare systems.
The conventional network security solutions cannot be used for IoT-based healthcare sys-
tems due to the resource constraint property of IoT devices and different security level
requirements [4,17]. Furthermore, the data generated by IoT devices in an IoT environment
varies from use case to use case, e.g., smart healthcare, smart home, among others. Thus,
the traditional security solutions, mechanisms, needs to be tailored with respect to IoT use
case requirements [4]. Finally, there is a strong need for obstructing malicious activity from
accessing the network of resource-constrained IoT-based medical devices.

So far, many researchers have worked and proposed different solutions to secure
the IoT healthcare systems from the cyber-attacks. Rughoobur et al. [15] proposed a
framework to detect the replay attacks on battery-dependent IoT healthcare devices. Their
proposed solution analyzes the unique device id, timestamps, and battery depletion behav-
ior to detect and mitigate the replay attacks on battery-dependent IoT healthcare devices.
Rathore et al. [17] introduced an extreme learning machine (ELM) based semi-supervised
Fuzzy C-Means method to detect the cyber-attacks in fog-based IoT environments. The au-
thors used ELM to timely and efficiently detect the cyber-attacks and used Fuzzy C-Means
to mitigate the dataset label issues. Likewise, Carta et al. [20] introduced a feature engi-
neering technique to efficiently detect the anomalies in order to improve the performance
of traditional IDSs. Similarly, Alrashdi et al. [25] proposed a framework for detecting the
malicious in fog-based IoT healthcare system. The authors used an ensemble of online
sequential ELM to detect malicious attacks like man-in-the-middle, DDoS, etc. attacks in a
fog-based smart home equipped with a remote patient monitoring system.

As discussed earlier that in the current era, security is the primary concern of IoT.
Firewalls, IDS, and intrusion prevention systems (IPS) are the primary security shields to
protect the devices and network from cyber-attacks. Most of the firewalls filter the normal
and suspicious traffic based upon the static defined rules. However, IDS and IPS filter the
intrusive attempts using artificial intelligence (Al) techniques and are thus more reliable
and effective than the predefined static rules. The IDS and IPS are trained and tested using
malicious and benign network traffic datasets. Two approaches collect these datasets: either
by using real systems to generate suspicious and normal network traffic or using the traffic
generators. The traffic generators are the tools that mimic the real-time network traffic.



Sensors 2021, 21, 3025

50f19

The training and testing of the IDS and IPS using the network traffic dataset generated
by real-time systems represent a costly and difficult job. However, this dilemma can be
untangled by generating the dataset through a traffic generator tool. No matter, the present
IDS technology is relatively mature, but these are inadequate for IoT Systems [22,23].
As previously discussed, the main reason behind this is the limited processing and storage
capacity of the IoT nodes, which is the main challenge for host IDS [16,17]. Another crucial
factor is that the communication protocols (like CoAP, MQTT, etc.) IoT devices use are not
employed in the traditional network as different protocols carry different vulnerabilities
and demands for IDS [23]. This work’s primary focus is to generate a vast and reliable IoT
network traffic dataset to develop IDS specifically for the IoT-based ICU environment. Any
security breach in such a scenario may either cause a severe effect on the patient or even
death in some instances [11].

There exist some state-of-the-art datasets that are used for the training and testing the
IDS and IPS for the conventional network and IoT network. The network traffic datasets
proposed during the past few years are being used widely until this age. Some of them
are realistic datasets, i.e., generated using real-time systems, while some are simulated
datasets, i.e., generated through simulation tools. Some of the state-of-the-art datasets
are DARPA [26], KDD-99 [27], NSL-KDD [28], DEFCON [29], LBNL [30], CAIDA [31],
UNIBS [32], ISCX [33], and UNSW-NB15 [34].

DARPA [26] is the pioneer dataset proposed in 1998 at MIT Lincoln Laboratory. This
dataset was developed for the assessment of IDS, and it contains recorded data of seven
weeks. It includes the data of emails, FTP, Telnet, IRC, and SNMP-related events. Different
types of attacks like denial of service (DoS) attacks, remote to local (R2L) attacks and
user to remote (U2R) attacks simulated using Windows, UNIX platforms. However, this
dataset does not contain real-time traffic and has some irregularities like the absence of
false positives [35].

The KDD-99 [27] dataset was produced using DARPA [26] to inspect the IDS explicitly
designed for detecting the inbound attacks. It contains DoS attacks like pod-DoS, smurf-
DoS, Neptune-DoS, and buffer overflow attacks. This dataset had a significant problem
of imbalanced learning as it consists of 80% attack traffic. Later on, NSL-KDD [28] was
generated to fix the issues in KDD-99 [27]. However, it is also outdated as it does not the
current standard and attack events.

The DEFCON [29] dataset has two versions—DEFCON-8 and DEFCON-10, recorded
in 2000 and 2002, respectively, during a capture flag (hacking and anti-hacking) competition.
DEFCON-8 includes the port scanning attacks and buffer overflow attacks, while DEFCON-
10 includes attacks related to port scan, malicious packets, and FTP attacks.

LBNL [30] dataset was produced by gathering the inbound, outbound, and routing
traffic of two edge routers in 2004. It was collected at a medium-sized site, contains
complete header files only. It suffers from heavy anonymization.

CAIDA [31] dataset contains only traffic header without the payload and collected
from the Internet backbone of a large-scale enterprise. It includes specific attacks such as
DDoS attacks. The recorded dataset was not further processed to generate new features
that could improve the distinction between normal and malicious traffic. Moreover, it is
unlabeled, so not beneficial for the direct performance assessment of IDS as it needs the
preprocessing for labeling.

The UNIBS [32] dataset was captured through tcpdump of the router with the traffic
flow of twenty workstations. Only the DoS attack was focused. ISCX [33] was produced
using real network configurations in 2012. A group of people was involved in simulating
real network traffic. It is a labeled dataset with different attack scenarios. It contains two
profiles: the Alpha-profile carried out at multi-stage attack scenarios and the Beta-profile
carried out regular traffic. It includes full packet payloads of different protocols like HTTP,
FTP, SMTP, and others. However, it does not contain HTTPS, which is 70% of current
age traffic. The UNSWNB-15 [34] dataset was collected by generating the IXIA storm to
generate malicious and regular traffic in a commercial penetration testing environment.
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Bot-IoT [36] is a dataset that contains the simulated IoT network traffic and along with
different types of attacks.

In the existing literature, most of the studies use some of the above-mentioned datasets
for developing security solutions for the IoT environment. However, as we discussed earlier,
the traffic generated by IoT devices in an [oT environment varies from use case to use case,
e.g., smart healthcare, smart home, etc. Thus, the traditional security solutions (mechanisms)
need to be tailored with respect to IoT use case requirements [4]. Moreover, due to the limited
processing and storage capacity, application-layer protocols, among others, the traditional
security solutions are not adequate for efficiently detecting the malicious attacks in IoT
environment [17]. Therefore, it the need of the hour to develop loT-supported IDS by using
the IoT use case related traffic.

To our best knowledge, among the above-mentioned datasets, Bot-IoT [36] is the
only publicly available IoT dataset that contains both normal and malicious traffic. The
Bot-IoT [36] dataset includes the IoT traffic generated by the normal and attacking vir-
tual machines for the five IoT scenarios provoked with three types of probing attacks,
DoS attacks, and information theft attacks. Although the Bot-IoT [36] dataset contains
approximately seventy-two-billion instances, only one IoT-specific protocol is considered,
i.e., MQTT. While using our developed traffic generator tool, i.e., IoT-Flock [16,24], we can
create almost any IoT use case, add normal and malicious devices into it with respect to the
use case, and generate the traffic of two major IoT application-layer protocols, i.e., MQTT
and CoAP.

3. Proposed Framework

From the IoT use case traffic generation to the development of context-aware IoT
security solution for malicious traffic detection in IoT healthcare use case, the proposed
framework consists of five major stages as illustrated in Figure 1. These modules include
use case setup, IoT normal and attack traffic generation, IoT traffic capturing, IoT dataset
creation, and machine learning (ML) model development.

NORMAL & IOT

loT Traffic Traffic
Use Case Setup XML . ATTACK TRAFFIC _ )
Using loT Flock —_— Generation Capturing Using
9 Using loT Flock Wireshark
PCAP
Output Machine Learning
Detection Accuracy. for Classifying loT CSV loT Dataset
Sensitivity. 3 Normal & Attack < Creation
Specificity. Traffic

Figure 1. Framework for research in IoT health care security.

The proposed framework starts from designing an IoT use case and then executing
that use case to generate real-time IoT traffic. The generated traffic is then captured to
create an IoT dataset for training the ML models. Finally, ML models are trained and tested
by applying different ML techniques to efficiently detect the malicious network traffic in
the underlying IoT use case.

3.1. IoT Use Case Generator

IoT use case generator is the first module of the proposed framework, consisting
of our recently developed, open-source IoT traffic generator tool, i.e., IoT-Flock [16,24].
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The IoT-Flock [16,24] tool can generate both the normal and attack traffic of IoT-based
devices in any use case. With the IoT-Flock [16,24], one can easily create IoT use cases
according to his/her needs and generate IoT traffic for different use cases to create the
traffic for hundreds of IoT devices in a real-time live network by using a single physical
machine. The basic architecture of the IoT-Flock [16,24] is shown in Figure 2.

FRONT END FUNCTIONALITIES

loT Usecase Creation IoT Device Setup
| Data Profiles | | Time Profiles |
| Attacking Entities | | Usercase XML Export |

10T APPLICATION LAYER PROTOCOLS APIS

| MQTT client API | [ coap ciient AP |

©O=r VIRTUAL IP FOR EACH IOT DEVICE

Figure 2. Basic architecture of the IoT-Flock [16,24] tool developed for IoT traffic generation.

The IoT-Flock [16,24] tool has the following distinct features as compared to the other
commercially or publicly available traffic generator tools:

1. IoT-Flock [16,24] is an open-source tool with easily understandable and extendable code.

2. IoT-Flock [16,24] can create real-time IoT use cases with the support of many devices
that can be added.

3. Most of the open-source and commercially available traffic generator tools do not
support creating the attacking entities. Simultaneously, IoT-Flock [16,24] allows the
researchers to develop both standard and attacking devices in the same use case and
generate its traffic. Thus, the generated traffic contains both standard and attach
patterns, which can help design IDS and IPS better.

4. IoT-Flock [16,24] provides the support to export the designed use case into XML and
provides the support to import the XML generated whether by using IoT-Flock [16,24]
or some other third-party tool. It can motivate the researchers to create more user-
friendly use cases, export them to XML, and run it using the IoT-Flock [16,24] console
application for IoT traffic generation.

5. IoT-Flock [16,24] is capable of generating the latest MQTT, COAP specific attacks.
That is not supported yet by any other open-source IoT traffic generator tools. Users
can select an attack type and create a malicious device, thus can quickly generate
malicious traffic.

IoT-Flock [16,24] has two working modes, i.e., GUI mode and Console mode. The GUI
mode is designed to provide a user-friendly environment for creating IoT use cases. One
can make any IoT use case and add any number of devices into it. The devices added to the
use case can mimic the real-time devices. A user can create a single IoT device or multiple
IoT devices at a time. For creating a single IoT device or multiple IoT devices, a user will
have to provide the relevant functional and non-functional information about the device.
The functional information defines the working behavior of an IoT device. It includes the
information about the device type (i.e., normal or malicious), protocol, data profile, time
profile, commands, and controls (i.e., subscribe, publish topic in MQTT case during getting,
post control in case of COAP). On the other hand, the user’s non-functional information
is provided to distinguish an IoT device from the other IoT devices. The functional and
non-functional information fields are briefly discussed in the following sections.
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3.1.1. Functional Information Fields

Device Type—IloT-Flock [16,24] can create two types of devices: normal and malicious.
The normal device is an ordinary device that sends or receives data or performs both
operations simultaneously as defined by the user. Simultaneously, the malicious
device is an attacking (harmful, malignant) device that can disturb the normal traffic
flow of the use case.

Protocol—IoT-Flock [16,24] supports two IoT application layer protocols, i.e., MQTT
and COAP. In the MQTT device, the user will have to provide further details about
the device like broker IP, username, password, subscribe, or publish topic. In the
COAP device, the user will have to give information about the COAP server IP and
the COAP command.

Data Profile—The data profile of an IoT device illustrates the type of data that an
IoT device can send. An IoT device can send either digital or analog data (values)
attached with some notification message. The digital device will send binary values
like on, off, or 1, 0. In contrast, the analog device will send the values in a given range
appended with a user’s notification message. The notification message can either be a
small text or an extensive text of megabytes.

Time Profile—The time profile of an IoT device will prescribe the moment when
the device will send the data as shown in Figure 3. The IoT-Flock [16,24] supports
two kinds of time profiles entitled periodic or random. An IoT device with a regular
time profile will transmit the data after a fixed interval of time as given by the user.
In contrast, a device with a random time profile will send the data after some arbitrary
interval within the random time range as specified by the user.

Send
Initiate Sensor MQTT/COAP
Simulation Message
m z IoT
= <
S g
. Sensor |:
15 %)
2 H
:\ Types
Initiate next Add Five Second
Iteration of (USER DEFINED)
Sensor Delay to Next Input

©)

Figure 3. Time profile.

3.1.2. Non-Functional Information Fields

The non-functional information of a device is also necessary to uniquely identify an

IoT device. It includes the device name, device IP, and the number of devices. Device IP
identifies the IoT device in traffic. Each device of use case will be assigned a separate IP
which is used in communication.

The generation of IoT use cases can help researchers understand and meet the context-

aware requirements of that specific domain. Moreover, use cases can also help researchers
to analyze different dimensions like security requirements and others. IoT use cases devel-
oped in GUI mode of IoT-Flock [16,24] can be exported to XML format. IoT-Flock [16,24]
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development is done considering that IoT use case developed from any third party tool
is provided in XML format can be run in IoT-Flock [16,24]. For this purpose, IoT console
mode is introduced, where the user can simply provide XML file and complete IoT use
case traffic generation will be started.

As discussed earlier in this work, we aimed to generate IoT traffic specifically for
IoT-based healthcare system use cases. In this work, we considered IoT-based ICU use case.
Therefore, we first need to create an IoT-based ICU use case using loT-Flock [16,24]. For this
purpose, we first analyzed the purpose, working principle, and type of data produced
by the devices used commonly in an ICU, as shown in Figure 4. Thus, we created the
IoT-based ICU use case using IoT-Flock [16,24] and added devices into it. Tables 1 and 2
shows the list and the description of the devices we added to develop the IoT-based ICU in
IoT-Flock [16,24]. The devices enlisted in Tables 1 and 2.
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Figure 4. IoT ICU use case.

The devices used in ICU use cases are classified into two categories, i.e., environ-
mental monitoring devices and patient monitoring devices. The environment monitoring
devices are used to monitor the environmental conditions of the ICU to maintain a good
environment in the ICU. These devices are enlisted and described in Table 1. At the same
time, the patient monitoring devices are mounted at particular parts of the body to observe
the patient’s physical condition. The patient monitoring devices are used to continuously
examine a patient’s physical condition to provide medical aid on the spot if the patient’s
condition starts diminishing. These devices are enlisted and described in Table 2.

The IoT devices deployed in an ICU transmit a certain kind of data after a specific
interval set by the ICU administrators. Therefore, we added two more characteristics of
each device enlisted in Tables 1 and 2. We called these characteristics data profile and time
profile. In the data profile, we specified the type and range of data transmitted by each
device, whereas, in the time profile, we set the time interval after which each device will
send or receive the data. The data profile is defined by consulting each machine’s datasheet,
whereas the time profile is determined based upon the authors” general perception.

After the data profile and time profile of each device are specified, the next step is
creating the device template using IoT-Flock [16,24]. Once the device template is created in
IoT-Flock [16,24], it can add multiple times as it is or added after editing as required for a
use case.
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Table 1. Environment monitoring sensors.

Device Name Description Data Profile Time Profile
Air Humidity Sensor Measures the air humidity 0-100% Rh (Relative Humidity) 5s
Air Temperature Sensor Measures the air temperature —20-70 °C 5s
Measures the concentration of CO gas in
CO Sensor Envi 0-2000 ppm 2s
nvironment
Fire Sensor Detects the presence of fire and flame Flame detected (0,1) 2s
Smoke Sensor Detects the smoke in the air 300-10,000 ppm 2s
Barometer Measures the atmospheric pressure 800-110 hPa 5s
Solar Radiation S Measures the direct solar radiations by = Spectrum of radiation
olar Radiation Sensor thermopile (0-2000 Watt/m?) s
Table 2. Patient monitoring sensors.
Device Name Description Data Profile Time Profile
Remote Electrocardiogram  Test the electrical and muscular functions Pulse Rate (0200 b 1
(ECG) monitoring of the heart ulse Rate (0 pm) S
A generic device used to deliver the nu-
Infusion Pump trients and drugs to patient at a con- pgge (10-100 mL) 10 min
trolled amount.
A device that tells th tura-
Pulsoximeter (SPO2) cevice that tefls the oxygen satire Oxygen in blood (35-100%) 1s

Nasal/Mouth
AirFlow Sensor

Blood
monitor Sensor

pressure

Glucometer

Body Temperature Sensor

Electro- myography

(EMG) Sensor

Galvanic skin response
(GSR) Sensor

tion (i.e., amount of oxygen dissolved)
in blood

Provides the (breathing) respiratory rate

Device Respiratory rate (0-60 ppm

of a patient peaks/min) Is
Measure the pressure of the blood in the  systolic =~ &  diastolic  pressure 5
arteries when heart beats. (0-300 mm Hg) s
A device used to determine the amount . .
of glucose in the blood. Glucose in Blood (10-150 mg/dL) 10 min
Measures the temperature of the body Temperature (0-120 F) 10 min
Measures the electric potential produced Muscle rate (0-60 cpm) 5 mi
by the body muscles (contractions/min) min
Measures the electrical conductance Conductance (0-20 uS) (micro Semens) 5 mi
min

of skin.

In our scenario, we used an IoT-based ICU with a capacity of 2 beds where each
bed is equipped with nine patient monitoring devices (sensors) and one control unit.
We called it as Bedx-Control-Unit where x depicts each bed’s number, i.e., Bed1 to Bed2.
The Bedx-Control-Unit is responsible for taking specific actions like setting the time profile,
the quantity of the dose given to the patient via an infusion pump, or generating the
emergency alarm based upon the physical condition of the patient as observed by the
patient monitoring devices.

Similarly, we added another control unit for environment monitoring devices and
called it as Environment-Control-Unit. The Environment-Control-Unit is responsible for
controlling the ICU environment conditions like keeping specific temperature, humidity
level, detect smoke, and generating an emergency alarm in case of emergency conditions
to maintain the required ICU environment. In our use case, both the patient monitoring
and environment monitoring devices are MQTT-based devices. The MQTT protocol is
connection-oriented and ensures that the packet is transmitted properly. Figure 4 illustrates
the overall IoT-based ICU use case.
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3.2. IoT Traffic Generation

We divided the testbed infrastructure into two networks to develop an extensive
dataset, i.e., esteemed network and Invader network. The esteemed network is a standard
IoT-based ICU network where the MQTT broker is deployed and multiple MQTT devices
transmitting and receiving the data. The invader network is an attacking network that
contains the attacking entities capable of originating the different types of attacks on
targeted devices or servers.

3.2.1. Normal Traffic Generation

We first designed an IoT-esteemed network for the dataset generation using the IoT-
Flock [16,24] tool, which contains both patient and environment monitoring MQTT devices
sending and receiving the network’s data under normal conditions. We created a use
case of an IoT-based ICU with the capacity of 2 beds, where each bed is equipped with
nine patient monitoring devices (i.e., sensors) and one control unit called as Bedx-Control-
Unit. All these devices were created using the IoT-Flock [16,24] tool, which was running
on a Linux machine. For each device, a virtual network interface was created by the
IoT-Flock [16,24] tool on a single physical machine through which these devices were
communicating. Moreover, the MQTT broker and the COAP server were running on a
separate machine.

3.2.2. Attack Generation

After the normal network started generating the IoT traffic, we created an invader
network. The invader network includes ten attacking devices that are generating four
types of attacks, including an MQTT distributed denial-of-service, MQTT publish flood,
brute force, and SIowITE [37] attack. The following sections describe the types of attack
that IoT-Flock [16,24] supports.

e  MQTT Publish Flood—DDoS attack can exhaust network bandwidth and victim
system resources. Because of better mitigation techniques at the network and transport
layer, DDoS attackers have now moved up the stack and are targeting application
layer [38]. IoT devices follow the periodic or event-driven model for sending data
using application layer protocols. The periodic model device sends data after every x
interval, e.g., temperature sensor sends temperature data after every five seconds to
the server. However, in event-driven model devices, it sends data when some event
occurs, e.g., a motion sensor in the ICU can only send data to the server when it detects
motion in the ICU. According to the authors of [39], MQTT publishing messages at
high rate can cause a denial of service attack. Such attacks delay data transmission
and are very harmful, specifically at industrial or other high levels like smart hospitals,
smart transport systems, among others. The delay in data transmission can demolish
these assets and be very harmful to human life.

¢  MOQTT Authentication Bypass Attack [40]—To connect to the MQTT broker, which
requires authentication, MQTT clients send MQTT to connect requests consists of
username and password fields. It was discovered that MQTT authentication could be
bypassed by eliminating the password field from the MQTT packet by only providing
an existing username. Although this attack has been handled in the latest MQTT
brokers, still an MQTT broker has to process this wrong packet, which can cause a
delay in MQTT broker operations if sent in a large amount. Therefore, if the IPS blocks
such an invalid packet, then the MQTT broker’s delaying issue can be prevented.

e  MOQTT Packet Crafting Attack [41]—In this attack, MQTT packets are specially
crafted to crash an application. The attacker established a connection with the MQTT
broker at the Transport layer and published it at the beginning instead of sending a
connection request to the MQTT broker.

e COAP Replay Attack—In this attack, an intruder initially scans the network to get
COAP client and server addresses and payload information. Then, the intruder
changes the payload with incorrect data and sends it to the COAP server with spoofed
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COAP client IP. This attack’s severity can be seen in paper use cases where environ-
ment sensors use COAP protocols to transmit the surrounding data to the COAP
server. For example, the temperature sensor is sending ICU temperature change, and,
based on that value, the condition is set. If an attacker uses spoof IP, send an ICU
temperature with some abnormal value and cause vulnerable and drastic damage in
the ICU. An example of COAP replay attack is shown in Figure 5.

COAP | pyt LIGHT ON &
CLIENT | = COAP
SERVER

PUT LIGHT OFF

SPOOF IP
ATTACKER

Figure 5. Constrained Application Protocol (COAP) replay attack.

3.3. IoT Traffic Capturing

After the invader network and the esteemed network devices are created and started
transmitting and receiving the data, the next step is to capture the packet flows and
packets and payload. We used Wireshark [42] for capturing the packets. Wireshark [42]
is a world-renowned and open-source network analysis tool that is used to capture the
real-time packets and let you filter and inspect them. While capturing the packet flows,
we developed a python utility to trace out the packet flows to extract the application layer
features from the .pcap files.

Most of the cyber-attacks are application-layer attacks in the current era [43]. The tra-
ditional publicly available datasets consist of network and transport layer traffic details.
Distributed Denial of Service (DDoS) attack at network and transport layer was known
issue in the traditional network domain and researchers have contributed greatly to its
defense [44].

According to Imperva Incapsula’s Global DDoS Threat Landscape 2017 Report [38],
there has been a decrease in network layer attacks and an increase in application-layer
attacks. Similarly, Kaspersky [45] reported that “the cream of cyber-criminal communities
are now focusing on application layer DDoS attacks”. The protection against DDoS attacks
in traditional application layer protocols like HTTP is under research [44]. However, there
is no significant effort to defend IoT application layer protocols (COAP, MQTT) against
DDoS attacks. The main reason behind the lack of attention is IoT datasets” unavailability
of IoT application layer attack traffic. To this aim, we developed a python utility to extract
network and application layer features of IoT Traffic.

3.4. 10T Dataset Creation

We developed a python utility [46] that processes the pcap files and extracts features
using the tshark library to extract the network and application layer features of IoT Traffic.
We extracted network and application layer features from each generated pcap file and
saved it into CSV with relevant traffic labels in this work. The features used are network
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layer features, application layer protocol-based features, and payload features, along with
their description.

3.5. ML Model Development

The ML model development module consists of three major steps: dataset preprocess-
ing, feature selection, ML models training, and testing. These steps are described in the
subsequent sections.

3.5.1. Dataset Pre-Processing

The dataset created after capturing the traffic was in the form of pcap files. To pre-
process and analyze the created dataset, we converted the pcap files into CSV files using
a python script. Furthermore, we substituted the categorical features of the dataset like
protocol type (e.g., MQTT and COAP) with numerical values using Label Encoder to ease
further processing. Finally, we authenticated the dataset to check the missing values. We
found some missing values in the dataset and replaced them with 0. Afterward, the dataset
was randomly split into train and test with a split ratio of 70:30, i.e., 70% of the dataset was
randomly selected for training while 30% for testing.

3.5.2. Features Selection

Feature selection plays a significant role in the performance of a machine learning
model. After preprocessing the data, we applied a Logistic Regression (LR) algorithm due
to its efficient implementation in the existing literature [3,18]. Using the LR algorithm,
we selected the ten most significant features to train and test the machine learning mod-
els: ["frame.time_delta’, "tcp.time_delta’, "tcp.flags.ack’, ‘tcp.flags.push’, “tcp.flags.reset’,
‘mqtt.hdrflags’, ‘'mqtt.msgtype’, ‘mqtt.qos’, ‘mqtt.retain’, ‘mqtt.ver’]. The details of these
features are given in [37].

3.5.3. ML Models Training and Testing

When the data are processed and the features are selected, the next step is to train the
machine learning model. Before training the machine learning models, we split the data
into training and testing sets. For this purpose, we randomly split into train and test with a
split ratio of 70:30, i.e., 70% of the dataset was randomly selected for training while 30% for
testing. Afterward, we train six commonly used machine learning classifiers for malicious
traffic detection in IoT healthcare environments using the training dataset. These six widely
used machine learning classifiers include Naive Bayes (NB), K-Nearest Neighbors (KNN),
Random Forest (RF), Adaboost (AB), Logistic Regression (LogR), and Decision Tree (DT)
classifier. Finally, we test the trained models over the test set to evaluate each classifier’s
performance to detect malicious traffic detection in IoT healthcare environments.

4. Results and Discussion

The machine learning classifiers’ performance is evaluated based on the four com-
monly used performance parameters: precision, recall, accuracy, and Fl-score. These
parameters are defined as follows.

Precision: is defined as the system’s ability to correctly detect the attack upon the
occurrence of the security breach. It describes the ratio between the correctly predicted
attacks (i.e., TP) and the actual results (i.e., TP + FP). Mathematically, it is described in
Equation (1):

TP
TP + FP

Recall: defines the ability of the system to correctly detect the botnet attack upon the
occurrence of the attack in the network. Mathematically, it is expressed in Equation (2):

Precision = x 100 1

™™

Recall == m

x 100 ()
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Accuracy: is defined as the ability of the system to correctly classify the attack packet
as an “attack packet” and normal packet as a “normal packet”. It decribes the ratio of correct
predictions with respect to all samples. Mathematically, it is expressed in Equation (3):

Accuracy = TP+ TN
Y= TP+ EN+ 1IN + FP

x 100 3)

F1-score: is the harmonic mean of precision and recall. It describes the ratio of correct
predictions in test set for both normal and attack traffic. Mathematically, it is expressed in
Equation (4):

Precision * Recall

F1- =2 4
score % Precision + Recall @)

We need the confusion matrix of each machine learning classifier to calculate the perfor-
mance mentioned above parameters. Further, we also need to define the following terms:

*  True Positive (TP) : The ML model truly predicted the attack flow as an attack.

¢  True Negative (TN) : The ML model truly predicted the normal flow as normal.

*  False Positive (FP) : The ML model wrongly predicted the normal flow as an attack.
¢  False Negative (FN) : The ML model wrongly predicted the attack flow as normal.

Tables 3-8 show the confusion matrices of each individual ML classifier, obtained for
malicious traffic detection over IoT healthcare test dataset generated using IoT-Flock [16,24].
Based on these confusion matrices, we evaluated each ML classifier’s performance using the
above parameters’ performance. Finally, in Table 9, we enlisted the performance evaluation
results of ML classifiers test for both the normal and malicious traffic detection over test-set
extracted from the IoT healthcare dataset that we generated using IoT-Flock [16,24].

Table 3. Confusion matrix of Naive Bayes (NB) classifier test for malicious and normal traffic
detection over IoT healthcare dataset generated using IoT-Flock [16,24].

NB Classifier Predicted
Normal Attack
Actual Normal 32,583 37
Attack 11,471 12,518

Table 4. Confusion matrix of K-Nearest Neighbors (KNN) classifier test for malicious and normal
traffic detection over IoT healthcare dataset generated using IoT-Flock [16,24].

KNN Classifier Predicted
Normal Attack
Actual Normal 32,545 75
ctua Attack 123 23,866

Table 5. Confusion matrix of Random Forest (RF) classifier test for malicious and normal traffic
detection over IoT healthcare dataset generated using IoT-Flock [16,24].

RF Classifier Predicted
Normal Attack
Actual Normal 32,571 49

Attack 117 23,872
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Table 6. Confusion Matrix of Adaboost (AB) Classifier Test for malicious and normal traffic detection
over IoT healthcare dataset generated using IoT-Flock [16,24].

AB Classifier Predicted
Normal Attack
Actual Normal 32,487 133
ctua Attack 119 23,870

Table 7. Confusion matrix of Logistic Regression (LogR) Classifier test for malicious and normal
traffic detection over IoT healthcare dataset generated using IoT-Flock [16,24].

LogR Classifier Predicted
Normal Attack
Actual Normal 30,071 2549
¢ Attack 119 23,870

Table 8. Confusion matrix of Decision Tree (DT) classifier test for malicious and normal traffic
detection over IoT healthcare dataset generated using IoT-Flock [16,24].

DT Classifier Predicted
Normal Attack
Actual Normal 32,572 48
ctua Attack 125 23,864

Table 9. Performance evaluation of six commonly used machine learning classifiers test for malicious
and normal traffic detection over IoT healthcare dataset generated using IoT-Flock [16,24].

ML Classifier Precision Recall Accuracy F1-score
NB 79.6711 99.7053 52.1823 68.5092
KNN 99.6502 99.6867 99.4873 99.5869
RF 99.7068 99.7952 99.5123 99.6535
AB 99.5548 99.4459 99.5039 99.4749
LogR 95.287 90.3516 99.5039 94.7072
DT 99.6944 99.7993 99.4789 99.6388

Figure 6 illustrates the performance comparison of all six ML classifiers for detecting
the normal and malicious traffic in the IoT healthcare environment. It can be observed
that among the six ML classifiers, the RF classifier outperformed all other classifiers with
99.7068% precision, 99.7952% recall, 99.5123% accuracy, and 99.6535% F1-score.

Besides the above-discussed performance matrices, we also evaluated the perfor-
mance of all the six ML classifiers by visualizing the area under the receiver operating
characteristics (ROC) curve. The ROC curve is created by plotting the true positive rate
(TPR) on the y-axis and false positive rate (FPR) on the x-axis at different threshold values.

*  The TPR s a ratio between the correctly predicted attacks (i.e., TP) and all the actual
attack samples (i.e., TP + FN). Mathematically, it is written as Equation (5):

True Positive Rate (TPR) = % 100 (5)

TP + FN
e  The FPRis defined as the ratio between wrong attack detection (i.e., FP) and all the
normal samples (i.e., FP + TN). Mathematically, it is described in Equation (6):

False Positive Rate (FPR) = x 100 (6)

FP + TN
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Figure 6. Performance comparison of six commonly used machine learning classifiers for malicious
traffic detection over IoT healthcare dataset.

Figure 7 shows the ROC curves of all six ML classifiers used for detecting the malicious
traffic in IoT ICU use case. The area under the ROC curve is also mentioned in Figure 7,
by which one can easily analyze the performance of each classifier for efficiently detecting
the malicious attacks. As can be observed in Figure 7, the AUC for the RF, AB, and DT
classifier, is 1, which means that these three classifiers are much efficient in truly detecting
attacker attempts in the IoT ICU use case as compared to the other ML classifiers.
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Figure 7. ROC curves and Area Under the ROC Curve (AUC) of six commonly used machine learning
classifiers for detecting the malicious in IoT ICU use case.
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The experiments demonstrate how the proposed framework can detect cyber-attacks
to secure and protect the IoT healthcare environment from cyber-attacks. By following
the proposed framework’s key steps as illustrated in Figure 1, one can quickly develop
Al-based security solutions for any other IoT use case. Furthermore, the experimental
results and dataset generated are also helpful for developing context-aware IoT security
solutions, especially for the IoT healthcare environment. The dataset generated in the
current study can be shared with the other researchers for further experimentation based
on their request.

5. Conclusions

7

The rapid advancement of IoT technology has focused researchers’ and technologists
attention on the design of IoT healthcare systems. Many IoT healthcare systems have been
proposed in recent years, but these systems endure the security backdoor. IoT healthcare
systems’ security is crucial as any security breach or cyber-attack in such systems may cause
a rigorous effect on human life and even may cause death in some instances. Therefore,
in this work, we proposed a framework for developing IoT context-aware security solutions
to detect malicious traffic in IoT healthcare environments. The proposed framework is
composed of an IoT traffic generator tool in which an IoT-based ICU use case is created
to generate standard and malicious traffic. The generated traffic is then converted into a
dataset by extracting the features using a python script. Afterwards, we trained and test six
commonly used machine learning (ML) classifiers over the generated dataset for malicious
and traditional traffic detection in the IoT healthcare environment. Finally, we test and
analyzed the performance of each trained ML classifier. Among the six ML classifiers,
the Random Forest classifier performed the best with 99.7068% precision, 99.7952% recall,
99.5123% accuracy, and 99.6535% F1-score. The experimental results demonstrate the
effectiveness of the proposed framework for developing efficient IoT context-aware security
solutions. Moreover, the proposed framework and generated dataset are helpful for the
researchers to pursue the proposed method for developing more robust context-aware
security solutions, especially for IoT healthcare environments. Furthermore, with the
proposed framework’s help, the researchers can quickly generate the traffic of other IoT
use cases in order to develop Al-based security solutions for other IoT use cases.
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