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Abstract: Structural damage identification technology is of great significance to improve the reliabil-
ity and safety of civil structures and has attracted much attention in the study of structural health
monitoring. In this paper, a novel structural damage identification method based on transmissibility
in the time domain is proposed. The method takes the discrepancy of transmissibility of structure
response in the time domain before and after damage as the basis of finite element model updating.
The damage is located and quantified through iteration by minimizing the difference between the
measurements at gauge locations and the reconstruction response extrapolated by the finite element
model. Taking advantage of the response reconstruction method based on empirical mode decomposi-
tion, damage information can be obtained in the absence of prior knowledge on excitation. Moreover,
this method directly collects time-domain data for identification without modal identification and
frequent time–frequency conversion, which can greatly improve efficiency on the premise of ensuring
accuracy. A numerical example is used to demonstrate the overall damage identification method, and
the study of measurement noise shows that the method has strong robustness. Finally, the present
work investigates the method through a simply supported overhanging beam. The experiments
collect the vibration strain signals of the beam via resistance strain gauges. The comparison between
identification results and theoretical values shows the effectiveness and accuracy of the method.

Keywords: damage identification; transmissibility; time domain; finite element model updating;
sensitivity

1. Introduction

Civil structures are faced with structural aging, adverse environmental impacts and
other problems during operation, which will affect the safety and durability of the structure.
Structural health monitoring has received attention [1–3]. Due to the complex form and
large scale of civil structures, local damage is difficult to directly observe in daily operation
processes. The initial damage may destroy the performance of the entire component; fur-
thermore, some security incidents may occur. Therefore, regular inspection and condition
assessment of an engineering structure are necessary so that early detection of any defect
can be made and the safety and reliability of the structure can be determined.

Most existing damage identification methods rely on sensor systems [4,5]. The vibra-
tion information collected by the sensor is used to calculate the inverse problem to obtain
the change in the structures to detect the damage. In terms of the algorithms used, damage
identification methods can be classified into two types. One is data-driven methods, which
typically fit data analysis models to the measured response data and then extract features
sensitive to variations caused by damage and insensitive to operational and environmental
variations, such as partial autoregressive models and their variants [6–9] and partial meth-
ods based on machine learning [10–13]. Although these methods do not require structural
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finite element (FE) models, it is difficult to accurately locate damage and provide limited
information about damage severity based only on response data.

Another type of damage identification method is based on the structural model, which
has been widely used due to its capacity to not only locate damage but also quantify the
extent of damage. As a kind of model-based method, methods based on modal param-
eters [14–23] are very popular. Cui et al. [24] identified the strain modal parameters of
structures under ambient excitation by combining the natural excitation technique based
on the strain response with the eigensystem realization algorithm and then identified the
damage through the detection index. Cancelli et al. [25] used stochastic subspace iden-
tification data to reconstruct the reduced-order stiffness matrix and locate and quantify
the damage by a particle swarm optimization algorithm. Ghahremani et al. used blind
source separation–sparse component analysis and frequency domain decomposition to
calculate the modal information and detected the damage location and severity by solving
a linear regression problem. However, the modal identification required by these methods
relies on the accurate measurement response, and the complexity of the process of modal
identification greatly affects the efficiency of damage identification. In this regard, damage
identification based on FE model updating is a very effective method. Its core problem
is to build a comparative data set to detect the damage. Some researchers have proposed
methods combined with response reconstruction that avoid modal identification and have
any analytic or numerical model of the structure. Zhang et al. [26] proposed a multilevel
damage identification method, which used response reconstruction based on the Kalman
filter to supplement the response data and improve the accuracy of damage identification.
This method requires excitation information, which is very limited in practical applications.
Pan and Yu [27] proposed a sparse-regularization-based method for detecting structural
damage using structural responses caused by unknown moving forces. The measured
responses are used as inputs to estimate the reconstructed responses with the help of the
transmissibility matrix, which is applied to establish the minimization problem. However,
these methods are carried out in the frequency domain, which requires considerable time–
frequency conversion in the identification process and increases the calculation time and
cost. Thus, this study aims to propose a damage identification method based on response
reconstruction with more efficiency.

In contrast with frequency-domain reconstruction methods, time-domain methods
directly solve the modal characteristics and establish transmissibility. The structural re-
sponse reconstruction method based on empirical mode decomposition (EMD) in the time
domain [28–30] has proven to be a very efficient method in terms of computational cost and
is very suitable for various dynamic response reconstructions based on the different types
of sensor measurements. This method does not need to take time–frequency conversion for
the response signal. To the best of the authors’ knowledge, the transmissibility of response
in the time domain has not been applied to damage identification in the literature before. If
the structural parameters are changed due to structural damage, the response calculated by
the original transmissibility is bound to be different from the real response, which can be
used to detect the structural damage combined with FE model updating [31,32].

In this paper, combined with response reconstruction based on EMD, a kind of damage
identification method based on transmissibility in the time domain is proposed. The method
takes the discrepancy of transmissibility of the structure response in the time domain before
and after damage as the basis of FE model updating, and then the damage location and
damage degree are obtained through iteration. The solution process of the discrepancy
vector and sensitivity matrix for FE model updating is given in this paper. The method
does not need to obtain excitation information, which reduces the cost and improves the
applicability in civil structures. In addition, the identification is carried out in the time
domain without modal identification and frequent time–frequency conversion, which can
greatly improve efficiency on the premise of ensuring accuracy. The overall method is
demonstrated through a numerical example, and the effect of measurement noise is further
studied. Then, the proposed method is experimentally investigated on a simply supported
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overhanging beam. The beam is excited with an impulse hammer, and its vibration signals
are captured by resistance strain gauges bonded to the upper surface of the beam.

The paper is organized as follows: In Section 2, the basic principle of transmissibility
of structural response in the time domain is briefly introduced. In Section 3, the detailed
solution process of FE model updating based on transmissibility in the time domain is
presented. In Section 4, through the multiple damage scenarios of a simply supported
overhanging beam model, the correctness and effectiveness of the proposed method are
verified, and the influence of different levels of measurement noise on the identification
results is studied. In Section 5, the experimental beam corresponding to the simulation is
used to prove the feasibility of the method. The conclusions are discussed in Section 6.

2. Transmissibility of Strain in Time Domain Based on Empirical Mode Decomposition

The difference between the measured dynamic response and the reconstruction re-
sponse extrapolated by the FE model can be subject to structural damage identification
due to the change in transmissibility before and after damage. The response in the domain
measured by the sensors can be decomposed by using the method of empirical mode
decomposition (EMD) with intermittent criteria [28,29]. The strain response vector can be
expressed as:

ε = Ψq =
p

∑
i=1
ηi (1)

where Ψ is the strain modal matrix; q is the modal coordinate vector; ηi is the i-th single-
frequency modal response of ε; and p is the selected mode. Ψ can be obtained by transfor-
mation of the mode shape matrix Φ. The mode shape of the structure can be obtained by
solving the eigenvalue problem:

(K−ΛM)Φ = 0 (2)

where K and M are global stiffness (mass) matrices of the structure; Λ is a diagonal matrix,
whose diagonal elements are all the square values of the natural vibration frequencies of
the structure. Under the premise of small deformation, the strain mode in the element can
be calculated as follows:

Ψ(l) = B(l) ·Φ(l) (3)

in which B(l) is the strain-displacement matrix of the l-th element, which can be calculated
by the differential operator and the shape function matrix of the l-th element. Φ(l) contains
the displacement mode shape index of the l-th element. Based on the modal analysis, the
relationship between the modal responses of the two locations in the structure is as follows:

ψaj/ψbj = ηaj/ηbj (4)

in which subscripts a and b denote the degree of freedom (DOF) index of the strain mode
and subscript j denotes the mode. All modal responses are set as matrices with dimensions
(1 × Nt), and Nt denotes the number of time points of the collected response. The modal
response at location b can be expressed by the modal response at location a as:

ηr
(a,b)j = η

m
aj

ψaj

ψbj
(5)

where ψaj/ψbj is called the transmissibility of the response from location a to location b.
The subscript (a,b)j means that the j-th modal response at location a is used to reconstruct
the j-th modal response at location b. The superscripts r and m denote the reconstructed
and measured values, respectively. It should be noted that the calculation of the response
here only operates on the same mode response.
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3. Finite Element Model Updating Based on Modal Response Transmissibility
3.1. Establishment of Objective Function

The rationale underlying FE model updating for damage identification is to seek
the relevant parameters corresponding to the damage state by minimizing the difference
between the measured data of the actual structure and the analysis data of the FE model
during the optimization process so that the damage can be located and quantified. Con-
sidering the change of structural characteristics caused by damage, the objective function
of damage identification is regarded as the problem of minimizing the discrepancy of
reconstruction responses before and after structural damage:

J(α) = ‖W(ηr
d − η

r
f (α))‖

2
2

(6)

where ηr
d,ηr

f (α) ∈ <
Nr·Nt×1 are the modal response vectors derived from the transmissibil-

ity of the damaged structure and the FE model, respectively; α ∈ <n is the damage factor
vector; Nr and n are the number of transmissibilities and the number of damage parameters
involved in damage identification, respectively; W is a diagonal weighting matrix whose
diagonal value can be set as the reciprocal of the variance of the structural modal response;
and ‖ · ‖ denotes the Frobenius norm. Modal response data of the corresponding mode
of two locations are used in each calculation. Equation (6) is the nonlinear function of
damage factor α, and the gradient descent optimization method is usually used to solve
the minimization, such as the Gauss–Newton iteration method:

Sk
α∆αk+1 = ∆ηr,k (7)

in which Sk
α = ∂ηr,k(αk)/∂αk is the sensitivity matrix of the derived value to the damage

factor in the k-th iteration; ∆αk+1 is the damage factor increment obtained in the k-th
iteration; and ∆ηr,k = ηr

d − η
r,k
f (αk) is the discrepancy vector of the modal response

calculated from the transmissibility of the damaged structure and the undamaged FE
model in the initial state. αk = ∑k

i=1 ∆αi is the cumulative damage factor.

3.2. Establishment of Discrepancy Vectors

The discrepancy vector ∆ηr,k in Equation (7) can be assembled according to rows as:

∆ηr,k= [(∆ηr,k
1 )T · · · (∆ηr,k

i )
T
· · · (∆ηr,k

Nr)
T
]T

∆ηr,k
i = [∆ηr,k

i (t1) ∆ηr,k
i (t2) · · ·∆ηr,k

i (tNt)]
T

(8)

A certain component ∆ηr,k
i of the discrepancy vector can be calculated by the following

equation:
∆ηr,k

i = ηr
d,i − η

r,k
f ,i(α

k) (9)

where subscript f of ηr,k
f ,i(α

k) denotes the modal response calculated from the strain mode
of the FE model; subscript i = 1, 2, . . . , Nr denotes the modal response component corre-
sponding to the i-th transmissibility in the difference vector; and subscript d of ηr

d,i denotes
the modal response derived from the strain mode of the damaged structure. In general,
the strain mode of the damaged structure is unknown. To calculate ∆ηr,k

i , the component
∆ηr,k

(a,b)j in ∆ηr,k is taken as an example. The measured value ηm
bj of the modal response at

location b is used to approximately substitute for the calculated value of the modal response
in damage. ∆ηr,k

(a,b)j can be expressed as:

∆ηr,k
(a,b)j = η

r
d,(a,b)j − η

r,k
f ,(a,b)j(α

k) = ηm
bj − η

m
aj

ψ
f
bj

ψ
f
aj

(10)
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The superscript f of ψ
f
aj and ψ

f
bj denotes that the strain mode is obtained by solving

the FE model. FE model updating seeks the optimal solution by minimizing the difference
between the FE model and the damage model. To quantify model differences to control
cycles, the relative error (RE) that reflects the extent to which the reconstructed response
deviates from the measured response is defined as

RE =

Nr×Nt
∑

i=1
(ηr,k

f ,(a,b)j(i)− η
m
bj(i))

2

n
∑

t=1
(ηm

bj(i))
2

(11)

Convergence is considered to be achieved when the criterion RE ≤ tol is met, where
tol denotes the tolerance value that is set equal to 1.0 × 10−6 in this study.

3.3. Establishment of Sensitivity Matrix

In Equation (7), Sk
α is obtained by row assembly of the sensitivity matrices correspond-

ing to each transmissibility:

Sk
α = [(Sk

α,1)
T · · · (Sk

α,i)
T · · · (Sk

α,Nr)
T
]
T

(12)

The component Sk
α,(a,b)j corresponding to component ∆ηr,k

(a,b)j in ∆ηr,k can be specifi-
cally expressed as:

Sk
α,(a,b)j = ∂ηr,k

(a,b)j(α
k)/∂αk =

∂ηr,k
(a,b)j

(
αk

1

)
∂αk

1
· · ·

∂ηr,k
(a,b)j

(
αk

l

)
∂αk

l
· · ·

∂ηr,k
(a,b)j

(
αk

n

)
∂αk

n

 (13)

where l = 1, 2, . . . , n denotes the damage factor order involved in identification. Accord-
ing to Equation (9), the component ∂ηr,k

(a,b)j(α
k
l )/∂αk

l in Equation (13) can be calculated
as follows:

∂ηr,k
(a,b)j

(
αk

l

)
∂αk

l
= ηm

aj

ψ
f
bj

∂ψ
f
aj

∂αk
l
− ψ

f
aj

∂ψ
f
bj

∂αk
l

(ψ
f
aj)

2 = ηm
aj

ψ
f
bj

∂(B(ka)
a Φ f ,(ka))

∂αk
l

− ψ
f
aj

∂(B(kb)
b Φ f ,(kb))

∂αk
l

(ψ
f
aj)

2 (14)

where ka and kb denote the element order to which the measured locations a and b belong,
respectively (locations a and b can belong to the same element). B(ka) and B(kb) are the strain-
displacement matrices corresponding to the elements to which the measured locations
a and b belong. For a certain location in the structure, the strain-displacement matrix is
a constant matrix. Φ f ,(ka) and Φ f ,(kb) are the j-th mode shape vectors contained in the
elements to which locations a and b belong, which are solved by the FE model method.

It is necessary to solve the derivative of the mode shape corresponding to the damage
factor at first. The derivative of the j-th mode shape index ϕij corresponding to the i-
DOF of the structure corresponding to the damage factor can be solved by the iterative
method [33,34]:

∂ϕij

∂αk
l
=

q

∑
s=1

gsj ϕis (15)

in which q means that the first q mode is selected to iteratively solve the mode shape
sensitivity. In Equation (15), the solution is as follows:

gsj =


1

λj−λs
ϕT

s (
∂K
∂αk

l
− ∂λs

∂αk
l
M− λs

∂M
∂αk

l
)ϕj, (j 6= s)

− 1
2ϕ

T
j

∂M
∂αk

l
ϕj, (j = s)

(16)
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where λj and λs are the j(s)-th eigenvalues of the structure, which are numerically equal
to the square of the natural vibration frequency of the structure. ϕj and ϕr represent the
j(s)-th eigenvectors obtained by solving the characteristic problem, that is, the j-th mode
shapes of the structure. The derivative of λs corresponding to the damage factor is solved
as follows:

∂λs

∂αk
l
= ϕT

s (
∂K
∂αk

l
− λs

∂M
∂αk

l
)ϕs (17)

There is a linear relationship between the strain mode and element mode shape. Thus,
the sensitivity matrix for each iteration can be calculated by Equation (14).

The proposed damage identification method based on the FE model obtains accurate
results by comparing the measured signal with the reconstructed signal. Therefore, the fast
and accurate acquisition of reconstructed signals is the main source affecting the calculation
accuracy and efficiency. In this paper, a damage identification method based on more
efficient response reconstruction is proposed, which can greatly improve the efficiency on
the premise of ensuring accuracy.

4. Numerical Example
4.1. The Model of Simply Supported Overhanging Beam

The simulation case of a simply supported overhanging beam (2.25 m × 3 cm × 1 cm)
is studied to illustrate the effectiveness of the proposed method. The numerical model for
identification is established in MATLAB 2020b, which consists of 16 nodes and 15 0.15 cm
length elements. It is assumed that the strain gauges measuring strain responses are set
at the top center of each element, as shown in Figure 1. The damping effect is simulated
by 1% modal damping. The integral time step is 1/1000 s, and the duration is 30 s. The
strain response was collected at the top surface in the middle of each element. The dynamic
response recorded by the sensor is calculated using a first-order hold (FOH) state space.
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Figure 1. The model of simply supported overhanging beam.

4.2. Damage Scenario Simulation

In this case, structural damage is achieved by reducing the element stiffness and mass.
It is assumed that the stiffness and mass matrix are linearly dependent on the damage
factor α and can be expressed as:

K(α) = Ku +
n
∑

l=1
αk

l Kl , (−1 ≤ αk
l ≤ 0)

M(α) = Mu +
n
∑

l=1
αm

l Ml , (−1 ≤ αm
l ≤ 0)

(18)

where Ku and Mu are the global stiffness (mass) matrix of the undamaged structure; Kl and
Ml are the contributions of the l-th element to the global stiffness (mass) matrix; and αk

l and
αm

l are the equivalent stiffness (mass) damage factors of the l-th element. The equivalent
damage equates the local section loss, material degradation and other factors to the stiffness
(mass) reduction of the whole element, making the dynamic response characteristics of the
FE model as close as possible to the damaged structure.

In this study, the damage is simulated by uniformly reducing the width of the rect-
angular section in a certain length of the beam segment in Element 3 and Element 8, as
shown in Figure 2. Damage scenarios are shown in Table 1. The specific value of equivalent
damage cannot be determined directly in the beam model. The damage identification
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method based on strain mode [24,35] is used to reverse calculate the damage. The stain
mode of 15 elements before and after damage is used for damage identification. To obtain
accurate equivalent damage, only the preset damaged elements are identified, not the other
elements. The calculation results of equivalent damage are shown in Table 2. The results
serve as a reference for the damage identification described below.
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Figure 2. The schematic diagram of damages.

Table 1. Damage scenarios.

Damage Scenario Damage Description

Scenario 1 Section loss of Element 3
Scenario 2 Section loss of Element 8
Scenario 3 Section loss of Element 3 and Element 8

Table 2. Calculation results of equivalent damage.

Calculated Method Scenario 1 Scenario 2 Scenario 3

Element number 3 8 3 8
Calculated value −0.0926 −0.0771 −0.0920 −0.0771

4.3. Damage Identification Based on Transmissibility in Time Domain

Damage identification is carried out under transient excitation and stochastic exci-
tation, respectively. The transient excitation is applied to the vertical DOF of Node 8, as
shown in Figure 3a. The stochastic excitation is simulated by the white noise filtered by a
sixth-order low-pass Butterworth filter and applied to the vertical degrees of freedom of
multiple nodes, as shown in Figure 3b. The first modal responses are extracted from the
strain data, and one second process is truncated for damage identification. Then the dam-
age is identified by the adaptive Tikhonov regularization method [36]. The identification
results are shown in Figures 4 and 5, where all damages are successfully identified, and the
detected damage factors of undamaged elements are close to zero.

4.4. Influence of Noise on Damage Identification

Noise inevitably exists in the measurement of structural response signals. In this study,
a normal random process with zero mean value and unit standard deviation was added to
the strain signal under transient excitation as:

εnoi = εcal + Epvar(εcal)Noise (19)

where εnoi is the strain response vector after adding noise; εcal is the calculated strain
response vector; Ep is the noise level; var(·) denotes the standard deviation of the time
history of vector εcal ; and Noise is a normal random process with zero mean and unit
standard deviation. Considering the randomness of noise, when studying the influence
of noise on damage identification, 1000 control groups are set for all damage scenarios.
Measurement noise levels of 5%, 10% and 15% are added to the strain of each control
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group. Because the adaptive Tikhonov regularization limits the identified results to less
than 0, it is considered that the identification values of all damage factors in the control
groups conform to the gamma distribution. Finally, the 95% confidence intervals of the
identification results under different noise levels and damage scenarios are calculated,
which are shown in Figures 6–8.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20 
 

 

multiple nodes, as shown in Figure 3b. The first modal responses are extracted from the 
strain data, and one second process is truncated for damage identification. Then the dam-
age is identified by the adaptive Tikhonov regularization method [36]. The identification 
results are shown in Figures 4 and 5, where all damages are successfully identified, and 
the detected damage factors of undamaged elements are close to zero. 

Transient excitation

 
(a) 

Stochastic excitation

 
(b) 

Figure 3. Schematic diagram of excitation applied on the beam: (a) transient excitation; (b) stochastic 
excitation. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(b) 

Figure 3. Schematic diagram of excitation applied on the beam: (a) transient excitation; (b) stochastic
excitation.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20 
 

 

multiple nodes, as shown in Figure 3b. The first modal responses are extracted from the 
strain data, and one second process is truncated for damage identification. Then the dam-
age is identified by the adaptive Tikhonov regularization method [36]. The identification 
results are shown in Figures 4 and 5, where all damages are successfully identified, and 
the detected damage factors of undamaged elements are close to zero. 

Transient excitation

 
(a) 

Stochastic excitation

 
(b) 

Figure 3. Schematic diagram of excitation applied on the beam: (a) transient excitation; (b) stochastic 
excitation. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(b) 

Figure 4. Cont.



Sensors 2022, 22, 393 9 of 19

Sensors 2022, 22, x FOR PEER REVIEW 9 of 20 
 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(c) 

Figure 4. Damage identification results under transient excitation: (a) scenario 1; (b) scenario 2; (c) 
scenario 3. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(b) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(c) 

Figure 5. Damage identification results under stochastic excitation: (a) scenario 1; (b) scenario 2; (c) 
scenario 3. 

Figure 4. Damage identification results under transient excitation: (a) scenario 1; (b) scenario 2;
(c) scenario 3.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 20 
 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(c) 

Figure 4. Damage identification results under transient excitation: (a) scenario 1; (b) scenario 2; (c) 
scenario 3. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(b) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  Detected   Expected

D
am

ag
e 

fa
ct

or

Element Number  
(c) 

Figure 5. Damage identification results under stochastic excitation: (a) scenario 1; (b) scenario 2; (c) 
scenario 3. 

Figure 5. Damage identification results under stochastic excitation: (a) scenario 1; (b) scenario 2;
(c) scenario 3.



Sensors 2022, 22, 393 10 of 19

Sensors 2022, 22, x FOR PEER REVIEW 10 of 20 
 

 

4.4. Influence of Noise on Damage Identification 
Noise inevitably exists in the measurement of structural response signals. In this 

study, a normal random process with zero mean value and unit standard deviation was 
added to the strain signal under transient excitation as: 

ε= + var( )noi cal p cal oiseEε ε N  (19)

where noiε  is the strain response vector after adding noise; εcal  is the calculated strain 

response vector; pE  is the noise level; ⋅var( )  denotes the standard deviation of the time 

history of vector εcal ; and oiseN  is a normal random process with zero mean and unit 
standard deviation. Considering the randomness of noise, when studying the influence of 
noise on damage identification, 1000 control groups are set for all damage scenarios. 
Measurement noise levels of 5%, 10% and 15% are added to the strain of each control 
group. Because the adaptive Tikhonov regularization limits the identified results to less 
than 0, it is considered that the identification values of all damage factors in the control 
groups conform to the gamma distribution. Finally, the 95% confidence intervals of the 
identification results under different noise levels and damage scenarios are calculated, 
which are shown in Figures 6–8. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  95% confidence interval  

D
am

ag
e 

fa
ct

or

Element Number  
(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  95% confidence interval  

D
am

ag
e 

fa
ct

or

Element Number  
(b) 

Sensors 2022, 22, x FOR PEER REVIEW 11 of 20 
 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  95% confidence interval  

D
am

ag
e 

fa
ct

or

Element Number  
(c) 

Figure 6. Damage identification results under 5% noise: (a) scenario 1; (b) scenario 2; (c) scenario 3. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  95% confidence interval  

D
am

ag
e 

fa
ct

or

Element Number  
(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  95% confidence interval  

D
am

ag
e 

fa
ct

or

Element Number  
(b) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.12

-0.09

-0.06

-0.03

0.00

0.03  95% confidence interval  

D
am

ag
e 

fa
ct

or

Element Number  
(c) 

Figure 7. Damage identification results under 10% noise: (a) scenario 1; (b) scenario 2; (c) scenario 
3. 

Figure 6. Damage identification results under 5% noise: (a) scenario 1; (b) scenario 2; (c) scenario 3.

In Figure 6, 5% noise causes a fluctuation of approximately 0.007 for the damage factor
identification of the preset damaged element, while the fluctuation range of other elements
is less than 0.003. In Figure 7, 10% noise causes a fluctuation of approximately 0.012 for the
damage factor identification of the preset damaged element, while the fluctuation range of
the remaining elements is less than 0.007. In Figure 8, 15% noise causes the damage factor
identification of the preset damaged element to fluctuate by approximately 0.018, while the
fluctuation range of the remaining elements is less than 0.005. Overall, noise will affect the
performance of the proposed damage identification method to some extent, but even if the
noise level reaches 15%, the identification error is small, and the damaged elements can
still be clearly located. However, the measurement noise in actual engineering is usually
less than 10%. The proposed method has strong robustness to noise.
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5. Experimental Investigation
5.1. Experimental Setup

The same simply supported overhanging beams as in the simulation case are studied
in the laboratory. There are four experimental beams in total including three damaged
beams corresponding to three damage scenarios in the simulation case and one intact beam
for comparison. All beams are made of Q235 steel. The setup in the laboratory is shown in
Figure 9.

The beam is mounted on a fixed hinge support and a sliding hinge support, as shown
in Figure 10a,b, respectively. The fixed hinge support is simulated by two universal joints
and fixed on the steel base. The steel base is cemented and fixed with the test bench to
ensure that only the rotation freedom of the beam around the transverse axis is free at its
location. Based on that, a slide rail is added between the universal joint and the steel base
to simulate the sliding hinge support, which releases the longitudinal DOF of its location.
Damage is generated by cutting equally at both sides of the beam on the element region
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(Figure 10c), and their damage characteristics are the same as those in the simulation case.
The beam is excited with an impulse hammer at Node 6 to simulate the impulse force.
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lar notches; (d) strain gauge; (e) DH8303 dynamic signal test and analysis system.

Resistance strain gauges are employed in this study to obtain strain measurements, as
shown in Figure 10d. They are pasted at the top center of each element. The resistance strain
gauges are of the same type, whose specifications are listed in Table 3. The Wheatstone
1/4 bridge is used to connect each strain gauge to convert the strain responses into an
electrical signal through resistance change. DH8303 dynamic signal test and analysis
system is applied to collect signals, as shown in Figure 10e.
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Table 3. Specifications of the strain gauge.

Properties Value

Type BF350-3AA strain gauge
Resistance (Ω) 349.8 ± 0.1

Sensitivity coefficient 2.1 ± 0.1
Substrate size 7.1 mm × 4.5 mm

Grid size 5.0 mm × 3.0 mm
Grid material Constantan
Limited strain 2.0%

5.2. Accuracy Detection of FE Model

The similarity of vibration characteristics between the FE model and experimental
beam has a significant impact on damage identification. In the experimental beam men-
tioned in the previous section, the strain gauge and connecting line are light, and their
additional stiffness and additional mass are ignored.

For elastic modulus E and density ρ, if they are regarded as uniformly distributed
along the whole beam, they are linear with the stiffness matrix and mass matrix, respec-
tively. In this case, the change in E and ρ is equivalent to the stiffness matrix and mass
matrix being multiplied by a single value, respectively, so that the strain modes calculated
by Equations (2) and (3) remain unchanged, and the damage identification results will not
be affected. Therefore, E and ρ are used as local variables to test whether they are evenly dis-
tributed or whether other error factors exist. The elastic modulus factor αE

l = (Er
l − E f

l )/E f
l

and the density factor α
ρ
l = (ρr

l − ρ
f
l )/ρ

f
l are set, where the subscription l denotes the l-th

element and the superscription r and f denote the real value and the value of the FE model,
respectively. Strain gauges are placed along the whole beam on the intact beam, and the
parameters are obtained according to the damage identification method proposed in this
paper. The results in Figure 11 show that the identified values of the elastic modulus factor
and density factor of each element are very small, and thus it can be considered that they
are evenly distributed along the whole beam, and damage identification can be carried out
directly without model updating.
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Figure 11. Identified results in the intact model.

5.3. Damage Identification

Measured responses from strain gauges on hammer excitation of the beam are used
in the damage identification. Figure 12a,b show the dynamic response at Node 23 in
damage scenario 2 in the time domain and frequency domain, respectively. The sampling
frequency is set to 1 kHz, and the data of 1 s during free vibration are extracted for damage
identification. Accordingly, the passband frequency of the bandpass filter is set to 8 Hz and
11 Hz, and the stopband frequency is set to 6 Hz and 13 Hz.
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Figure 12. Time- and frequency-domain responses at Node 23 in damage scenario 2: (a) response in
time domain; (b) response in frequency domain.

Figure 13 shows the convergence curves of the damage factor and RE in the process
of FE model updating. Table 4 shows the number of iterations and time consumption for
convergence (RE ≤ 1.0× 10−6) under different damage scenarios. It can be seen that the
damage factor of the preset damage elements can converge near the expected value in the
third iteration, and the fluctuation of RE in the iteration process is mainly caused by the
change of damage factors of other elements and gradually tends to decrease gently. The
final damage identification results are shown in Figure 14. It is noted that the identification
results of the elements with preset damage are in good agreement with the corresponding
values given in Table 2, and some minor errors are in the remaining elements. The damage
identification results are satisfactory.

Table 4. The number of iterations and time consumption for convergence under different damage
scenarios.

Damage Scenario Scenario 1 Scenario 2 Scenario 3

Number of iterations 21 27 31
Time consumption (s) 0.476 0.597 0.657
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6. Conclusions

A novel damage identification method based on transmissibility in the time domain is
proposed. In the optimization process, combined with the EMD-based dynamic response
reconstruction method, the relevant parameters corresponding to the damage state are
solved by minimizing the difference between the reconstructed data and the measured
data of the sensor position and updating the finite element model. Simulation studies and
experimental tests are conducted on a simply supported overhanging beam. The effect of
measurement noise is investigated by numerical analysis. The effectiveness and accuracy
of the proposed method are demonstrated experimentally.

Based on a theoretical study, numerical simulations and validation experiments, some
conclusions can be obtained as follows:

(1) In this study, a novel strategy of damage identification in the time domain is proposed.
Compared with the existing damage identification method, the proposed method uses
the internal relationship between two locations in the structure as the basis of damage
identification. The damage identification can be located and quantified in the time
domain without modal identification and frequent time–frequency conversion, which
can greatly improve efficiency on the premise of ensuring accuracy. It is suitable to
identify the structural damage under transient excitation or stochastic excitation that
can excite the modal response of the structure.

(2) According to numerical analysis results, the accuracy of damage identification under
different noise levels and excitation types can be guaranteed. Although the recognition
accuracy will be affected under a high noise level, it can still accurately locate the
damaged element. The proposed method has good noise resistance and robustness.

(3) The experimental beam corresponding to the simulation case verifies the effectiveness
and accuracy of the damage identification method. Under the three damage scenarios,
the damage factors converge stably and rapidly.
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Future works will focus on applying this method to structures in the presence of
closely spaced modes. The research on the optimization of sensor layouts is also ongoing.

Author Contributions: Y.Z. and J.Y. conceived and designed the experiments; X.L. performed the
experiments and wrote the paper; T.W. analyzed the data. X.H. contributed in optical measurement
tools. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the support of the National Natural Science Foun-
dation of China (Project Nos. 52078504, and U1934209). The work presented in this paper was
also supported by grants received from the Science and Technology Innovation Program of Hunan
Province (Project No. 2021RC3016).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank all participants for their involvement in the study. We
would also like to thank the anonymous reviewers for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

n number of damage parameters Abbreviation
Nt number of time points FE finite element
Nr number of transmissibility RE relative error
ε strain response vector DOF degree of freedom
Q modal coordinate vector EMD empirical mode decomposition
ηi the i-th modal response vector Superscripts or subscripts
K, M stiffness matrix, mass matrix T transpose of matrix or vector
B strain-displacement matrix a, b location index
J objective function j the j-th mode
‖ · ‖ Frobenius norm (l) the l-th element
λs, Λ the s-th eigenvalue, eigenvalue matrix k the k-th iteration
W weighting matrix r reconstructed modal response
S sensitivity matrix f modes of FE model

αl, α
damage factor of l-th element,

m modal response extracted from measured response
damage factor vector

ψ, Ψ
strain modal contribution,

d modes and modal response of actual structure
strain modal matrix
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