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Abstract: Vehicles are the major source of air pollution in modern cities, emitting excessive levels
of CO2 and other noxious gases. Exploiting the OBD-II interface available on most vehicles, the
continuous emission of such pollutants can be indirectly measured over time, although accuracy
has been an important design issue when performing this task due the nature of the retrieved data.
In this scenario, soft-sensor approaches can be adopted to process engine combustion data such as
fuel injection and mass air flow, processing them to estimate pollution and transmitting the results
for further analyses. Therefore, this article proposes a soft-sensor solution based on an embedded
system designed to retrieve data from vehicles through their OBD-II interface, processing different
inputs to provide estimated values of CO2 emissions over time. According to the type of data
provided by the vehicle, two different algorithms are defined, and each follows a comprehensive
mathematical formulation. Moreover, an unsupervised TinyML approach is also derived to remove
outliers data when processing the computed data stream, improving the accuracy of the soft sensor
as a whole while not requiring any interaction with cloud-based servers to operate. Initial results for
an embedded implementation on the Freematics ONE+ board have shown the proposal’s feasibility
with an acquisition frequency equal to 1Hz and emission granularity measure of gCO2/km.

Keywords: Internet of Things; Internet of Intelligent Vehicles; TinyML; soft sensor; air pollution; OBD-II

1. Introduction

In most large cities around the world, air pollution has been regarded as a serious
problem that has to be solved [1]. The World Health Organization (WHO) shows that 9.1
out of 10 people breathe air containing levels of pollutants superior to the WHO limits.
It also shows that 4.2 million people die every year by cardiac and respiratory diseases
caused by exposure to pollutants in the air. According to the UN, by the year 2030 the
population living in urban areas will be 5 billion people, which leads us to consider the
urgency of solutions to address this problem [2,3].

The cities represent only about 2% of the geographic area and accommodate over 50%
of the world population; however, they are responsible for producing 80% of greenhouse
gas emissions and consuming 80% of the world’s resources [4]. In this scenario, urban traffic
is the major factor responsible for CO2 emissions because of its dependency on fossil fuels:
Almost 23% of CO2 produced in Europe has its origin in the transport sector, while in the
US, that equivalent percentage reaches 34% [5,6]. In this manner, the active monitoring of
CO2 emissions is essential for controlling urban air quality. Nevertheless, such monitoring
is often regarded as a complex issue because it involves some important challenges when
measuring and processing gas emissions by vehicles. In this sense, the adoption of Internet
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of Things (IoT) solutions can be an important resource for such monitoring and analyses,
since they can gather information that would not be available otherwise [7].

In recent years, soft-sensor approaches have been developed to address a lot of dif-
ferent problems by the proper sensing and processing of a group of data. With the IoT
revolution and the availability of powerful hardware platforms at affordable prices [8,9],
a new set of applications could be created by exploiting the combined processing of dif-
ferent types of data and computing new types of measurements that were not originally
provided by the sensors. By conducting this, virtual sensor units could be created, creating
an opening for many possibilities.

In order to monitor vehicular emissions and to perform related data analyses, which
could be further exploited by any external system when assessing air quality in urban areas,
this article proposes a soft-sensor approach to directly monitor vehicular emissions through
an OBD-II (On-Board Diagnostics) interface and the Freematics ONE+ edge processing
hardware [10]. Using an OBD-II scanner/reader, different types of data related to the
vehicle’s engine will be retrieved from a vehicle, allowing real-time computations about
vehicular emissions. Additionally, in order to provide higher accuracy when detecting noisy
and outliers data, a TinyML (Tiny Machine Learning) algorithm will be proposed to process
the computed data following an unsupervised learning paradigm that is oriented on data
streams. The implemented TinyML algorithm has advantages over traditional statistical
methods for detecting anomalies as there is no need for prior knowledge of the data and
model training; that is, it is an unsupervised learning embedded on a resource-constrained
device. Hence, since it is a soft-sensor approach, the created virtual sensor will continuously
provide information about CO2 emissions, exploiting all proposed embedded algorithms.

Experimental results will be presented and discussed, providing indications about
the effectiveness of the overall solution. Actually, when embedding the proposed low-cost
approach into a hardware component to be attached onto cars, typically as a portable
hardware unit to be provided by governments or environmental NGOs, this soft sensor
allows a continuous and distributed monitoring of air pollution levels directly from pol-
lution sources. Moreover, since an unsupervised learning paradigm is adopted for the
defined TinyML, distinct from related works in this area, the development cost and time
are reduced, eliminating dependencies to pruning approaches and, thus, fitting better for
the scenario of monitoring of vehicular emissions. Putting all these together, the proposed
approach may bring significant benefits in the long run.

The remainder of this article is organized as follows. Section 2 presents some impor-
tant works related to this article, highlighting their main differences. Section 3 provides
an overview about air pollution from vehicles, which is necessary when performing the
required computations. Section 4 describes all elements of the proposed approach. Ex-
perimental results and discussions are presented in Section 5. Finally, conclusions and
references are presented.

2. Related Works

Automobile factories have gradually increased the number of sensors and the capa-
bilities of vehicle control systems in order to improve performance and increase safety for
drivers [11,12]. The OBD-II (On Board Diagnostics) was launched as a system capable of
self-diagnosing and alerting the driver about possible problems in the vehicle’s subsystems
such as electronic components and the conditions of the emission of pollutants. Since 1996,
all vehicles manufactured in the United States are required to support OBD-II, with other
countries following the same trend [13]. With the implementation of the OBD-II system in
major world markets, different approaches have been proposed to exploit the provided
data to bring valuable information to the drivers.

With the increase in the volume of data generated by vehicles, the possibility of using
IoT concepts aimed at vehicular applications has been largely promoted. In particular, IoT
applications may use Machine Learning (ML) techniques to better process the available
data, but usual ML solutions will stream raw or poorly processed data to a cloud server
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due to the complexities of employing ML algorithms locally. However, with the growth
of data sources within an application, it becomes more difficult for a Cloud server to
process the large volume of data generated, in addition to issues as latency and availability.
Actually, cloud-only concentrated processing requires better transmission infrastructure,
more power consumption, and greater system reliability. Therefore, it is reasonable to add
“smart” functions to IoT devices so that they can process data and make decisions without
passing all of the raw data to the cloud [14].

Basically, the principle of local processing can be perceived as a paradigm shift defined
as “Edge computing”, with data processing being pushed to the edge of IoT devices and
to the sensor data acquisition [15–17]. For such paradigms, although machine learning
may be a constant, many applications may rely on resource-constrained devices such
as microcontrollers, imposing some practical difficulties. Since the employed devices
may have low processing power and restricted memory, more complex machine learning
techniques may be prohibitive [18,19]. Therefore, the concept of TinyML arises as a method
to fit ML models into resource-constrained devices [20–22], which tries to establish the best
trade-off between the restricted hardware and a ML algorithm [23].

In parallel, in addition to the issues related to Machine Learning techniques imple-
mented as embedded algorithms, with previous works addressing important challenges
that arose from it, the literature concerning the soft sensor concept was also surveyed.
Actually, with multi-sensors hardware units being affordably deployed with decent pro-
cessing and memory capabilities, soft sensors have been created to provide new types of
measurements in different types of applications. In [24], a warning system was developed
to detect hazardous ground-level ozone concentrations, defining a soft-sensor approach
that processes three meteorological factors to achieve a unified result, being supported
by a neural network. For the work in [25], authors proposed a soft-sensor approach to
process different water quality parameters, implementing machine learning to establish a
correlation between input and output data. In [26], the soft sensor concept is exploited to
avoid disasters in cities according to defined ontologies, transmitting alerts when necessary.
Finally, some important performance issues for soft-sensor approaches were discussed
in [27], particularly for smart cities scenario.

Since this article is focused on calculating CO2 emissions by cars, based on vehicle
data, the literature was reviewed for works that comprised this keyword. Moreover, as
TinyML is a key element of the proposed approach, it was also inserted into the search
queries. However, since the TinyML paradigm is a novelty for the automotive sector, with
few solutions in this area, the Machine Learning principle was considered instead in a more
generic way, providing us with important information for comparison purposes.

Table 1 summarizes previous works that employ Machine Learning for the monitoring
of CO2 emissions, with a particular concern for soft-sensor solutions.

Table 1. Summary of recent related works.

Work OBD-II Reader Edge Computing TinyML Observed Sensors

This work Freematics ONE+ Yes Yes MAP, MAF, IAT, RPM

[28] ELM-327 * Mobile App No MAP, Speed

[29] ELM-327 * No
Offline computing

No MAP, MAF, IAT, RPM

[30] ELM-327 * No
Offline computing

No MAP, Speed, AP

[31] Freematics ONE+ No
Offline computing

No MAP, Speed, RPM, MAF, IAT

[32]
OBD-II reader not specified +

Raspberry Pi
No

Offline computing
No MAP, Speed, RPM, MAF, IAT

* ELM-327 has an ATMega644 microcontroller internally, but it is not used for computing in the cited works.
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Concerning Table 1, the work in [28] developed a platform for vehicular monitoring of
CO2 emissions, with a mobile application being used to calculate emissions from retrieved
OBD-II data. In [29], a platform for OBD-II pollution monitoring was proposed based on
the crownd-sensing paradigm. Distinct from these two works, the authors in [30] employed
several machine learning techniques to predict CO2 emissions from the retrieved data,
but Edge computing was not exploited. For the work in [31], Freematics ONE+ hardware
was adopted as an OBD-II reader to calculate the emission of pollutants according to the
driver’s behavior, however the neural network was not implemented on Freematics, in a
different way from this article. Finally, the work in [32] developed a platform that collects
data via OBD-II and forwards it to a smartphone equipped with a fuzzy inference system
to classify the driver’s behavior and to alert about CO2 emissions and fuel consumption,
following a different development line.

Although promising, the presented works did not exploit the possibilities of TinyML
when computing CO2 emissions by vehicles, which we believe will bring significant results
at a reduced cost. Those works did not process data on the edge, or they were restricted by
offline processing or the utilization of a mobile application on a smartphone. Filling this
development gap, the proposed approach in this article can bring significant results for
monitoring air pollution by vehicles and even within smart cities scenarios, supporting a
new development trend.

3. Fundamentals of Vehicular Emissions

Rapid urban growth in the last decades has induced important concerns about air
quality, especially in large cities [33,34]. This is due to the fact that air pollution may result
in respiratory and cardiovascular diseases [35–37], which has demanded new solutions to
monitor and even control the emission of pollutants in the air. Therefore, the monitoring
of air pollution is expected to have a positive impact on human health along the time,
especially when combined with actions aimed at the improvement of the quality of life in
urban areas [38].

The emission of pollutants by vehicles is related to the ratio of the air-fuel mixture
in the engine. When there is more fuel than the ideal amount to consume, the mixture is
denominated “rich”. In this condition, part of the fuel is not consumed and it is expelled
by the exhaust in the form of hydrocarbons (HxCx). In fact, HxCx is toxic and forms
visible, thick smoke in places with a high concentration of cars. Additionally, sulfuric oxide
(SO2) is a gas emitted from the exhaust of vehicles and can be used as an indication of
traffic congestion in a region when analyzing the concentration of SO2 in a considered
area. Moreover, carbon monoxide (CO) is also produced with the rich mixture. Such
colorless, odorless, and tasteless CO gas is dangerous to living beings, because when
it is inhaled and absorbed, it enters the bloodstream and associates with hemoglobin,
preventing oxygen from being transported through the body, causing asphyxiation [39].
Finally, there is the expulsion of soot caused by the incomplete combustion in the engine,
producing hydrocarbon particles [40].

On the other hand, when the air/fuel mixture is “poor”, nitrogen oxides are formed
(NOx). In this case, with the expulsion through the exhaust, there is an association with
more oxygen, making it more polluting. Nitrogen oxides can cause damages to the respira-
tory system and they can contribute to the formation of acid rain.

Some measures have been taken by governments to reduce the emission of pollutants
into the atmosphere. The Paris Agreement, signed during the United Nations Frame-
work Convention on Climate Change (UNFCCC) in 2016, provides for a reduction in and
adaptation of greenhouse gas emissions [41]. To meet environmental requirements, a cat-
alytic converter is used by cars to transform polluting gases into non-polluting substances:
(i) Hydrocarbons are transformed into carbon dioxide (CO2) and water (H2O); (ii) carbon
monoxide is transformed into carbon dioxide; (iii) NOx is reduced in nitrogen and oxygen.

Although all these gases are dangerous at different levels, there has been a major
worldwide concern with CO2, also referred as greenhouse gas. Actually, many studies
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already associates CO2 emissions to the elevation of the average temperature of the planet.
Hence, considering the emergency produced by ongoing climate change, this article is
focused on the detection and monitoring of CO2 emitted by vehicles, potentially providing
an important contribution when facing this stringent global challenge.

3.1. Calculating CO2 Emissions

In order to monitor continuous CO2 emissions by vehicles, a soft-sensor approach is
proposed in this article. Basically, this approach will aim to measure the mass of carbon
dioxide expelled by the vehicle’s exhaust in a certain time interval. This measurement is
made indirectly since it is not provided by the OBD-II protocol. For that, CO2 emissions
have to be computed from other sensor variables provided by the vehicles, each one defined
by a different PID (Parameter Identification).

The sensors used to measure CO2 emissions are expressed in Table 2 with the respective
units. Some vehicles have only the PID Manifold Absolute Pressure (MAP), while others
have only PID Mass Air Flow (MAF). There are still some vehicle models that have both
sensors. Thus, in order to comply with these particularities, we defined two different
methods: one for the MAP and the other for the MAF.

Table 2. PIDs related to CO2 emissions.

CO2 Related PIDs Unit

MAP (Manifold Absolute Pressure) kPa
MAF (Mass Air Flow) g/s

IAT (Intake Absolute Temperature) K
RPM (Revolutions Per Minute) RPM

3.1.1. CO2 Calculation Using MAP

The first method exploits the Manifold Absolute Pressure sensor, which is slightly more
complex than the second approach. For that, the development of a suitable mathematical
formula was based on the Equation of Perfect Gases enunciated by Emile Clapeyron in the
19th century, which is expressed in Equation (1):

PV = nRT (1)

where the following is the case:

• P represents the pressure in the combustion chamber obtained by the MAP sensor in
kPa or psi;

• V is the volume of combustion chambers in the engine cylinders by cubic centimeters
(cm3);

• R is the general gas constant proposed by Clapeyron equals 8.3146 (cm3 × MPa)/
(K ×mol);

• T is the gas temperature obtained by the IAT (Intake Absolute Temperature) sensor in K;
• Finally, n is the number of moles in the sample.

This equation can be also written as expressed in Equation (2).

n =
PV
RT

(2)

Then, the mass of air (mair) can be computed by multiplying n by the molecular weight
(molar mass—Mair) of the air, as described in Equations (3)–(5).

mair = n×Mair (3)

mair
Mair

=
PV
RT

(4)
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mair =
PV
RT
×Mair (5)

Actually, Equation (5) is valid if the Volumetric Efficiency (VE) of the engine equals
100%. Volumetric efficiency is defined as the ratio of the density of the air–fuel mixture
admitted into the cylinder at atmospheric pressure to the density of the same volume of air
in the intake manifold. The value of VE can be computed by Equation (6):

VE(%) =
Vintake

Vnominal
× 100 (6)

where Vintake is the real volume of intake air supported by the cylinders, and Vnominal is the
volume of the vehicle engine. In this manner, we achieve Equation (7) for the mass of air.

mair[g] =
P[kPa]V[cm3]

R[ cm3MPa
Kmol ]T[K]

×Mair[
g

mol
]×VE (7)

After VE correction, CO2 is computed for a time interval, denominated as mass air flow.
Then, it is necessary to include in the formula the number of revolutions per minute of the
engine acquired by the OBD-II reader. The considered reference engine is a four-stroke
engine in which two of the four phases of the cycle allow air to enter the interior, which
is a very common configuration. After that, dividing the number of revolutions by 2 and,
subsequently, dividing it by 60, the result in seconds is expressed in Equations (8) and (9):

ma f =
PV

1000× RT
×Mair ×VE× RPM

2× 60
(8)

which are rearranged as follows.

ma f [
g
s
] =

P×V ×Mair ×VE× RPM
1000× 120× R× T

(9)

After obtaining the mass air flow value, the fuel intake into the combustion chamber
can be calculated as defined in Equation (10):

Vf uel [L/s] =
ma f [

g
s ]

AFR× ρgas[
g
L ]

(10)

where AFR is the air-fuel ratio, and ρ represents the fuel density (Table 3).
Finally, it is possible to compute CO2 emissions per second multiplying Vf uel by

the carbon mass generated after burning 1 L of the fuel (CO2PL), which is expressed in
Equation (11).

CO2[g/s] = Vf uel [L/s]× CO2PL[g/L] (11)

Table 3 specifies the CO2 burned per liter of fuel (CO2PL) for the main types of fuel
(Gasoline, Diesel, and Ethanol), as well as the values for fuel density [42].

Table 3. Fuel conversion constants.

Fuel Density (g/L) AFR CO2PL (g/L)

Gasoline 737 14.7:1 2310
Diesel 850 14.6:1 2660

Ethanol 789 9.0:1 1510

3.1.2. CO2 Calculation Using MAF

Some of defined equations in the last subsection were intended to estimate the mass
air flow into the engine, since such information was not provided when computing the CO2
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emission based on the PID MAP. However, vehicles that have PID MAF already provide
such information; thus, it does not need to be computed according to Equation (9).

As a result, the estimation of the CO2 emission by a vehicle that provides the PID
MAF is a simpler task. Thus, when programming the proposed soft-sensor approach, if the
considered vehicle has both sensors (MAP and MAF), the emission of CO2 is calculated
directly by exploiting the MAF provided by the OBD-II reader, saving resources and
computing time. Actually, according to [43], emissions being calculated through the PID
MAP or the PID MAF present similar values; thus, they could be adopted interchangeably.

4. Proposed Approach

In order to perform the desired computations, the Edge computing paradigm was
exploited when gathering and processing all required data. Doing so, computing, com-
munication and control functions take place in physical proximity to the data source [44],
reducing the response time for critical applications and its sensitivity to delays [45,46]. We
believe that such a paradigm is very suitable for the intended computations, opening many
possibilities when integrating the proposed approach to broader smart city macro-systems.

The proposed soft-sensor solution was designed to be fully implemented inside the
target vehicle. For that, both the measurements collected from the ECU (Engine Control
Unit) sensors and the associated computations are performed using the microcontroller
embedded in an OBD-II scanner. In this manner, the employed hardware had to be small
and powerful enough to support such tasks, but some current off-the-shelf hardware
platforms already meet those requirements. Anyway, different hardware components could
be adopted according to the available budget, as well as other complementary parallel
functions could be associated to the same hardware for performance issues.

Figure 1 depicts the conceptual architecture of the proposed soft-sensor solution. It
is worth mentioning that although the CO2 calculation is performed following an Edge
computing paradigm, the processed information can be transmitted in order to be further
stored and processed by external systems (or even the Cloud), allowing different types of
analyses when data are received from several vehicles adopting the proposed approach.

Figure 1. The conceptual architecture of the proposed approach.

4.1. OBD-II Interactions with the Vehicles

Since all data to be processed comes from the vehicle through an OBD-II interface, a
proper scanner hardware is a key element of the proposed approach. In fact, there are sev-
eral commercial OBD-II scanners that can be used for vehicle diagnosis and data collection.
In this article, we adopt the Freematics ONE Plus Model A (https://freematics.com/pages/
products/freematics-one-plus/ (accessed on 13 May 2022)). Freematics is a vehicle teleme-
try platform that internally has an Espressif ESP32 (a fully programmable microcontroller)
in addition to OBD-II connectivity, working in Operation Mode 1 of the protocol. Actually,
this is a flexible but low-cost hardware decision that may support massive deployment

https://freematics.com/pages/products/freematics-one-plus/
https://freematics.com/pages/products/freematics-one-plus/
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of the proposed approach, but other more powerful hardware components could also be
adopted according to the available budget.

The adopted Freematics ONE+ hardware allows storage on a microSD card or (in-
ternally) in a small Flash memory. Data transmissions can be performed in real time via
4G cellular networking or via Bluetooth, the latter being usually adopted along with a
smartphone for Internet connectivity. Actually, Freematics ONE presents a higher commer-
cial cost than most OBD-II scanners commonly found on the market, but it could be used
without requiring a supporting platform such as Arduino or Raspberry Pi, reducing the
overall cost of the implemented solution while reducing wiring and energy consumption.

The Freematics ONE+ is a hardware platform with an onboard storage capacity limit of
a microSD card. In scenarios where network signal quality is a stringent variable or if there
is no signal whatsoever, the device will continue to store information in its transmission
buffer—a limited-capacity memory area. While this may be desirable in some situations,
this may also cause some limitations if an application is attempting to transmit data that
exceeds the device’s capacity. As far as performance discussion goes, it would be out of
scope for this article to perform any network performance evaluations.

4.2. Data Acquisition and Initial Processing

After the successful installation of the Freematics in the target vehicle, which has to be
attached onto the vehicle’s OBD-II interface, a series of processing steps will take place, as
depicted in the flowchart in Figure 2. Initially, the developed solution selects the PIDs of
interest according to the target vehicle. Then, the selected PID is read every 1 s, which is the
adopted reading frequency. As mentioned before, the list of available PIDs varies according
to vehicles and manufacturers, with no standardization or fixed set of available PIDs.

MAP

CSV file

ev
er

y 
1 

se
co

nd

Start

MAP or MAF? Read MAF
Read MAP, IAT 

and RPM

Calculate CO2  
using MAP

Calculate CO2  
using MAF

TEDA

Compute CO2 emission

microSD card

ev
er

y 
1 

se
co

nd

MAF

Figure 2. The processing flow of the proposed soft-sensor approach.

Therefore, it has to be evaluated whether the vehicle has the MAP or the MAF PID (or
even both), since it dictates the equations to be adopted for CO2 emission estimations. Then,
according to the available PID, the sensors values are stored in the microSD memory card
and the calculation of CO2 is performed following the corresponding proposed methods.
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The results after such processing is also stored in the microSD card, representing a pre-
processing phase of the proposed approach. At this point, the computed results may have
some accuracy issues that could compromise their relevance for air pollution monitoring,
which led us to propose the TinyML step of the algorithm, referred as TEDA (Typicality
and Eccentricity Data Analytics), as depicted in Figure 2.

The TEDA algorithm is intended to evaluate the presence of possible outliers in the
time series. If the calculated sample is an outlier, it will be labeled as such for further
analysis. Subsequently, the values of CO2 are used in the proposed TinyML method to
predict future values. The great importance of having future values is the possibility of
anticipating corrections for enrichment or depletion of the air fuel mixture in order to
reduce the emission of pollutants when looking for an optimum point. All values directly
read from the sensors and the values calculated by the defined algorithms were saved in
the CSV format.

4.3. The TEDA Processing Step

In this article, we propose a Typicality and Eccentricity Data Analytics (TEDA)-based
algorithm to improve the relevance of the achieved results. The idea is to implement an
anomaly detection algorithm for data streams by exploiting typicality and eccentricity
concepts. In short, typicality is the similarity of a sample to the rest of the set (based on
distances between samples), while eccentricity is its opposite when indicating how different
a sample is from the rest of the collected data [47]. In these definitions, a sample with high
eccentricity indicates that it could be an outlier.

In order to measure the typicality and eccentricity of each new sample in the data
stream, TEDA uses the sum of the geometric distances between the analyzed sample and
the other samples in the set. The higher this value, the greater the eccentricity of the sample
in relation to the others and, consequently, the lower the value of typicality. Moreover, this
is employed when further processing CO2 emissions.

The modeling of the considered data stream can be given by an ordered vector
x = {x1, x2, · · · , xk, · · · },∴ xi ε Rn, i ε N, where k represents the discrete time. The dis-
tance between xi and xj is given by d(xi, xj), which can be the Euclidean distance, cosine
distance, Mahalanobis distance, or any other reference. In this work, Euclidean distance
is considered. Then, for the entire dataset up to the instant k, Equation (12) is defined,
with πk(x) as the sum of the distances from a particular sample (x) to each of the other k
elements.

πk(x) =
k

∑
i=1

d(x, xi), k ≥ 2 (12)

Therefore, the eccentricity (ξk(x)) of the data sample x, at the instant of time k, is
defined by Equation (13).

ξk(x) =
2πk(x)

∑k
i=1 πk(xi)

, k > 2,
k

∑
i=1

πk(xi) > 0 (13)

This equation was rewritten in [47] so that the eccentricity could be calculated recur-
sively, resulting in the definitions in Equation (14) for the eccentricity (ξk(x)) calculated
at time k of the sample xk in relation to the other samples in the set. Additionally, µk is
defined as the mean of x and [σ2

k ]k is the variance of x at time k.

ξk(x) =
1
k
+

(µk − xk)
T(µk − xk)

kσ2
k

(14)

With Equation (14), the calculation is simplified to the distance of new input data xk
and mean µk. For that, µk(x) and σ2

k (x) values for each iteration are calculated recursively
using the Equations (15) and (16).
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µk(x) =
k− 1

k
µk−1 +

1
k

xk, µ1 = x1 (15)

σ2
k (x) =

k− 1
k

σ2
k−1 +

1
k− 1

‖xk − µk‖2, σ2
1 = 0 (16)

Following the same reasoning, the typicality (τk(x)) of the data sample x, at time k, is
given by the eccentricity complement in Equation (17).

τk(x) = 1− ξk(x) =
k− 1

k
− (µk − xk)

T(µk − xk)

kσ2
k

(17)

Finally, the normalized eccentricity and normalized typicality are given in
Equations (18) and (19).

ζk(x) =
ξk(x)

2
,

k

∑
i=1

ζi(x) = 1, k ≥ 2 (18)

tk(x) =
τk(x)
k− 2

,
k

∑
i=1

ti(x) = 1, k ≥ 2 (19)

After defining the normalized eccentricity and normalized typicality values for each
new input data, the next step is outlier detection. One of the simplest and most well-known
methods in the literature is to use “mσ” as a threshold for classification. A sample will be
considered an outlier if it is a certain amount m of standard deviations; however, it must be
previously assumed that the data distribution is Gaussian.

In a dataset with a significant number of samples and for any data distribution, it is
possible to use Chebyshev Inequality [48]. This inequality states that the probability of the
samples being away from the mean is lower or equal to 1/m2. The work in [49] adapted it
to use normalized eccentricity, as expressed in Equation (20).

ζ i(xk) ≥
m2 + 1

2k
(20)

Therefore, the value of m represents the threshold of sensitivity of the method. The
larger the value of m, the less sensitive the algorithm will be. If the normalized typicality
(ζ i(xk)) is greater than the second term in Equation (20), being a true proposition, then xk
will be an outlier. If typicality is lower, the proposition will be false, and the new data will
not be an outlier.

The recursive feature of the TEDA algorithm provides an algorithm with low compu-
tational effort by using few memory and processing resources, because there is no previous
processing or training of the data [50? ] Furthermore, the iterative calculations of typicali-
ties are based on simple arithmetic, with no computational complexity. Additionally, TEDA
has others advantages over traditional statistical methods for detecting anomalies. There is
no need for prior knowledge of the data (unsupervised learning); thus, it is widely used for
data streams and time series, possessing the ability to detect changes in concept and evolu-
tion of concepts. To use the algorithm, it is not necessary to know the mathematical model
or the data distribution, being an important advantage for some real-world problems [51].

At this point, considering the TEDA algorithm and all defined equations, the proposed
approach could be fully implemented.
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5. Evaluation Results

After the successful implementation of the proposed approach, an evaluation phase
took place. The idea was to verify the practical operation of the created algorithms and
their execution performance in real vehicles. Moreover, we wanted to extract the retrieved
and processed data, verifying how it could be further exploited for air pollution analyses.
The descriptions of such evaluation procedures are presented in next subsections.

5.1. Experimental Setup

In order to achieve valuable data to allow performance assessment of the proposed
approach within the available research budget, the proposed algorithms were implemented
in a single Freematics ONE+ hardware unit and tested in a vehicle provided by a volunteer.
That vehicle was a Nissan Kicks model 2020, a modern popular vehicle that provides only
the PID MAF (Mass Air Flow) sensor. During five consecutive days, from Monday to
Friday, at the same time (06:30 a.m.), the vehicle moved freely in the city of Natal (Brazil),
considering the same driver during this period and trips lasting less than 20 min. For
this evaluation phase during rush hours in the selected city, both small streets and urban
highways were taken, allowing variations in the performed speeds.

Considering the characteristics of the selected vehicle, with only the PID MAF avail-
able, the calculation of CO2 emissions expelled by the vehicle was based on Equation (10).
Actually, the compatibility of the CO2 calculation using MAP or MAF has already been
verified in a previous work by the authors of this article, as seen in [43], which reinforces
the relevance of the achieved results in this section.

5.2. Retrieved Data

For the defined experimental setup, data could be retrieved from the vehicle to allow
the calculation of CO2 emissions, according to the data definitions in Table 4. In fact, some
data comes from the vehicle, while others are provided by Freematics (such as GPS Latitude
and Longitude coordinates).

Table 4. Data collected from sensors by the Freematics ONE+ unit.

PID Abbreviature Unit

Latitude Lat º (degrees)
Longitude Long º (degrees)

Speed (OBD-II) Speed km/h
RPM RPM -

Intake Air Temperature IAT K
Mass Air Flow MAF g/s

The obtained data through the implemented soft-sensor solution will be processed in
different ways, with CO2 emissions being related to the Intake Air Temperature and the
RPM as expressed in Equation (9). In particular, in this article, volumetric efficiency will be
considered as a constant equals to 80%, a reasonable value previously discussed in [52]. In
doing so, we achieve higher processing efficiency without significant loss of precision, but
the volumetric efficiency could be also computed separately if required.

The intake air temperature (◦C) and the number of revolutions per minute (RPM) from
the Tuesday dataset are shown in Figure 3 to illustrate the chosen path and variables.

Temperature data show that as time passes, the values increase, reaching a maximum
level at the end of the trip, marked by the color yellow (Figure 3a). The revolutions per
minute (RPM) data also shows a similar behavior, with an indication of the speed reductions
in the higher speed sections, characterizing decelerations and gear changes (Figure 3b).
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(a) (b)

Figure 3. Vehicle variables on a day of the week—Tuesday. (a) Intake Air Temperature (◦C) measure-
ments. (b) RPM measurements.

5.3. Evaluating CO2 Calculations

Considering the described experiment, the instantaneous values of CO2 calculated
by the algorithm were cumulatively added to know the total mass of gas expelled by the
vehicle along each route and on each day of the week. The curves of the cumulative sums
for each of the 5 days of the experiment are shown in Figure 4. It is possible to observe that
since the route, the vehicle, the driver, and the time of the day are the same, the patterns of
the curves for each day of the week are somehow similar. Based on the displayed curves,
Friday was the day with the highest total CO2 emission, reaching a value of 1808 g. The
lowest CO2 mass value among the compared days was on Tuesday, reaching 1643 g.
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Figure 4. CO2 (g) expelled along the trip for each day of the week.
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Monday’s total CO2 emission was divided by kilometer as it is commonly represented
in the literature, shown in Figure 5.

Figure 5. Mass of CO2 (g) expelled by the vehicle per kilometer driven.

In fact, the developed soft-sensor approach presents values compatible with what
is expected in the literature and in the automotive industry for the used vehicle in the
experiment. According to [53], the average CO2 emission for cars manufactured between
2016 and 2020 varies between 100 g and 160 g per kilometer. The work in [54] indicates
that a Nissan popular car emits an average of 232 g of CO2/km depending on maintenance
conditions, type of road and driver behavior. Therefore, gCO2/km values computed by the
soft-sensor approach are compatible with both references.

To further study the vehicle data, we reanalyzed Equation (9) in which it is possible to
see that the mass of CO2 expelled is directly proportional to the engine RPM and inversely
proportional to the Intake Absolute Temperature (IAT). These correlations are indicated in
Figure 6, which shows the Pearson coefficient, considering the instantaneous values of CO2
and the values of RPM and Temperature. Pearson’s coefficient for RPM was close to 0.8,
meaning that the correlation is positive, i.e., the variables are directly correlated. For the
temperature data, the Pearson’s coefficient is less than zero, confirming what was predicted
in theory.
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Figure 6. Pearson’s coefficient for each dataset.

5.4. Applying TEDA

After calculating CO2 emissions, the TEDA algorithm was applied on the instanta-
neous values related to the amount of gas produced by the vehicle. The only parameter
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of the algorithm is the threshold (m), which defines the sensitivity of the technique as
previously described. The higher the value of m, the less sensitive the TEDA will be to
detect anomalous values (the outliers). Following the same logic, the more the value of m
decreases, the sensitivity of the algorithm increases. Therefore, it will be more sensitive to
variations, detecting a greater number of anomalous values.

It is important to observe that the defined acquisition frequency was equal to 1 Hz,
i.e., for every 1 s the data were collected, the mass of CO2 value was calculated and this
new value served as an input for TEDA. The number of samples for the five datasets is
around 1100, totaling trips lasting less than 20 min. The outlier detection algorithm was
applied to the datasets, varying the following threshold value: 1.5, 2.0, and 2.5. For each
value, the Table 5 presents the total of inliers and outliers, being possible to confirm that as
the threshold increases, the number of anomalous values decreases.

Table 5. Application of the TEDA algorithm by varying the threshold (m): 1.5, 2.0, and 2.5.

Threshold (m) 1.5 2.0 2.5

Day Inlier Outlier Inlier Outlier Inlier Outlier

Monday 1087 88 1118 57 1138 37
Tuesday 1002 110 1051 61 1083 29

Wednesday 981 107 1018 70 1055 33
Thursday 1069 94 1128 35 1145 18

Friday 1030 113 1077 66 1094 49

The CO2 values calculated on Monday are shown in Figure 7 in which the outliers are
marked in yellow, considering a threshold (m) equal to 1.5. The anomalous values were
more concentrated at the beginning of the trip, presenting a greater magnitude than most.
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Figure 7. Application of the TEDA algorithm on the Monday dataset using m = 1.5.

The outliers were arranged on the maps presented in Figure 8a, showing the places
where they occurred during the total path. Figure 8b shows the height of the bars propor-
tional to the value of CO2 emitted.
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(a) (b)

Figure 8. Application of the TEDA algorithm on the Monday dataset using m = 1.5. (a) Geographical
arrangement of outliers (yellow marker). (b) Magnitude of CO2 values along the route.

After all these analyses, we can conclude that the implemented solutions performed
efficiently and as expected, presenting valuable information about CO2 emissions. The
experiments were successfully executed, with the Freematics ONE+ unit and the devel-
oped algorithms operating correctly. Finally, the retrieved and processed data were in
accordance with expected data in the automobile industry, reinforcing its accuracy for
large-scale executions.

An important final remark is about the connectivity of the implemented soft sensor.
For the performed experiments, the computed data were stored into a microSD card, which
is later processed in a regular computer. However, since the idea is to allow distributed
measurements from multiple vehicles, the soft sensors might need to be connected somehow.
Actually, the Freematics ONE+ board already supports 4G and Bluetooth protocols, which
could support interconnections among multiple units or from one soft sensor to a central
server. However, since the proposed TinyML-based soft-sensor approach is executed locally,
without requiring any interaction with the Cloud in a different way from other works in
the literature, poor connectivity and networking failures are not major concerns for our
solution. Nevertheless, when implemented at a larger scale, networking dependability
issues should be proper considered, as will be discussed in future works.

6. Conclusions

The stringent challenges related to the greenhouse effect and the resulted climatic
changes have fostered the development of monitoring and assessment solutions to sup-
port the identification of major pollution sources. Among such solutions, the adoption of
embedded algorithms to be attached onto vehicles is a promising approach, which may sig-
nificantly benefit smart cities macro-systems. When smart vehicles become interconnected,
cities may better perceive how air pollution is being generated and how public measures
may be adopted to relieve its negative impacts.

This work proposed an innovative solution to compute CO2 emissions by vehicles
directly reading their OBD-II interface. Running on a Freematics ONE+ hardware unit,
the proposed algorithms directly gather data provided by the vehicle through the built-in
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OBD-II scanner in the unit, computing the CO2 emissions every 1 s. Until this point, the
proposed solution is very useful for many practical scenarios. In addition, this work also
proposed a TinyML mechanism to improve the accuracy of the achieved results, eliminating
outliers within the produced data stream. Altogether, the proposed approach brought an
important contribution to this area, opening a new development trend based on embedded
machine learning algorithms in resource-constrained (and cheap) hardware platforms.

The experimental results were very promising, indicating a practical utilization of the
implemented solutions. As future works, the deployment of the solution on a group of
vehicles is intended, which will transmit computed CO2 emissions to the Cloud through
4G or Bluetooth (with support of a smartphone) networking capabilitues available on the
Freematics ONE+ unit. By doing so, large-scale monitoring in a city is planned, which may
bring additional important results. These next research steps can even be integrated with
parallel monitoring approaches to provide a broader perspective about the air quality in
a city.
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