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Abstract: The uncertainty analysis of attitude estimates enables the comparison between different
methods, and, thus, it is important for practical applications. This work studies the uncertainty for
the attitude determination of a three-vehicle constrained formation. Moreover, the existing solution is
improved by including the uncertainty results in a weighted orthogonal Procrustes problem. In the
formation considered herein, the vehicles measure inertial references and relative line-of-sight vectors.
Nonetheless, the line of sight between two elements of the formation is restricted. The uncertainty
analysis uses perturbation theory and, consequently, considers a small first-order perturbation
in the measurements. The covariance matrices are obtained for all relative and inertial attitude
candidates from the linearization of the solution using a first-order Taylor expansion. Then, the
uncertainty is completed by considering the covariance for the weighted orthogonal Procrustes
problem, from the literature, and the definition of covariance for the remaining attitudes. The uncertainty
characterization is valid for configurations with a unique solution. Finally, the theoretical results
are validated by applying Monte Carlo simulations, which show that the predicted errors are
statistically consistent with the numerical implementation of the solution with noise. Furthermore,
the theoretical uncertainty predicts the accuracy changes near special configurations where there is
loss of information.

Keywords: uncertainty analysis; attitude determination; formation of vehicles; constrained formation

1. Introduction

Potential advantages in autonomy, reliability, and accuracy have driven the design
of autonomous vehicle formations [1]. In the context of space missions, there has been
extensive work published regarding the guidance, navigation, and control of spacecraft
formation flying missions; see [2,3].

Constrained formations must satisfy a set of constraints, which are imposed by design
or by the environment. Specifically, in the context of space missions, such formations could
be applied to large synthetic aperture telescopes or long baseline interferometers, close to
or far from the Earth, or even to sample spatially disperse phenomena such as the Earth’s
magnetotail [4], while using a limited set of sensors.

The study of attitude estimation in formations is essential for their safety and the success
of their mission. For instance, an accurate attitude estimate matched by an appropriate
control system allows for close vehicle operations and for high-resolution interferometry.
Nonetheless, such formations are still in the early stages of real-world application [5]. The
ability to accurately and consistently estimate the attitude of a constrained formation
increases the flexibility of the mission design, which potentially lowers costs and improves
reliability.

Analyzing how noise affects estimated data is important for practical applications
and enables the comparison between different algorithms, as in [6]. In practice, the
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deployment of any deterministic solution requires some knowledge or estimate of the
respective uncertainty, because it indicates whether the solution is valid and hints at the
corresponding accuracy. Then, such information can be applied in stochastic estimation
schemes, such as the extended Kalman filter (EKF), which can further improve the results.
For instance, the uncertainty of the attitude determination based on the Singular Value
Decomposition (SVD) has recently been used to improve the accuracy and robustness of
an implementation of the EKF [7]. Moreover, the covariance of an estimate can be used to
establish the relative weight of the corresponding estimated value in sensor fusion, which
combines estimates from different sources. The work presented herein is concerned with
analyzing the error of the attitude estimation in a three-vehicle constrained formation
whose solution was proposed in [8]. Such uncertainty analysis consists in associating each
estimate with its covariance matrix.

The attitude of a system can be found resorting to memory, in which case it is
called a filtering method, or, instead, by considering information available at a given
instant, also known as a static method ([9], pp. 183–184), which is the case considered
in this document. The first static attitude determination methods that considered vector
observations were algebraic. One such method, which is still relevant today [10], is the Tri-
Axial Attitude Determination (TRIAD) algorithm [11], whose uncertainty can be characterized
considering an axially symmetric distribution for the error, while resorting to assumptions
on the correlation of the measurements [12]. The TRIAD was later optimized in [13]
by analyzing the variance of the error associated with each pair of observation vectors.
However, its accuracy is limited because it only considers two independent measurements.
The attitude determination was later framed as an optimization problem [14] by adding the
positive determinant constraint to the orthogonal Procrustes problem [15]. This formulation
potentially improves the accuracy of the solution because it allows the combination of
data from as many sensors as desired. The original solution for the Wahba’s problem was
given shortly after its publication [16]. The q-method improved the original solution by
considering the quaternion representation of the attitude ([17], pp. 426–428). The Quaternion
Estimator (QUEST) algorithm [12] provided a solution, which focused on computational
efficiency, and its uncertainty can be characterized by using a plane tangent to the observation
vector as an approximation for the error distribution, which is valid for small field-of-view
(FOV) sensors [18]. An extension to such an uncertainty model for large FOV sensors
can be found in [19]. As a result, it became and still is a popular attitude determination
method, especially for real-time applications. Other quaternion-based methods include the
Estimator of the Optimal Quaternion (ESOQ) [20], the Second Estimator of the Optimal
Quaternion (ESOQ2) [21], the fast linear quaternion attitude estimator (FLAE) [22], and
others such as [23], where the dot product equality constraint results in simplified covariance
expressions for the quaternion solution. The matrix-based solution which applies the SVD is
robust but computationally expensive [24], and its covariance makes some assumptions
on the weights of the Wabha loss function. A faster matrix-based solution is given by the
Fast Optimal Attitude Matrix (FOAM) [25]. The large number of proposed solutions for
the Wabha problem is evidence in favor of the importance of this framework. Nonetheless,
it does not consider all possible scenarios. The generalized Wahba problem tries to fill
this gap by allowing attitude measurements [26], which is useful when many sensors are
available.

Attitude estimation in constrained formations has been studied in [27], which considers
a three-vehicle formation with three different sets of measurements, and [28], which
considers a two-vehicle formation with a common landmark measurement. In such
problems, the attitude is determined by sharing sensor data between the elements of
the formation. Moreover, both works provide the covariance matrix for the respective
solution, by considering the uncertainty model for wide FOV sensors [19] and assuming
that the attitude errors are small. Additionally, [27] resorts to the Cramér–Rao inequality to
find an upper bound for the covariance, whereas [28] uses the nonlinear least squares solution.
Thus, it is important to add such study to the three-vehicle constrained formation from [8].
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Therefore, this document is concerned with the uncertainty analysis of the attitude
solution for the three-vehicle constrained formation proposed in [8], which has not been
characterized yet. Consequently, the main contribution of this paper is the uncertainty
characterization, which provides a theoretical value for the covariance of each relative
and inertial attitude matrix of the formation in almost all configurations. Such values are
obtained by considering first-order perturbations in the measurements used in the solution.
This contribution is significant for the potential application of such an attitude determination
method, because the precision data are essential for most conceivable applications and systems.
Additionally, the uncertainty analysis is validated numerically by implementing an extensive set
of Monte Carlo simulations and evaluating the respective results, both for regular configurations
and near the special cases where such covariance is not valid, as predicted in [29].

In this document, Section 2 describes the notation used throughout the paper and briefly
summarizes some important results applied in the uncertainty analysis. Then, Section 3
provides a complete description of the formation and attitude problem, followed by a
summary of the solution proposed in [8] and the application of the weighted orthogonal
Procrustes optimization—see [30,31]—to improve such a solution. The main results are
given in Section 4, where the uncertainties of the estimates are analyzed by applying a
first-order perturbation to the attitude solutions and adapting the existing work [32] for the
covariance of the weighted orthogonal Procrustes optimization. The covariance expressions
are derived in the same section for each of the attitude matrices. The section ends with some
remarks regarding the uncertainty in the special configurations defined in [29]. Next, the
uncertainty analysis is validated by comparing the results of the numerical implementation
of the solution with the theoretical results for the covariance obtained in Section 4, which
is performed resorting to a set of Monte Carlo simulations. Lastly, Section 6 gives some
closing remarks about the results obtained in this work.

2. Preliminaries
2.1. Notation

Throughout the document, scalars are represented in regular typeface, whereas vectors
and matrices are represented in bold, with the latter in capital case. The subscript [i] denotes
the i-th element of a vector or the i-th column of a matrix, accordingly. Moreover, in matrices,
the subscript [i, j] indicates the respective element at row i and column j. Reference frames
are represented in calligraphic typeface and between brackets, such as I . Body-fixed frames
are numbered and represented by the letter B, with the respective number as a subscript,
whereas sensor-fixed frames are represented by the letter S, with a subscript identifying
the respective sensor. The symbol 0 represents the null vector or matrix, the symbol 1
denotes the vector with all entries equal to one, and I represents the identity matrix with
the appropriate dimensions. Moreover, the expected value of a random variable is denoted
by the operator 〈.〉.

The real coordinate space of dimension N is denoted by RN. The set of unit vectors in
R3 is denoted by

S(2) :=
{

x ∈ R3 : ‖x‖ = 1
}

.

The special orthogonal group of dimension 3, which describes proper rotations, is
denoted by

SO(3) := {X ∈ R3×3 : XXT = XTX = I ∧ det(X) = 1} .

Resorting to the passive transformation perspective, the rotation, in SO(3), that
transforms the frame where a given vector, in R3, is expressed from Bi to Bj, i, j ∈ N, is

denoted by Rj
i . If a frame is not body-fixed, its respective letter is used instead. For example,

RI
j transforms the frame of a vector expressed in Bj to the inertial frame. Moreover, multiple

candidates for the same rotation are identified by a subscript capital case letter, such as
(

Rj
i

)
A

.
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The trace of a matrix X is defined as trace(X) = ∑3
i=1 xii, where xii is the i-th element

of the diagonal of X, and diag(X) denotes the diagonal matrix with identical diagonal
entries to X. Moreover, the Frobenius norm of X is defined as ‖X‖ =

√
trace(XTX) and the

same notation is used for the Euclidean norm of a vector x, which is, respectively, defined
as ‖x‖ =

√
xTx.

The skew-symmetric matrix parameterized by x ∈ R3, which encodes the cross
product between x and another vector, is denoted by S(x), such that S

−1
(S(x)) = x.

The rotation matrix of an angle θ ∈ R about the axis described by the unit vector x ∈ S(2)
is denoted by R(θ, x), which is written, recalling that the passive perspective is considered,
as follows ([9], p. 42).

R(θ, x) := cos(θ)I + (1− cos(θ))x xT − sin(θ)S(x) . (1)

Several trigonometric functions are used throughout this document. Notably, the
inverse cosine function is denoted by arccos(a), with a ∈ R, and the four-quadrant inverse
tangent function is denoted by atan2(b, a), with a, b ∈ R.

2.2. Useful Results

The following results are used in the uncertainty analysis. Let x ∈ R3. Then,

S(x)S(x) = xxT − xTxI (2)

and

trace(S(x)S(x)) = −2xTx . (3)

3. Deterministic Attitude Problem
3.1. Problem Definition

Consider a formation with three vehicles, where B1, B2, and B3 are the body-fixed
frames of the respective vehicles and I represents the inertial frame. In the proposed
framework, there are two kinds of measurements: one is a line-of-sight (LOS) vector that points
to the position of another vehicle, and the other is an inertial reference vector—for example,
a known physical field direction. All measurements are unit vectors obtained in the respective
body-fixed frame. Moreover, the inertial references are known in the inertial frame.

In the formation, the main constraint is that two of the vehicles, called the deputies,
cannot measure LOS vectors between them, meaning, for example, that these two vehicles
are too far from each other. Furthermore, each vehicle can measure one inertial vector
independently. The vehicle that measures LOS to the other two is identified as vehicle 1
and is denominated as the chief, whereas the deputies are identified as vehicles 2 and 3.
The subgroup with the chief and a deputy is called a branch of the formation; hence, there
are two branches. Branch 1–2 includes the chief and vehicle 2, whereas branch 1–3 includes
the chief and vehicle 3. The geometry of the framework is represented in Figure 1.

d2/1 d3/1
d3

d1/3d1/2

d1
d2

Vehicle 1

Vehicle 2 Vehicle 3

Figure 1. Three-vehicle heterogeneous formation.
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Throughout this document, di/j, i, j = 1, 2, 3, i 6= j, represents the LOS vector from
the i-th to the j-th vehicles, expressed in Bi, and di, i = 1, 2, 3, represents the inertial vector
measured by the i-th vehicle, expressed in Bi. A left superscript specifying the frame is
used whenever a vector is expressed in a different frame. For example, Idj, j = 1, 2, 3, is the
inertial vector of the j-th vehicle, expressed in I.

The problem that is here considered is that of determining all the rotation matrices,
both relative (R1

2, R1
3, R2

3) and inertial (RI
1, RI

2, RI
3), using the measurement vectors that

were described, as well as the references Id1, Id2, and Id3.

3.2. Solution

The solution proposed in [8] computes the inertial attitude of the chief using two
different sets of data, one from each branch. The solution is found by choosing the
attitudes which are consistent with both sets of information. First, the candidates for
R1

2 and R1
3 are determined. Afterwards, these are used to obtain the candidates for RI

1.
Since computing RI

1 using either R1
2 or R1

3 is equivalent, then it is possible to disambiguate
the problem. Therefore, a comparison between the candidates for RI

1 is carried out.
Additionally, in the presence of sensor noise, the solutions for RI

1 of both branches are
combined using the orthogonal Procrustes problem to reduce the noise of the respective
final value. Finally, the remaining matrices are found from the solutions for R1

2, R1
3, and RI

1.
A more detailed algorithm flowchart can be found in [8].

In the following summary, it is assumed that the configurations have a unique solution,
as described in [29].

3.2.1. Relative Attitude

This section describes the expressions which result in the candidates for R1
2. The expressions

for branch 1–3 are omitted because these are completely analogous. The ensuing derivation
also relates to the work in [28], where it is shown that using a planar constraint leads to
an ambiguity. In this case, however, the problem is not constrained to a triangle, and, therefore,
such ambiguity cannot be resolved without extra information, which will be provided when
combining the information of both branches. Hence, recall the parameterization (1) and consider
the decomposition of the relative attitude given by

R1
2 := R(θ2, n2)R(θ1, n1) , (4)

with θ1, θ2 ∈ R and n1, n2 ∈ S(2), such that R1
2 verifies the constraints expressed as

−d1/2 = R1
2d2/1 and dT

1 R1
2d2 = IdT

1
Id2. The resulting parameters are given by

θ1 := π , (5a)

n1 := d2/1−d1/2
‖d2/1−d1/2‖

, for d2/1 6= d1/2

n1 := S(d1/2)d1
‖S(d1/2)d1‖

, for d2/1 = d1/2

, (5b)

θ2 := atan2(cs12 , cc12) + σ12 arccos

 cp12√
c2

s12
+ c2

c12

 , (6a)

and

n2 := −d1/2 , (6b)

with σ12 ∈ {−1,+1} and
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
cp12 := dT

1 (d1/2)(d1/2)
Td?

2 − IdT
1

Id2

cc12 := dT
1 S(d1/2)

2d?
2

cs12 := dT
1 S(−d1/2)d?

2

, (7)

where

d?
2 := R(θ1, n1)d2 . (8)

There are, in general, two candidates for R1
2. Such ambiguity of the solution is

condensed in σ12, which carries the choice made by the algorithm after the disambiguation
and is useful to the covariance computation. The same reasoning applies to R1

3.

3.2.2. Inertial Attitude Candidate

Considering the data in branch 1–2, the constraints on RI
1 are given by

Id1 = RI
1d1

and

Id2 = RI
1R1

2d2 .

Since these constraints imply that there are two pairs of vectors represented in
two different coordinate frames, assuming that these vectors are non-collinear, then the
candidates for RI

1 are computed using the TRIAD algorithm [11]. Therefore, the direct
application of the TRIAD results in

(
RI

1
)

A and
(
RI

1
)

B, if Id1 6= ± Id2. Indeed, from the first
branch

RI
1 = Id1dT

1 +
S
( Id1

) Id2

‖S( Id1) Id2‖

(
S(d1)R1

2d2∥∥S(d1)R1
2d2
∥∥
)T

+

(
S
(

Id1

) S
( Id1

) Id2

‖S( Id1) Id2‖

)(
S(d1)

S(d1)R1
2d2

‖S(d1)R1
2d2‖

)T

, (9)

where
(
RI

1
)

A and
(
RI

1
)

B are obtained by replacing R1
2 with

(
R1

2
)

A and
(
R1

2
)

B, respectively.
Similarly,

(
RI

1
)

C and
(
RI

1
)

D are obtained by applying the term analogous to (9) for
branch 1–3 and replacing R1

3 with
(
R1

3
)

C and
(
R1

3
)

D, respectively.

3.2.3. Comparison

Recalling that the configuration is assumed non-degenerate; then, from the four candidates
for RI

1, there is a pair of identical matrices emerging from the two different branches. This means
that at least one of the following equations must be verified:

(
RI

1

)
A
=
(

RI
1

)
C

,
(

RI
1

)
A
=
(

RI
1

)
D

,
(

RI
1

)
B
=
(

RI
1

)
C

, or
(

RI
1

)
B
=
(

RI
1

)
D

.

The comparison between candidates is made resorting to the rotation defined by(
RI

1

)
XY

:=
(

RI
1

)
X

(
RI

1

)T

Y
, (10)

where
(
RI

1
)

X and
(
RI

1
)

Y represent different candidates. This rotation is an identity matrix
when

(
RI

1
)
X and

(
RI

1
)
Y are identical. In such a case, the principal angle of

(
RI

1
)

XY is
zero, and, therefore, its absolute value is used as the comparison parameter that gives the
proximity between each pair of candidates for RI

1.
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The trace is used to find the principal angle of (10) because the trace of a square matrix
is the sum of its eigenvalues, which, in this case, is given as trace

((
RI

1
)

XY

)
= 1+ 2 cos(θXY),

where θXY is the principal angle of
(
RI

1
)

XY. Then, using µ to denote the absolute value
of the principal angle, i.e., µ := |θ|, and rearranging the equation, it follows that the
comparison parameter is expressed as

µXY =

∣∣∣∣∣arccos

(
trace

((
RI

1
)

XY

)
− 1

2

)∣∣∣∣∣ . (11)

3.2.4. Complete Solution

The remaining attitude matrices, i.e., R2
3, RI

2, and RI
3, are obtained from a product

between the attitudes already determined, given as

RI
2 = RI

1R1
2 , (12a)

RI
3 = RI

1R1
3 , (12b)

and

R2
3 = R1

2
TR1

3 . (12c)

3.2.5. Sensor Errors

In the presence of sensor errors, the inertial candidates do not match exactly, in general.
Hence, the values of µ are, in general, different from zero. In this case, the solution is given
by the smallest µ. Nonetheless, the smallest value of µ includes two different candidates
for RI

1 due to noise errors. The final value for this inertial attitude is found by solving the
weighted orthogonal Procrustes problem as described in [30,31]. Thus far, the covariance is
unknown, in which case all weights are set to be identical and the result is an average matrix.
However, the covariance matrices, defined in the uncertainty analysis given in the next
section, allow an optimization by considering the uncertainty of each candidate in the
weight choice. The weighted orthogonal Procrustes problem finds the value of RI

1 which
minimizes the cost function given as

c
(

RI
1

)
:=
∥∥∥(A− RI

1B
)

G−1/2
∥∥∥2

, (13)

where A is the matrix which combines both inertial candidates, as defined by

A :=
[(

RI
1
)

X

(
RI

1
)

Y

]
, (14)

B is the matrix with the respective references, as defined by

B :=
[
I I

]
, (15)

and G is a diagonal matrix whose entries are the problem weights and is given as

G = diag
(

σ2
1 , σ2

2 , σ2
3 , σ2

4 , σ2
5 , σ2

6

)
.

Such weights are defined as the maximum eigenvalues of Σa[i] , which denotes the covariance
matrix of the i-th column of A. Hence,

σ2
i := λmax

(
Σa[i]

)
for i = 1, 2, 3, 4, 5, 6 . (16)

The solution of the weighted orthogonal Procrustes problem is determined from the
weighted covariance between observations and references, which is computed resorting
to the symmetric weight matrix given as W = G−1 − 1

nw
G−111TG−1 with nw = 1TG−11.
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Therefore, considering the SVD expressed as AWBT = UDVT, it follows that the solution
for RI

1 is given by

RI
1 = U

1 0 0
0 1 0
0 0 det

(
UVT)

VT .

4. Uncertainty Analysis

The uncertainty analysis is divided into three parts: the analysis of the candidates
of a single branch, the analysis of the combined solution for RI

1, and the analysis of the
solutions for RI

2, RI
3, and R2

3. The first implements a first-order perturbation and obtains the
respective covariance matrices considering the linearization of the solutions. It is assumed
that the perturbation is small enough for the linearization to be valid. The second applies
the weighted orthogonal Procrustes uncertainty analysis, which has been reported in the
literature and follows the same principles of linear perturbation; see [32]. Lastly, the third
part applies the covariance definition and resorts to the results of the previous two parts.

4.1. Analysis of a Branch

In this section, consider the branch 1–2 and the respective candidates for R1
2 and

RI
1. Moreover, denote the inertial candidate of branch 1–2 which minimizes µ, from (11),

as
(
RI

1
)

X. The ensuing analysis is analogous to that of branch 1–3, and, therefore, the
respective expressions for the covariance matrices of such a branch are easily obtained from
the results described hereafter.

The noise analysis of the branch attitude candidates considers a first-order perturbation
in the measurements made by the sensors. Such perturbation propagates through all the
operations required to obtain each of the attitude matrices and is reflected in their errors.
Then, the perturbation at the level of the attitude is used to compute the respective
covariance matrix, which summarizes the expected first-order errors for a particular set of
measurements disturbed by noise following a known distribution.

At the level of the measurements, consider the perturbations described by the following
error models

d1 = d1
(0) + ε d1

(1) + O
(

ε2
)

, (17a)

d2 = d2
(0) + ε d2

(1) + O
(

ε2
)

, (17b)

d12 = d12
(0) + ε d12

(1) + O
(

ε2
)

, (17c)

and

d21 = d21
(0) + ε d21

(1) + O
(

ε2
)

, (17d)

where ε denotes a smallness parameter, (.)(0) denotes the zeroth-order terms, (.)(1) denotes
the first-order terms, and O

(
ε2) denotes the higher-order terms. Moreover, the first-order

errors are assumed to follow zero mean known distributions and the respective covariance
matrices are defined as

Σ1 :=
〈

d1
(1)
(

d1
(1)
)T
〉

,

Σ2 :=
〈

d2
(1)
(

d2
(1)
)T
〉

,

Σ12 :=
〈

d12
(1)
(

d12
(1)
)T
〉
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and

Σ21 :=
〈

d21
(1)
(

d21
(1)
)T
〉

.

Next, consider the analogous perturbation model applied to the attitude matrices of
the branch, as given by

R1
2 = R1

2
(0) + εR1

2
(1) + O

(
ε2
)

, (18a)

and (
RI

1

)
X
=
(

RI
1

)(0)
X

+ ε
(

RI
1

)(1)
X

+ O
(

ε2
)

, (18b)

with the respective covariance matrices defined as

ΣR12 :=
〈

R1
2
(1)
(

R1
2
(1)
)T
〉

, (19a)

and

ΣRx :=

〈(
RI

1

)(1)
X

((
RI

1

)(1)
X

)T
〉

. (19b)

Assumption 1. The first-order perturbations of the measurements are small enough, such that the
perturbations induced in the attitude are approximately linear.

Assumption 1 guarantees that the expected values of R1
2
(0) and

(
RI

1
)(0)

X , as defined
in (18), are equal to their respective true values. As a result, the solutions for R1

2 and
(
RI

1
)

X
can be linearized using a first-order Taylor approximation, provided that the respective Jacobian
matrices are well defined. Moreover, the covariance matrices in (19) are computed from the
propagation of the measurement perturbations in the linearized solution. The cases where
the Jacobian is not well defined are associated with degenerate or coplanar configurations, as
will be concluded in the sequel. Finally, the numerical simulations in Section 5 validate
Assumption 1 for a typical sensor noise value.

4.1.1. Linearized Solution

Consider the vector of combined measurements required in branch 1–2 given by

z2 :=
[
dT

1 dT
1/2 dT

2/1 dT
2

]T
,

and recall the Taylor expansion of a function. Since the attitude matrices can be viewed as a set
of 3 vectors each with 3 functions, then the linearization of the i-th column of R1

2 is given as

R1
2[i](z2) = R1 (0)

2[i] + DR1
2[i]

(
z2 − z2

(0)
)

(20)

with R1
2[i](z2) denoting the i-th column of the attitude matrix and the respective Jacobian

matrix defined as

DR1
2[i] :=

[
∂R1

2[i]
∂d1[1]

...
∂R1

2[i]
∂d1/2[1]

...
∂R1

2[i]
∂d2/1[1]

...
∂R1

2[i]
∂d2[1]

∂R1
2[i]

∂d2[2]

∂R1
2[i]

∂d2[3]

]
,

where d1[1] denotes the first element of d1 and analogously for the remaining measurements.
Recall (4) and the respective expressions for each of its parameters given in (5)–(7).

Then, the dependence of the relative attitude on the measurements can be tracked by
drawing a tree of the variables involved in the computation of each parameter as follows:
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R1
2

n1

d1/2 d2/1

n2

d1/2

θ2

cs12

d1 d1/2 d2/1 d2

cc12

d1 d1/2 d2/1 d2

cp12

d1 d1/2 d2/1 d2

Then, recalling the chain rule of the partial derivatives, it follows that

∂R1
2

∂d1[j]
=

∂R1
2

∂θ2

(
∂θ2

∂cs12

∂cs12

∂d1[j]
+

∂θ2

∂cc12

∂cc12

∂d1[j]
+

∂θ2

∂cp12

∂cp12

∂d1[j]

)
, (21a)

∂R1
2

∂d12[j]
=

3

∑
k=1

∂R1
2

∂n1[k]

∂n1[k]

∂d12[j]
+

∂R1
2

∂n2[k]

∂n2[k]

∂d12[j]

+
∂R1

2
∂θ2

(
∂θ2

∂cs12

∂cs12

∂d12[j]
+

∂θ2

∂cc12

∂cc12

∂d12[j]
+

∂θ2

∂cp12

∂cp12

∂d12[j]

)
, (21b)

∂R1
2

∂d21[j]
=

3

∑
k=1

∂R1
2

∂n1[k]

∂n1[k]

∂d21[j]
+

∂R1
2

∂θ2

(
∂θ2

∂cs12

∂cs12

∂d21[j]
+

∂θ2

∂cc12

∂cc12

∂d21[j]
+

∂θ2

∂cp12

∂cp12

∂d21[j]

)
, (21c)

and

∂R1
2

∂d2[j]
=

∂R1
2

∂θ2

(
∂θ2

∂cs12

∂cs12

∂d2[j]
+

∂θ2

∂cc12

∂cc12

∂d2[j]
+

∂θ2

∂cp12

∂cp12

∂d2[j]

)
. (21d)

All the partial derivatives expressed in (21) are given in Appendix A and are obtained
directly from the relative attitude solution given in Section 3.

Similarly, using the Rx[i] to denote the i-th column of
(
RI

1
)

X, the column-wise linearization

of
(
RI

1
)

X is given by

Rx[i](z2) = R (0)
x[1] + DRx[i]

(
z2 − z2

(0)
)

(22)

with Rx[i](z2) denoting the i-th column of the attitude matrix and the respective Jacobian
matrix defined as

DRx[i] :=
[

∂Rx[i]
∂d1[1]

...
∂Rx[i]

∂d1/2[1]
...

∂Rx[i]
∂d2/1[1]

...
∂Rx[i]
∂d2[3]

]
. (23)

Recalling (9) and that R1
2 is computed from (4), it follows that the dependence of the

inertial candidate of branch 1–2 on the measurements can be tracked by drawing a tree of
variables, analogous to the one concerning R1

2, as follows:
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(
RI

1
)

X

n1

d1/2 d2/1

n2

d1/2

θ2

cs12

d1 d1/2 d2/1 d2

cc12

d1 d1/2 d2/1 d2

cp12

d1 d1/2 d2/1 d2

d1 d2

Then, recalling the chain rule of the partial derivatives, it follows that

∂
(
RI

1
)

X
∂d1[j]

=
∂
(
RI

1
)

X(z2)

∂d1[j]
+

∂
(
RI

1
)

X
∂θ2

(
∂θ2

∂cs12

∂cs12

∂d1[j]
+

∂θ2

∂cc12

∂cc12

∂d1[j]
+

∂θ2

∂cp12

∂cp12

∂d1[j]

)
, (24a)

∂
(
RI

1
)

X
∂d12[j]

=
3

∑
k=1

∂
(
RI

1
)

X
∂n1[k]

∂n1[k]

∂d12[j]
+

∂
(
RI

1
)

X
∂n2[k]

∂n2[k]

∂d12[j]

+
∂
(
RI

1
)

X
∂θ2

(
∂θ2

∂cs12

∂cs12

∂d12[j]
+

∂θ2

∂cc12

∂cc12

∂d12[j]
+

∂θ2

∂cp12

∂cp12

∂d12[j]

)
, (24b)

∂
(
RI

1
)

X
∂d21[j]

=
3

∑
k=1

∂
(
RI

1
)

X
∂n1[k]

∂n1[k]

∂d21[j]

+
∂
(
RI

1
)

X
∂θ2

(
∂θ2

∂cs12

∂cs12

∂d21[j]
+

∂θ2

∂cc12

∂cc12

∂d21[j]
+

∂θ2

∂cp12

∂cp12

∂d21[j]

)
, (24c)

and

∂
(
RI

1
)

X
∂d2[j]

=
∂
(
RI

1
)

X(z2)

∂d2[j]
+

∂
(
RI

1
)

X
∂θ2

(
∂θ2

∂cs12

∂cs12

∂d2[j]
+

∂θ2

∂cc12

∂cc12

∂d2[j]
+

∂θ2

∂cp12

∂cp12

∂d2[j]

)
. (24d)

Again, all the partial derivatives expressed in (24) are given in Appendix A and are obtained
directly from the relative attitude solution given in Section 3.

4.1.2. Covariance Matrices

Recalling the definition of the covariance matrices in (19a) and (19b), it is concluded that
the covariance of a rotation matrix is the sum of the covariance of the respective columns.
Therefore, we substitute the first-order perturbations in (20) and (22) which, recalling the matrix
multiplication properties and that the expected value is a linear operator, yield

ΣR12 =
3

∑
i=1

DR1
2[i]

〈
z2
(1)
(

z2
(1)
)T
〉(

DR1
2[i]

)T
(25a)

and

ΣRx =
3

∑
i=1

DRx[i]

〈
z2
(1)
(

z2
(1)
)T
〉(

DRI
x[i]

)T
, (25b)
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where

〈
z2
(1)
(

z2
(1)
)T
〉

=


Σ1 0 0 0
0 Σ12 0 0
0 0 Σ21 0
0 0 0 Σ2

 . (26)

The analogous matrices for branch 1–3, i.e., ΣR13 and ΣRy, are computed using
completely analogous expressions.

4.1.3. Covariance of Error Rotation Vector

The rotation vector of the attitude error denotes the axis and magnitude of such error.
Since it is an intuitive representation for the error, the simulation results are expressed as
rotation vectors, and, hence, it is convenient to denote the theoretical covariance of such a
variable for comparison.

Consider R1
2 and assume small errors. Then, considering the first-order errors, the

attitude error matrix is approximately given by [9] (p. 59) R1
2 ≈ (I− S(δθ12))R1

2
(0), where

δθ12 denotes the rotation vector of the error. Therefore, recalling the perturbation model
in (18) and properties (2) and (3), the covariance with respect to δθ12 is given by

Σδθ12 = −
[

ΣR12 +
1
2

trace(ΣR12)I
]

. (27)

Analogous transformations yield Σδθ13 , Σδθx , and Σδθy . Furthermore, the inverse
transformation is expressed as

ΣR12 = −Σδθ12 + trace
(
Σδθ12

)
I . (28)

4.2. Analysis of the Procrustes Optimization

Before considering the covariance associated with RI
1, it is convenient to define the

analogous term of z2 which, for branch 1–3, is defined as

z3 :=
[
dT

1 dT
1/3 dT

3/1 dT
3

]T
.

As a consequence of the independence of measurements, the cross-covariance between z2
and z3 is given as

〈
z2
(1)
(

z3
(1)
)T
〉

=


Σ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (29)

Moreover, denote the i-th column of
(
RI

1
)

Y as Ry[i] and recall that Rx[i] represents the i-th

column of
(
RI

1
)

X . Then, the respective cross-covariance is defined as〈
R (1)

x[i]

(
R (1)

y[j]

)T
〉

= DRx[i]

〈
z2
(1)
(

z3
(1)
)T
〉(

DRy[j]

)T
, (30)

with DRx[i] defined in (23) and DRy[i] being its analogous term for branch 1–3.
Next, recall that in the solution described in Section 3, the algorithm chooses the pair

of branch candidates which are most consistent with each other, after having compared all
candidates for RI

1. Nonetheless, there are two distinct values for RI
1 in the presence of noise,

and therefore, the final result is given by the solution of the weighted orthogonal Procrustes
problem—that is, the rotation that minimizes the cost expressed in (13). The covariance
for such a problem is considered in [32] and is given with respect to the rotation vector
of the error. Nonetheless, such covariance can be converted to the analogous term of
(19a) and (19b) by applying (28). Hence, recall that
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RI
1 ≈ (I− S(δθi1))RI

1
(0) , (31)

and that the covariance with respect to the rotation vector is defined as Σδθi1 =
〈

δθi1δθT
i1

〉
.

In [32], it is shown that RI
1
(0) corresponds to the true value of the attitude, which is valid here

because R1
2
(0) and

(
RI

1
)(0)

X were shown to be the true values and the analogous conclusion

is made for R1
3
(0) and

(
RI

1
)(0)

Y . Then, from (15), B has zero uncertainty, which simplifies the
covariance matrix described in [32] to

Σδθi1 = H−1

[
6

∑
i=1

6

∑
j=1

σ−2
i σ−2

j S
(

RI
1
(0)b[i]

)〈
ā(1)
[i]

(
ā(1)
[j]

)T
〉

S
(

RI
1
(0)b[j]

)]
H−1T

(32)

where σi denotes the i-th weight as defined in (16), b[i] is the i-th column of B, as defined
in (15), the auxiliary matrix H is given by

H := −
6

∑
i=1

σ−2
i S

(
RI

1
(0)b[i]

)
S
(

RI
1
(0)b[i]

)T
+

1
nw

6

∑
i=1

6

∑
j=1

σ−2
i σ−2

j S
(

RI
1
(0)b[i]

)
S
(

RI
1
(0)b[j]

)T
,

and the expected values in (32) are defined as

〈
ā(1)
[i]

(
ā(1)
[j]

)T
〉

=

〈
a(1)
[i]

(
a(1)
[j]

)T
〉
− 1

nw

6

∑
k=1

σ−2
k

〈
a(1)
[k]

(
a(1)
[j]

)T
〉

− 1
nw

6

∑
k=1

σ−2
k

〈
a(1)
[i]

(
a(1)
[k]

)T
〉
+

1
n2

w

6

∑
k=1

6

∑
l=1

σ−2
k σ−2

l

〈
a(1)
[k]

(
a(1)
[l]

)T
〉

,

using a[i] to denote the i-th column of A, as defined in (14). Consequently, if i = 1, 2, 3, then

a(1)
[i] = R (1)

x[i] = DRx[i]z2
(1) ,

otherwise, if i = 4, 5, 6, then

a(1)
[i] = R (1)

y[i−3] = DRy[i−3]z3
(1) .

As a result,
〈

a(1)
[i]

(
a(1)
[j]

)T
〉

is computed by substituting (23), (26), and (29), and their

respective analogous terms for branch 1–3. For more details on the derivation of this
covariance, refer to [32].

4.3. Covariance of Other Attitudes

The uncertainty analysis is concluded by computing the covariance matrices of
RI

2, RI
3, and R2

3. For this purpose, recall the relations in (12) and apply the first-order
perturbation, similarly to (18), which yields

RI
2
(1) = RI

1
(1)R1

2
(0) + RI

1
(0)R1

2
(1) , (33a)

RI
3
(1) = RI

1
(1)R1

3
(0) + RI

1
(0)R1

3
(1) , (33b)

and

R2
3
(1) =

(
R1

2
(1)
)T

R1
3
(0) +

(
R1

2
(0)
)T

R1
3
(1) . (33c)
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First, consider the covariance of RI
2, which is completely analogous to the covariance

of RI
3, and therefore, the analysis of the latter is omitted. One method to obtain the

covariance explicitly is to analyze the first-order perturbation element by element. Hence,
from (33a), it follows that

RI (1)
2[i,j] =

(
RI (1)

1[i]

)T
R1 (0)

2[j] +
(

RI (0)
1[i]

)T
R1 (1)

2[j] , (34)

where RI
2
(1)[i, j] denotes the element of RI

2 at row i and column j, and the subscript [j],

in R1 (0)
2[j] , denotes the j-th column of the respective rotation. Next, applying the definition of

the covariance matrix, the respective element at the i-th row and j-th column is given as

Σi2[i,j] =

〈
RI

2
(1)
(

RI
2
(1)
)T
〉
[i,j]

=

〈((
RI

2
T
)(1)
[i]

)T(
RI

2
T
)(1)
[j]

〉
=

3

∑
k=1

〈
RI (1)

2[i,k]R
I (1)
2[j,k]

〉
, (35)

where the subscript [i, k] denotes the element at the i-th row and k-th column. Then, substituting
(34) in (35) gives

Σi2[i,j] =

〈
RI

2
(1)
(

RI
2
(1)
)T
〉
[i,j]

=
3

∑
k=1

((
RI

1
T
)(0)
[i]

)T〈
R1 (1)

2[k]

(
R1 (1)

2[k]

)T
〉(

RI
1

T
)(0)
[j]

+
(

R1 (0)
2[k]

)T
〈(

RI
1

T
)(1)
[i]

(
R1 (1)

2[k]

)T
〉(

RI
1

T
)(0)
[j]

+

((
RI

1
T
)(0)
[i]

)T
〈

R1 (1)
2[k]

((
RI

1
T
)(1)
[j]

)T
〉

R1 (0)
2[k]

+
(

R1 (0)
2[k]

)T
〈(

RI
1

T
)(1)
[i]

((
RI

1
T
)(1)
[j]

)T
〉

R1 (0)
2[k] .

(36)

Recalling (31) and that RI
1

T ≈ (I− S(δθ1i))RI
1

T(0), it is concluded that δθi1 = −RI
1
(0)δθ1i. As a

result, it follows that

〈(
RI

1
T
)(1)
[i]

((
RI

1
T
)(1)
[j]

)T
〉

= S
((

RI
1

T
)(0)
[i]

)(
RI

1
(0)
)T〈

δθi1δθT
i1

〉
RI

1
(0)S

((
RI

1
T
)(0)
[i]

)T

with
〈

δθi1δθT
i1

〉
given in (32). Moreover, the expected value in the first term of (36) is

obtained from the linearization (20), which results in〈
R1 (1)

2[k]

(
R1 (1)

2[k]

)T
〉

= DR1
2[k]

〈
z2
(1)
(

z2
(1)
)T
〉(

DR1
2[k]

)T
, (37)

where
〈

z2
(1)
(

z2
(1)
)T
〉

is given in (26). Lastly, the expected value of the second term of (36),

which is analogous to the expected value in the third term, is expressed as

〈(
RI

1
T
)(1)
[k]

(
R1 (1)

2[j]

)T
〉

= S
((

RI
1

T
)(0)
[i]

)(
RI

1
(0)
)T
〈

δθi1

(
z2
(1)
)T
〉(

DR1
2[j]

)T
.

From the definition of δθi1 given in [32], it follows that〈
δθi1

(
z2
(1)
)T
〉

= H−1
6

∑
m=1
−σ−2

m S
(

RI
1
(0)b[m]

)(〈
a[m]

(
z2
(1)
)T
〉
−

6

∑
n=1

σ−2
n

〈
a[n]
(

z2
(1)
)T
〉)

,
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where a[m] = R (1)
x[m]

if m = 1, 2, 3 or a[m] = R (1)
y[m−3] if m = 4, 5, 6, and therefore, from (22),

〈
a[m]

(
z2
(1)
)T
〉

= DRx[m]

〈
z2
(1)
(

z2
(1)
)T
〉

or
〈

a[m]

(
z2
(1)
)T
〉

= DRy[m−3]

〈
z3
(1)
(

z2
(1)
)T
〉

,

respectively.
Using the same train of thought for the covariance of R2

3, the perturbation in (33c) is
rewritten as

R2 (1)
3[i,j] =

(
R1 (1)

2[i]

)T
R1 (0)

3[j] +
(

R1 (0)
2[i]

)T
R1 (1)

3[j] , (38)

which, applying the definition of covariance matrix, gives

Σ23[i,j] =

〈
R2

3
(1)
(

R2
3
(1)
)T
〉
[i,j]

=
3

∑
k=1

〈
R2 (1)

3[i,k]R
2 (1)
3[j,k]

〉
.

Then, from (38), it follows that

Σ23[i,j] =
3

∑
k=1

(
R1 (0)

3[k]

)T
〈

R1 (1)
2[i]

(
R1 (1)

2[j]

)T
〉

R1 (0)
3[k]

+
(

R1 (0)
2[i]

)T
〈

R1 (1)
3[k]

(
R1 (1)

3[k]

)T
〉

R1 (0)
2[j]

+
(

R1 (0)
2[i]

)T
〈

R1 (1)
3[k]

(
R1 (1)

2[j]

)T
〉

R1 (0)
3[k]

+
(

R1 (0)
3[k]

)T
〈

R1 (1)
2[i]

(
R1 (1)

3[k]

)T
〉

R1 (0)
2[j] .

(39)

The explicit expected values in (39) are given next. First,
〈

R1 (1)
2[i]

(
R1 (1)

2[j]

)T
〉

is given in (37).

Secondly, from the analogous term of (20), it follows that〈
R1 (1)

3[k]

(
R1 (1)

3[k]

)T
〉

= DR1
3[k]

〈
z3
(1)
(

z3
(1)
)T
〉(

DR1
3[k]

)T
,

with
〈

z3
(1)
(

z3
(1)
)T
〉

being the analogous term of (26). Finally, the cross expected value in

the third term, and analogously in the fourth term, is given as〈
R1 (1)

3[k]

(
R1 (1)

2[j]

)T
〉

= DR1
3[k]

〈
z3
(1)
(

z2
(1)
)T
〉(

DR1
2[j]

)T
,

with
〈

z3
(1)
(

z2
(1)
)T
〉

given in (29).

4.4. Sensitivity in Special Configurations

The uncertainty analysis is invalid in the cases where there is more than one solution
to the attitude problem. However, it is important to analyze and understand the expected
noise in the neighborhood of such configurations. In the following analysis, consider
branch 1–2.

Near degenerate configurations, as with the example depicted in Figure 2, where there
are at least two independent measurements aligned with each other, the error increases
because such alignment results in the loss of attitude information. In the limit, both
cs12 and cc12 tend to zero and the uncertainty becomes infinitely large, as predicted in (A1).
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d1

d1/2

d2

d2/1

Figure 2. Example of a degenerate branch 1–2.

Near coplanar, but not degenerate, configurations, as with the example depicted in
Figure 3, where the branch measurements denoted in the same frame are coplanar, the
error increases for the same reason as in the degenerate cases, i.e., loss of information. In
such a case, the branch has a unique solution in the absence of noise, but the uncertainty
becomes increasingly larger. Such errors are predicted in (A1), because, by definition, from
(6a), c2

s12 + c2
c12 ≈ c2

p12 in the neighborhood of such configurations.

Figure 3. Example of a coplanar branch 1–2.

The ambiguous, but not degenerate or coplanar, configurations, as the in example in
Figure 4, do not affect the theoretical covariance in their neighborhood. In their vicinity,
the errors may greatly increase in practice because the solution may jump to the incorrect
candidate of the branch.

d1

d3d2

d2/1

d1/2 d1/3

d3/1

Figure 4. Example of an ambiguous formation.

These special configurations are in a zero measure subset of the complete configuration
set, which was shown in [29]. Consequently, these configurations have zero probability in
practice, even though they can affect the accuracy of the solution in configurations in their
neighborhood, as will be shown in the simulations.

5. Simulations

The covariance matrices obtained in the prior section are validated by comparing
the results of the numerical implementation with the theoretical values predicted in such
expressions. The goal is to show that the theoretical uncertainty is close to the numerical
values and that the higher-order perturbations are not significant. For this purpose, Monte
Carlo simulations are carried out. First, a series of ground truth values is selected by
setting the initial configuration and the maneuver executed by the vehicles. Then, noise
is added to the measurements by sampling from their respective measurement model
probability distribution and the attitude estimates are obtained applying the solution
described in Section 3. The experience is repeated multiple times, 1000 times to be precise,
which allows the computation of the standard deviation for each of the configurations
considered. Finally, the theoretical covariance is computed for each of the configurations
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and the respective theoretical standard deviation is compared with the standard deviation
obtained numerically, by plotting both in the same axis. Three different experiences are
carried out such that the predictions near each of the special configurations, as defined
in [29] and whose examples are depicted in Figures 2–4, are tested. The first experience
contains a degenerate case, the second experience contains a coplanar case, and the third
experience contains an ambiguous configuration.

5.1. Models

In this section, two models are described. Firstly, the measurement model is used for
all sensors of the formation, which represents a focal plane array. The second is the motion
model of each vehicle, which follows the rigid-body dynamics, and is required exclusively
to generate the ground truth of the simulation.

5.1.1. Focal Plane Array Model

The measurement model is based on a wide FOV focal plane detector [19], which can
sense the direction towards a given signal. It is the same model used in the formations
considered in [27,28].

Denote the image-space observation by the vector m ≡ [χ ψ]T. Then, the measurement
model is given by m̃ = m + n (the image-space frame is the 2D coordinate system of the
sensor, whereas the object-space frame is the vehicle body coordinate system), where m̃ is
the measurement and n is the random noise. The noise model describing the uncertainty
of the image-space observations is supposed to follow a zero mean Gaussian distribution,
n ∼ N (0, ΣF), with the covariance of the focal plane given by [18]

ΣF =
σ2

1 + d(χ2 + ψ2)

[(
1 + dχ2)2

(dχψ)2

(dχψ)2 (
1 + dψ2)2

]
, (40)

where σ2 is the variance of the measurement errors associated with χ and ψ, and d is a
parameter on the order of 1.

The focal length is assumed to be unitary and the sensor boresight is assumed to be
the z-axis. Hence, the measurement vector in the object space and sensor frame is given as

Sd =
1√

1 + χ2 + ψ2

[
χ ψ 1

]T . (41)

Consequently, the covariance of the sensor, at the sensor frame, is given as [19]

ΣS = L ΣF LT , (42)

where L is the Jacobian of the relation between the sensor and focal coordinates, which is
given as

L =
∂ Sd
∂m

=
1√

1 + χ2 + ψ2

[
1 0 0
0 1 0

]T

+
1

1 + χ2 + ψ2
Sd
[
χ ψ

]
.

Furthermore, it is assumed that there are sensors aligned with each body-fixed axis
direction and the measurement is made by the sensor whose value of m̃ is closest to 0.
Hence, the six possible transformations between the body-fixed frame and the sensor frame
are given by

RS1
B =

[
0 0 −1
0 1 0
1 0 0

]
, RS2
B =

[
1 0 0
0 0 −1
0 1 0

]
, and RS3

B =

[
1 0 0
0 1 0
0 0 1

]
, (43a)

respectively, when the measurement component with the maximum absolute value is
positive and is either 1, 2, or 3. If the maximum absolute value component is negative, then
the analogous transformations are given by
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RS−1
B =

[
0 0 1
0 1 0
−1 0 0

]
, RS−2
B =

[
1 0 0
0 0 1
0 −1 0

]
, and RS−3

B =

[
−1 0 0
0 1 0
0 0 −1

]
. (43b)

5.1.2. Motion Model

The simulation ground truth considers the rigid-body dynamics such that the attitude
varies with time despite the estimation method being algebraic. Such a feature enables the
assessment of the uncertainty obtained in Section 4 for different attitude values. Therefore,
the motion model of the j-th vehicle is given by the attitude kinematics and the torque-free
rigid-body dynamics, respectively, expressed as

ṘI
j = RI

j S
(
ωj
)

(44)

and

ω̇j = −J−1
j S

(
ωj
)
Jjωj , (45)

where ω̇j denotes the angular velocity of the j-th vehicle and Jj denotes the matrix of the
moment of inertia given in kg·m2 .

5.2. Setup
5.2.1. Initial Configuration

The initial configuration, which is illustrated in Figure 5, is identical for all three
experiments and is described by the values of the inertial attitudes and measurements.
Thus, the attitudes are initially given by RI

1 = RI
2 = RI

3 = I, whereas the initial values of
the LOS measurements at the inertial frame are given by

Id1/2 =
[
0 0 1

]T (46a)

and

Id1/3 =
[
1 0 0

]T , (46b)

and, finally, the initial inertial references are given by

Id1 =
[
0 1 0

]T , (47a)

Id2 =
[
1 0 0

]T , (47b)

and

Id3 =
[√

3/3
√

3/3
√

3/3
]T

. (47c)

These values define the initial configuration because all relative attitudes can be
computed from the product of two inertial attitudes and the values of the measurements
represented in different frames are obtained by applying one of the rotations.
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d2/1

d3/1

d3

d1/3

d1/2

d1

d2

Vehicle 1

Vehicle 2

Vehicle 3

Figure 5. Initial configuration for the simulation.

5.2.2. Motion Parameters

The rigid-body dynamics of all three vehicles are characterized by the moment of
inertia and the initial angular velocity. In this simulation, the moment of inertia is the same
for all three vehicles and is given by J1 = J2 = J3 = diag(70, 70, 60), which corresponds
to a cylindrical vehicle with 120 kg, 2 m of height, and the radius equal to 1 m, and the
initial angular velocities, in rad/s, are given by ω1 =

[
0.1 0 0

]T, ω2 =
[
0 0.1 0

]T,
and ω3 =

[
0 0 0.1

]T.

5.2.3. Maneuvers

Throughout each experience, the configuration of the vehicles is changed by a maneuver
described by a rotation of Id1/3, which affects the value of d1/3 and d3/1. All other
measurements are constant in the inertial coordinate frame.

The first experience considers that the value of Id1/3 at the time instant t is given,
recalling (1), by

Id1/3(t) = R
(

π
t

100
,
[
0 0 1

]T) Id1/3(0) , (48a)

where Id1/3(0) denotes the initial value defined in (46b). Instead, the second experience
considers that the value of Id1/3 at the time instant t is given by

Id1/3(t) = R
(
−π

t
200

,
[
0 1 0

]T) Id1/3(0) . (48b)

Finally, the third experience assumes that the value of Id1/3 at the time instant t is given by

Id1/3(t) = R
(

π
t

200
,
[
0 1 0

]T) Id1/3(0) . (48c)

All maneuvers take 100 s. The first rotates a total angle of π, the second a total angle of −π
2 ,

and the third a total angle of π
2 .

5.2.4. Simulation Procedure

All experiments consider a set of 1000 Monte Carlo trials that run for 100 s with
a sampling frequency of 10 Hz, which means that a measurement is made each 0.1 s.
The initial configuration and respective maneuver are those described previously. Moreover, all
sensors are characterized by a standard deviation of σ = 17× 10−6 rad.

In each experience, the ground truth values of the attitudes and angular velocities
are computed beforehand by solving the initial value problem given by (44) and (45).
Then, considering the initial values in the inertial frame given in (46) and (47), the ground
truth measurements are computed recalling (48a), (48b), or (48c), respectively, for the
first, the second, or the third experience, while all other measurements in the inertial
frame are constant. The measurements represented in the body-fixed frames are computed
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using the attitudes of the respective time instant. After computing the ground truth, the
simulation trials begin. Each trial consists in two tasks: first adding noise added to the
ground truth measurements and then computing the attitude estimates. There are 1000 trials
in each experience, which means that the attitude is estimated from noisy measurements
1000 times for each sampling instant.

More specifically, in each trial and at each sampling instant, noise is added to each of
the measurements following the measurement model described in Section 5.1.1. For this,
the true measurements are transformed into the appropriate sensor frame, using the correct
transformation in (43). Then, the focal coordinates are obtained from (41). Next, the covariance
in the sensor frame is computed from (40) and (42). Such covariance is used to sample the
noise in the sensor frame, which is then added to the respective measurement. The perturbed
measurement in the body-fixed frame is obtained, after applying the appropriate reverse
transformation in (43). Finally, the attitude estimates are computed applying the method
summarized in Section 3, and the respective error rotation vectors, considering R1

2, R1
3, and RI

1,
are obtained from

δθ12 = S
−1
(

R1
2
(0)R1

2
T − I

)
,

δθ13 = S
−1
(

R1
3
(0)R1

3
T − I

)
,

and
δθi1 = S

−1
(

RI
1
(0)RI

1
T − I

)
.

After all trials have finished, the element-wise standard deviation is obtained for each time
instant.

The theoretical expected values of δθ12 and δθi1 are obtained from the square root
of the diagonal elements of the covariance matrices, respectively, given in (27) and (32).
Both are computed for each time instant using the ground truth values of the simulation.
Moreover, the theoretical value of δθ13 is similarly obtained from the analogous term of (27).

5.3. Results

The results for each experience are given as the theoretical and numerical values for
δθ12, δθ13, and δθi1, since these are the attitudes which are directly computed from the
solution in Section 3.

For the first experience, which corresponds to the maneuver in (48a), the results are
depicted in Figure 6a–c. Moreover, the results for the second experience are depicted in
Figure 7a–c, which correspond to the maneuver in (48b). Lastly, the results for the third
experience are depicted in Figure 8a–c, which correspond to the maneuver in (48c).
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Figure 6. Attitude error standard deviations in experience 1. (a) R1
2 error standard deviation in

experience 1, (b) R1
3 error standard deviation in experience 1, (c) RI

1 error standard deviation in
experience 1.
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Figure 7. Attitude error standard deviations in experience 2. (a) R1
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Figure 8. Attitude error standard deviations in experience 3. (a) R1
2 error standard deviation in

experience 3, (b) R1
3 error standard deviation in experience 3, (c) RI

1 error standard deviation in
experience 3.

Results Analysis

In the first experience, the configuration at 50 s is both degenerate for branch 1–3 and
ambiguous regarding the complete formation, which is depicted in Figure 9. Since d1/3 = −d1,
then the measurement set also satisfies the ambiguous conditions established in [29]. Therefore,
close to this time instant, the information provided by the measurements becomes gradually
insufficient to determine all three axes of the relative attitude between vehicles 1 and 3.
Moreover, in the vicinity of the 50 s, the information available is ambiguous; thus, the
solution alternates between two distinct attitude sets. Hence, close to such time, the error
increases gradually for R1

3, which is predicted theoretically, as observed in Figure 6b. In
the case of R1

2, however, the sudden increase in the numerical error at the 50 s time instant
is not predicted by the theoretical covariance, as seen in Figure 6a, because the respective
expression is not valid for ambiguous configurations. Nonetheless, such configurations
were previously characterized in [29] and can be classified prior to obtaining the attitude.
Lastly, it is evident that the theoretical errors are close to the numerical errors for the
configurations where the uncertainty characterization is valid.
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Figure 9. Ambiguous and degenerate configuration at 50 s of experience 1.

In the second experience, there is a coplanar configuration at 50 s, which is analogous
to the depiction in Figure 3. Similarly to the degenerate configuration in the first experience,
the information provided by the measurements becomes gradually insufficient to determine
all three axes of R1

3. Hence, it is expected that both the theoretical predictions and the
numerical results are analogous. As seen by comparing Figure 7b with Figure 6b, the results
are indeed similar to those obtained in the first experience. Furthermore, the theoretical
errors are close to the numerical errors for all attitudes except for the configurations where
the analysis is not valid close to the 50 s time instant.

In the third experience, there is an ambiguous configuration at 50 s, which is analogous
to the configuration in Figure 4. Therefore, the uncertainty analysis is invalid near this time
instant. It is evident from Figure 8a,c that, near such a configuration, the numerical errors
increase suddenly, as a result of the solution alternating between two distinct attitudes [29].

Lastly, as expected, the Procrustes optimization provides an improvement to the
solution since it gives a good estimate for RI

1 even when the uncertainty for one of the
candidates is high. Figures 6 and 7 are an example of such precision improvement, since
the errors of RI

1 are kept low as the errors of R1
3 increase.

In conclusion, the results show that the first-order perturbations give a good approximation
of the numerical errors in configurations which are not too close to one of the special configurations
described in [29]. Furthermore, the gradual loss of precision near degenerate configurations
is also predicted by the theoretical covariance.

6. Discussion

Attitude estimation is an essential part of the navigation, guidance, and control of
any autonomous system. Formations of autonomous vehicles are especially sensitive to
the accuracy of the attitude estimates in order to reach their goals safely. Furthermore,
the design of these systems and their mission is often subject to constraints, and, thus,
the attitude estimation must be accurate even in such conditions. The attitude estimation
problem studied in this document considers three vehicles in a constrained formation.

The uncertainty analysis of an estimation problem enables the characterization of
its precision in different conditions. It is essential for the integration of such estimates in
sensor fusion and for real-world application decisions. The analysis given in this document
characterizes the accuracy of the attitude for the three-vehicle constrained formation in
almost all configurations. The exceptions are the special cases where information is lost or
where the solution is not unique.

After briefly summarizing the problem and solution, the theoretical covariance matrices
associated with the errors of each attitude were computed resorting to first-order perturbations
in the measurements. Then, such results were validated with three different Monte Carlo
simulations, where the theoretical prediction was compared with the statistical errors of
multiple numerical implementations of the solution. It was shown that the theoretical
predictions were consistent with the numerical results, even in the neighborhood of the
special configurations, which validates the uncertainty analysis proposed in this paper.
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Appendix A. Partial Derivatives

This appendix contains all the expressions for the partial derivatives required in the
construction of the Jacobian matrices used in the linearization. For the remainder of the
section, let e[j] denote the j-th standard unit vector of the Euclidean space, respectively,
defined as e[1] :=

[
1 0 0

]
, e[2] :=

[
0 1 0

]
, and e[3] :=

[
0 0 1

]
.

Appendix A.1. Partial Derivative of R1
2

According to (4), the relative attitude varies with n1, n2, and θ2. Hence, from (1), it
follows that

∂R1
2

∂n1[j]
= 2R(θ2, n2)

(
e[j]n

T
1 + n1eT

[j]

)
,

∂R1
2

∂n2[j]
=
[
(1− cos θ2)

(
e[j]n

T
2 + n2eT

[j]

)
− sin θ2S

(
e[j]
)]

R(θ1, n1) ,

and

∂R1
2

∂θ2
=
[
sin θ2

(
n2nT

2 − I
)
− cos θ2S(n2)

]
R(θ1, n1) .

Appendix A.2. Partial Derivatives of n1

According to (5b), n1 varies directly with d1/2 and d2/1. Hence, it follows that
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∂n1

∂d1/2[j]
=


[n1nT

1−I]
‖d2/1−d1/2‖

e[j] if d2/1 6= d1/2

[I−n1nT
1 ]

‖S(d1/2)d1‖
S
(

e[j]
)

d1 otherwise

and

∂n1

∂d2/1[j]
=


[I−n1nT

1 ]
‖d2/1−d1/2‖

e[j] if d2/1 6= d1/2

0 otherwise
.

Appendix A.3. Partial Derivatives of n2

Since n2 = −d1/2, it follows that ∂n2
∂d1/2[j]

= −e[j].

Appendix A.4. Partial Derivatives of θ2

According to (6a), θ2 is a function of the scalar coefficients defined in (7). Hence, it
follows that

∂θ2

∂cs12
=

1
c2

s12 + c2
c12

cc12 + σ12
cs12cp12√

c2
s12 + c2

c12 − c2
p12

 , (A1a)

∂θ2

∂cc12
=

1
c2

s12 + c2
c12

−cs12 + σ12
cc12cp12√

c2
s12 + c2

c12 − c2
p12

 , (A1b)

and

∂θ2

∂cp12
= − σ√

c2
s12 + c2

c12 − c2
p12

. (A1c)

Appendix A.5. Partial Derivatives of cs12

Recalling (7) and (8), it follows that

∂cs12

∂d1[j]
= eT

[j]S(−d1/2)d
?
2 ,

∂cs12

∂d1/2[j]
= dT

1 S
(
−e[j]

)
d?

2 + 2dT
1 S(−d1/2)

[
∂n1

∂d1/2[j]
nT

1 + n1
∂n1

∂d1/2[j]

T
]

d2 ,

∂cs12

∂d2/1[j]
= 2dT

1 S(−d1/2)

[
∂n1

∂d2/1[j]
nT

1 + n1
∂n1

∂d2/1[j]

T
]

d2 ,

and

∂cs12

∂d2[j]
= dT

1 S(−d1/2)R(θ1, n1)e[j] .

Appendix A.6. Partial Derivatives of cc12

Recalling (7) and (8), it follows that

∂cc12

∂d1[j]
= eT

[j]S(d1/2)S(d1/2)d
?
2 ,
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∂cc12

∂d1/2[j]
= dT

1 S
(

e[j]
)

S(d1/2)d
?
2 + dT

1 S(d1/2)S
(

e[j]
)

d?
2

+ 2dT
1 S(d1/2)S(d1/2)

[
∂n1

∂d1/2[j]
nT

1 + n1
∂n1

∂d1/2[j]

T
]

d2 ,

∂cc12

∂d2/1[j]
= 2dT

1 S(d1/2)S(d1/2)

[
∂n1

∂d2/1[j]
nT

1 + n1
∂n1

∂d2/1[j]

T
]

d2 ,

and

∂cc12

∂d2[j]
= dT

1 S(d1/2)S(d1/2)R(θ1, n1)e[j] .

Appendix A.7. Partial Derivatives of cp12

Recalling (7) and (8), it follows that

∂cp12

∂d1[j]
= eT

[j]d1/2dT
1/2d?

2 ,

∂cp12

∂d1/2[j]
= dT

1 e[j]d
T
1/2d?

2 + dT
1 d1/2eT

[j]d
?
2 + 2dT

1 d1/2dT
1/2

[
∂n1

∂d1/2[j]
nT

1 + n1
∂n1

∂d1/2[j]

T
]

d2 ,

∂cp12

∂d2/1[j]
= 2dT

1 d1/2dT
1/2

[
∂n1

∂d2/1[j]
nT

1 + n1
∂n1

∂d2/1[j]

T
]

d2 ,

and

∂cp12

∂d2[j]
= dT

1 d1/2dT
1/2R(θ1, n1)e[j] .
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