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Abstract: The proliferation of low-cost Internet of Things (IoT) devices has led to a race between
wireless security and channel attacks. Traditional cryptography requires high computational power
and is not suitable for low-power IoT scenarios. Whilst recently developed physical layer security
(PLS) can exploit common wireless channel state information (CSI), its sensitivity to channel esti-
mation makes them vulnerable to attacks. In this work, we exploit an alternative common physics
shared between IoT transceivers: the monitored channel-irrelevant physical networked dynamics
(e.g., water/oil/gas/electrical signal-flows). Leveraging this, we propose, for the first time, graph
layer security (GLS), by exploiting the dependency in physical dynamics among network nodes
for information encryption and decryption. A graph Fourier transform (GFT) operator is used to
characterise such dependency into a graph-bandlimited subspace, which allows the generation of
channel-irrelevant cipher keys by maximising the secrecy rate. We evaluate our GLS against de-
signed active and passive attackers, using IEEE 39-Bus system. Results demonstrate that GLS is
not reliant on wireless CSI, and can combat attackers that have partial networked dynamic knowl-
edge (realistic access to full dynamic and critical nodes remains challenging). We believe this novel
GLS has widespread applicability in secure health monitoring and for digital twins in adversarial
radio environments.

Keywords: cyber-physical systems; wireless security; sensor network; infrastructure health monitoring;
graph signal processing

1. Introduction

Mass digitisation of people and things has opened the doorway to the Internet of
Things (IoT), critical in many social and industrial applications [1,2]. In particular, IoT
is envisaged to deliver the vital data to inform digital twins and improve infrastructure
maintenance and safety. In many cases, wireless IoT sensors that measure physical signals
(e.g., gas pressure, water contamination) are buried underground [3,4]. Encrypting the criti-
cal infrastructure information is important for national security, commercial sensitivity, and
anti-tampering requirements. Many current IoT wireless transmissions (e.g., LoRaWAN [5],
ZigBee) are vulnerable to eavesdropping. Authentication (e.g., over-the-air activation
session keys in LoRaWAN, elliptic curve Diffie–Hellman in Bluetooth) verifies the user’s
identity and prevents malicious users from accessing the network. Encrypted wireless
transmission protects data integrity and confidentiality [6].

1.1. From Public Key Cryptography to Physical Layer Security

Conventional encrypted communications employ symmetric encryption such as the
advanced encryption standard (AES), which relies on a secret key shared between them
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beforehand. Public key cryptography (PKC) is the de facto key distribution protocol,
although efficient conventional PKC schemes are complex and computationally not suitable
for IoT devices with limited capability [7]. This introduces not only a computational cost
challenge, but also sets the IoT devices at a disadvantage against the most powerful
eavesdroppers with orders of magnitude more computational power.

Physical layer security (PLS) has been proposed in recent years as a way to overcome
many of the aforementioned challenges, which can be categorised as key-less PLS [8,9]
and physical layer secret key generation (PL-SKG) [10–12]. Key-less PLS leverages the
superiority of legitimate channels over wiretap ones, and tries to maximise the secrecy rate
or signal to interference plus noise ratio (SINR) by steering the variables, e.g., beamforming
vectors [13], trajectory of autonomous system [14], and even the phases of a reconfigurable
intelligent surface (RIS) [15]. One challenge lies in that the superiority of the legitimate
channel may not be always satisfied. For example, an Eve can make the channel act as
adversary to legitimate nodes by introducing an Eve-controlled RIS. In such cases, key-
less PLS cannot guarantee an existence of feasible solutions for secrecy rate and SINR
maximisation.

Another family in PLS is PL-SKG, which exploits the reciprocal channel random-
ness to generate the shared secret key between legitimate nodes, without the need for
a PKC management and distribution protocol [6,16,17]. PL-SKG negates the risk of key
intercept and high computational requirement of PKC schemes [18], which makes it very
suitable for IoT devices. PL-SKG does, however, require the wireless channel between
nodes to be reciprocal (true for most propagation environments), random (small-scale
fading), and unique [19,20]. This is to ensure robust symmetric key generation and avoid
brute force attempts. Although PLS has been applied to a variety of embedded wireless
(e.g., autonomous vehicle [21], UAV [22,23], and molecular [24]) and wired (e.g., fibre [25])
communication systems, the shortfalls are always overlooked. First, the common features
used by PL-SKG for data encryption are not detached from the communications, e.g., us-
ing channel phases or received signal strength (RSS), which may provide the chances of
sophisticated eavesdroppers to decode the secret key [26,27]. Second, for both key-less
and PL-SKG, they require the IoT devices to make accurate estimations of the wireless
channel statistics [28]. Accurate estimation requires reasonably powerful signal processing
units and also requires a reasonably high communication signal-to-noise ratio (SNR). Many
embedded or underground IoT devices operate in low-communication SNR regimes, and
therefore PLS is not suitable.

1.2. Introducing Graph Layer Security (GLS): Encryption Using Networked Physics

To overcome the PLS requirement of a high-communication SNR for accurate wireless
channel estimation, we identify and exploit a different physical attribute that is common
to many IoT sensors. The general idea to exploit common physics has been proposed
before, such as common heartbeat in different medical IoT devices across a body. However,
those devices typically do not suffer from the aforementioned low-communication SNR
challenges. Here, we consider IoT devices placed in underground or embedded networked
systems, such as oil/gas/water pipes, electrical networks, optical fibre networks, and other
underground connected systems. In networked physical systems, a common continuity
equation connects all the dynamics (e.g., Navier–Stokes for flow, nonlinear Schrodinger
for optic transmission, power flow for electricity). We propose to exploit the common
networked physical signals at different IoT monitoring points to encrypt the IoT device’s
wireless data. Such networked physics are the time-varying networked signals under each
node, and are irrelevant with the wireless communications (e.g., channel phases and RSS).
For example, in a smart grid, the networked physics is the electricity flow (what we will
use in our simulation part). In a water distribution network, the networked physics can
be the time-varying water pressure or the concentrations of some compounds. This has
the following advantages: (1) IoT sensors usually have very high precision in measuring
the physical signals, and (2) it requires no specific knowledge or requirement of wireless
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channel or public key distribution. This novel physical driven security is distinctive from
both PKC and PLS, and its security independence from the digital environment makes it
more resilient against digital attacks. The main contributions of this work are summarised
in the following.

(1) We propose a novel digital encryption paradigm over a physical network called
graph layer security (GLS). The process is data-driven and model-agnostic. We exploit the
dependency of underlying networked physical dynamics to enable encryption amongst
digital transceivers, without complex computations (for key generation/management in
traditional cryptography-based method, or for channel estimating techniques in PLS). In
GLS, the encryption and decryption is based on an additive noise generated by the wireless
channel-irrelevant physical networked dynamic on one node, and can be compensated by
other nodes with dependent networked dynamics. Leveraging this idea, for any pair of
network nodes as Tx and Rx, we select the relay nodes with dependent dynamics, and the
information then can be encrypted, reconciliated, and finally decrypted by Tx, relay, and
Rx nodes.

(2) One difficulty of the relay selection lies in the dependency analysis on the random
networked dynamics. To overcome this, we draw heavily on sparsifying high-dimensional
random nonlinear dynamics by the use of a data-driven graph Fourier transform (GFT) op-
erator, which is able to transform the random dynamics into a compact graph-bandlimited
subspace, given the graph smoothness of the evolved networked dynamics (or its time-
difference) [29]. By doing so, we pursue the dependency analysis of the random dynamics
by finding the dependent rows of the GFT-based surrogate matrix.

(3) We analyse and evaluate the performance of our proposed GLS using a IEEE 39-Bus
system. Both the passive eavesdroppers and the active attackers are considered, where the
former is defined as intercepting the transmitted information (encrypted) as well as hacking
parts of the network nodes and their dynamics, and the latter is defined to degrade the
dynamic dependency by adding jamming perturbations to the network. The simulations
show two results. First, the GLS performance depends mostly on the measuring accuracy
of the networked dynamics, other than the complex channel estimation techniques for key
generations required by the PLS. Second, GLS can protect communication security from
the eavesdroppers; the bit error rate (BER) of the legitimate (Tx,Rx) pair can approach
an order of 10−5 as opposed to the passive eavesdroppers (10−1), and can still remain an
order of 10−3 in the face of active dynamic attackers. This suggests a promising prospect of
the proposed GLS to secure the wireless communications using the graph layer common
physics.

The rest of the paper is organised as follows. In Section 2, we introduce the network
dynamic model, including a governing evolution pattern that maintains the dynamic
dependency, and the perturbation to keep the randomness of the networked dynamics.
In Section 3, we elaborate the GLS encryption and decryption process, as well as how to
select the relays for each (Tx,Rx) pair. Additionally, we define the passive eavesdroppers
and active attackers and analyse their influences on the GLS performance. The simulation
results are provided in Section 4. We finally conclude the whole piece of work in Section 5.

2. Physical Dynamic Model for Data Encryption

In this section, we introduce the physical networked dynamic model for further
encryption of wireless communications. The networked dynamics are the time-varying
networked signals in an IoT system (e.g., the electricity flows of the smart grid system,
or a time-varying compound concentrations in the water distribution network). Such
signals are irrelevant with the wireless communication aspects (i.e., the dynamic patterns
in a smart grid system or water distribution network do not depend on or affect the
communication channels and environment). The networked dynamic is described by the
underlying network topology and the dynamic signal flow over it. The network topology
is configured by a static graph, denoted by G(N , W). Here, N = {1, · · · , N} represents
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a set of total node indices. W of size N × N is the adjacent matrix, in which the (m, n)th
element wm,n ∈ {0, 1} reflects the existence of directed link from node n to m.

Given the topology of the network, the dynamic signal over each node evolves in
accordance with its self-dynamic and the coupling interactions from its neighbouring
(connected) nodes. We denote the signals for all k = 1, · · · , K (K ∈ N+) discrete time
as a matrix X of size N × K, and the evolution function from discrete time k to k + 1 as
F : RN → RN . Then, the networked dynamic model is expressed as

X:,k+1 = F(X:,k) + bk, (1)

where X:,k represents the kth column of X.
In Equation (1), bk is the perturbations that account for the randomness of the net-

worked dynamics. For example, in a smart grid system (in our case-study), bk ∈ RN

represents the electricity usages on N nodes at k time-index. Such usages by the users
are random, and thereby will make the whole networked dynamics in Equation (1) ran-
dom. Here, we specify bk by the compositions of the unknown injection amplitude bki

of
size N × 1 with respect to a random injection time (i.e., ki), governed by the Dirac delta
function, i.e.,

bk =
∑

ki∈N+

bki
· δ(k− ki). (2)

In Equation (2), both the injection amplitudes and time are unknown, and may have
different distributions for different dynamic systems. For this work, we do not rely on
the exact distribution of the perturbations, but assume its sparse appearance (e.g., the
contaminant injection into a water distribution network, or the steep variations of the power
usages in an electrical bus system are sparse). As such, the combination of the networked
evolution model F(·) and the random perturbation will provide the dynamic dependency
as well as the randomness to secure the dynamic irrelevant wireless communications, and
is hard to guess by brute force, unless the total underlying network dynamics are hacked.
We will then elaborate how to pursue information encryption and decryption using the
graph layer dynamics.

3. GLS Encryption Using Physical Networked Dynamic

Given the modelling of Equations (1) and (2), the purpose of this work is to encrypt
the wireless communications of any node pair, using the underlying physical dynamics of
the graph layer. The illustration of the GLS is provided by Figure 1. Before the start, the
nodes need to extract their underlying physical dynamics for further encryption and com-
munication process. For any node n to act as the Tx, we encrypt the desirable information
s (a time-series of length L) via the physical networked dynamic on node n, denoted as
Xn,:, i.e.,

s∗ = s + Xn,:, (3)

where s∗ is the encrypted information to be transmitted. As aforementioned, the networked
dynamic Xn,: is the time-varying networked signals under node n (e.g., the electricity
flows of the smart grid system, or a time-varying compound concentrations in the water
distribution network).

After the information encryption using Equation (3) at Tx node, it will then be trans-
mitted and processed via a group of selected relays and their dynamics (e.g., R1 and R2 in
Figure 1b). At the final Rx node, the encrypted information will be received and decrypted.
As such, for the wireless communication between any node pair, i.e., (Tx,Rx) = (n, m), the
idea of encryption and encryption is leveraging the linear dependency of the underlying
physical dynamics in Tx, relays, and Rx nodes, i.e.,

Xn,: +
ir∑

i=i1

α
(m,n)
i · Xi,: + Xm,: = 0. (4)
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In Equation (4), i1, · · · ir are the selected relay nodes, and α
(m,n)
i is the corresponding

coefficient that will be determined in advance (we will discuss this in Section 3.2). As such,
s∗ can be transmitted via the selected relay nodes i1, · · · , ir, each of which processes the
received information via αi · Xi,:, and transmits the processed information to the next relay.
Finally, Rx node m decrypts the received information via Xm,: and derives the decrypted
information ŝ, i.e.,

ŝ = s∗ +
ir∑

i=i1

α
(m,n)
i · Xi,: + Xm,:

= s +

Xn,: +
ir∑

i=i1

α
(m,n)
i · Xi,: + Xm,:


= s.

(5)

(a) GLS schematic flow

+

+

+

+

=

R1

Tx

R2

Rx

Physical networked dynamic 

Decrypted information 

Transmitted information

Encrypt via Tx 

node’s networked 

dynamic

Process via relays’ 

node networked 

dynamic

Decrypt via Rx 

node’s networked 

dynamic

Tx

Rx

Relays 

(b) Illustration of networked dynamic and dependency

Figure 1. Illustration of graph layer security, where the wireless communications between (Tx,Rx)
node pair is secured by the wireless channel-irrelevant physical networked dynamics. The encryption
and decoding are leveraging the linear dependency of networked dynamics. (a) Shows the GLS
schematic flow; (b) presents the illustration of the physical networked dynamic and the linear
dependency among (Tx,Relays,Rx).

From Equations (3)–(5), it is seen that the essence of the proposed GLS is to use the
channel-irrelevant networked dynamics on each node as the additive noise for security
guarantees. Attributed to the dependencies of dynamics on different nodes, such additive
noise can be compensated step-by-step by the corresponding relay nodes and the Rx node,
whereby α(Tx,Rx) = [α(Tx,Rx)

i1
, · · · , α(Tx,Rx)

ir ]T accounts for the dependency coefficients. As
such, to ensure the secure communication between any (Tx,Rx)∈ N 2 node pair, each node i
should save a dependency coefficient matrix of size N × N, in which the (m, n)th element
is α

(m,n)
i representing its contribution to compensate the underlying dynamics of (Tx,Rx)

= (m, n) pair. In the following, we will elaborate an off-line data-driven computation of
the dependency coefficients, which avoids the use of the real-time networked dynamic for
encryption, but is able to capture the networked dynamic dependency from the simulated
training data.

3.1. GLS Secrecy Rate

The secrecy rate of the GLS encryption is the channel capacity subtraction between
legitimate (Tx,Rx) pairs and the wiretap channels. Here, we consider a simplified passive
eavesdropper for secrecy rate computation, where the eavesdropping can only happen
by intercepting the transmitted/received signal at Tx or Rx. Other sophisticated attackers
(e.g., an active attacker) are examined in Section 3.3 and in the simulations.
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Given Equations (3)–(5), the legitimate channel capacity of the (Tx,Rx) communication
node pair can be expressed as:

CTx,Rx = log2

(
1 +

E(s)2

‖XT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)
, (6)

InEquation(6),E(s) accounts for theexpectationof the information. α(Tx,Rx) = [α
(Tx,Rx)
1 , · · · , α(Tx,Rx)

N ]T

is the stacked weight vector of Tx node, selected relays, and Rx node, with zeros for un-
selected nodes. ‖XT · α(Tx,Rx)‖2

F (with the Frobineus norm ‖ · ‖F) therefore represents the
residual energy after the process of Tx, selected relays, and Rx. ‖α(Tx,Rx)‖2

2 · σ2 gives the
weighted variance of the physical measuring noise induced by the dynamic extraction
sensors, whose sampling noise is assumed to follow the Gaussian distribution with zero
mean and variance as σ2.

Similarly, the channel capacity from Tx to an eavesdropper that is proximate at Tx and
Rx can be formulated as follows:

Cj
eav = log2

1 +
E(s)2

‖α(Tx,Rx)
j · Xj,:‖2

2

, j ∈ {Tx, Rx}. (7)

In Equation (7), we remove the noise component to achieve an upper-bound eavesdrop-
ping channel capacity, which simplifies the following secrecy rate analysis for relay node
selection and their weight computation.

With the help of the legitimate and wiretap channel capacities in Equations (6) and (7),
the secrecy rate is specified as their difference:

RTx,Rx =

[
CTx,Rx − max

j∈{Tx,Rx}
Cj

eav

]+
, (8)

where [x]+ = max(x, 0). Then, we will elaborate how to select the relay nodes and their
weights by maximising the secrecy rate RTx,Rx, in the absence of the networked dynamics X.

3.2. Relay Selection & Weight Computation

To implement the GLS node pair encryption and communication in Equations (4)
and (5), one is required to select the appropriate relays and compute their weights. We
do so by maximising the secrecy rate RTx,Rx formulated in Equation (8). To be specific, for
each (Tx,Rx) communication pair, we compute the optimal weight vector α(Tx,Rx) ∈ RN by
solving the following optimisation problem:

max
α(Tx,Rx)

[
log2

(
1 +

E(s)2

‖XT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

− max
j∈{Tx,Rx}

log2

1 +
E(s)2

‖α(Tx,Rx)
j · Xj,:‖2

2

]+.

(9)

As such, the relay selection is converted to the weight computation problem whereby the
non-zero weights account for the selection of the corresponding nodes.

In Equation (9), two challenges remain. First, the physical dynamic X is unknown, which
makes Equation (9) difficult to solve. Second, the objective function in Equation (9) is non-
concave (for maximisation) with respect to α(Tx,Rx), although the feasible region is convex.
To address the above challenges, we use a data-driven GFT operator as a surrogate matrix
for X, and then transform the non-concave maximisation problem into an approximated
convex optimisation. We elaborate these two in the following.
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3.2.1. GFT Operator-Based Surrogate

Suppose that the physical networked dynamic matrix can be decomposed as X = Γ · X̃
with rank(Γ) = rank(X). Then, if Γ is only related with the dynamic model, and is therefore
invariant with different initialisation cases, such a Γ can be used as the surrogate matrix for
analysing the row (node) dependency of X in Equation (9).

To implement this idea, we adopt the graph spectrum analysis and the concept of
graph-bandlimitedness from [30–35]. Before we start, we give a brief introduction of the
graph Fourier transform (GFT) and the graph-bandlimitedness. Given a GFT operator as
U−1 (typically an orthogonal matrix of size N × N, i.e., U−1 = UT), the processes of GFT
and inverse GFT are specified as follows [30–36]:

x̃ = U−1 · x, (10)

x = U · x̃, (11)

where x of size N × 1 is the graph signal, and x̃ is its graph frequency response. We call x
graphR-bandlimited to the GFT operator U−1, if only the elements of x̃ with rows in the
setR ⊂ {1, · · · , N} are non-zeros.

According to the work in [29], this property holds for a vast variety of the time-varying
networked dynamics in real-world systems, i.e., either the original X:,k or the time difference
X:,k − X:,k−1 are (or can be approximately treated as) graphR-bandlimited to U−1 for all
time indices k. Here, we denote Y as the original graph signal or the corresponding time
difference, i.e.,

Y =


X X:,kare graph-bandlimited

[X:,k− X:,k−1] with all k
X:,k − X:,k−1are graph-bandlimited

(12)

where the selection is dependent on difference scenarios. As such, by denoting Y = X or
[X:,k − X:,k−1] with all k, a surrogate of Y can be assigned as Γ = U:,R, if Y:,k for all time
indices k are graphR-bandlimited to U−1, i.e.,

Y:,k = U:,R · ỸR,k. (13)

Here, for Y = [X:,k −X:,k−1] with all k, we need to replace the original physical graph signal
X with the corresponding time difference Y in all GLS encryption and further processes,
i.e., Equations (3)–(9).

In Equations (10)–(13), the GFT operator U−1 is typically assigned as the eigenvector
matrix of the graph adjacent matrix denoted as W [30,32], or the graph Laplacian matrix,
computed as L = diag(W · 1) −W [33–35]. Accordingly, the graph-bandlimited set R
is truncated from {1, · · · , N} to concentrate on the low-graph-bandlimited area (e.g., to
minimise xT ·L · x for Laplacian matrix). The problem here lies in the difficulty in measuring
the actual elements in adjacent matrix W (although with the knowledge of the existence
status of each link). To address this, we exploit a data-driven method, as we notice that the
columns of U:,R in Equation (13) are the orthogonal vectors derived from the columns in Y.
As such, we use D groups of training networked dynamics denoted as Y(d), d = 1, · · · , D,
and the GFT operator U−1 can be computed as

U · diag([λ1, · · · , λN ]) ·UT =
[
Y(1)

:,1:L, · · · , Y(D)
:,1:L

]
·
[
Y(1)

:,1:L, · · · , Y(D)
:,1:L

]T
, (14)

where λ1 > · · · λN are the descended-ordered eigenvalues. Then, by measuring the maximal
rank of all the training matrix, i.e, r = maxd=1··· ,D rank(Y(d)

:,1:L), we assign R = {1, · · · , r},
and the surrogate matrix is computed as

Γ = U:,1:r. (15)
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Here, it is noteworthy that for any discrete-time ki with a non-zero input perturbation
bki
6= 0, the GFT-based surrogate Γ may not be able to characterise X:,k = Γ · X̃:,k or X:,k −

X:,k−1 = Γ · (X̃:,k − X̃:,k−1), since the random bki
may not belong to the graph-bandlimited

subspace spanned by the orthogonal columns of Γ. However, given that the injection
perturbation is either sparse (e.g., the contaminant injection of the water distribution
network), or with small magnitudes (e.g., the power usage changes in the electrical bus
system), this will not severely affect the dynamic dependency characterised by the graph-
bandlimited subspace for GLS encryption

3.2.2. Weight Computation

After the derivation of the physical networked dynamic surrogate in Equation (15), we
elaborate the process to approximate the non-concave maximisation problem in Equation (9)
into a convex minimisation form for optimal (sub-optimal) weight computation. By replac-
ing the unknown networked dynamic matrix X with the surrogate matrix Γ, we rewrite
Equation (9) as follows:

max
α(Tx,Rx)

[
log2

(
1 +

E(s)2

‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

− max
j∈{Tx,Rx}

log2

1 +
E(s)2

‖α(Tx,Rx)
j · Γj,:‖2

2

]+.

(16)

We firstly remove the operator [·]+, and prove that the optimal value of Equation (16)
is same as that of the following form:

max
α(Tx,Rx)

[
log2

(
1 +

E(s)2

‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

− max
j∈{Tx,Rx}

log2

1 +
E(s)2

‖α(Tx,Rx)
j · Γj,:‖2

2

].

(17)

Suppose L1 and L2 are the optimal values of Equation (16) and Equation (17), respectively.
It is straightforward that L1 ≥ L2, as Equation (16) always takes the maximal value from
Equation (17) and 0. Then, denote α∗ as the solution of Equation (16) corresponding to
the maximal value L1 > 0. The value of Equation (17) at α∗ equalling L1 suggests that the
maximal value of Equation (17), i.e., L2, is no less than L1, i.e., L2 ≥ L1. This, combined
with the aforementioned analysis of L1 ≥ L2, proves that L1 = L2, which validates the
replacement of original objective function in Equation (16) with that of Equation (17).

The problem then is converted to minimise the opposite of Equation (17), i.e.,

min
α(Tx,Rx)

[
− log2

(
1 +

E(s)2

‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

+ max
j∈{Tx,Rx}

log2

1 +
E(s)2

‖α(Tx,Rx)
j · Γj,:‖2

2

].

(18)
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In Equation (18), it is seen that the second term is a convex function with respect to α(Tx,Rx)
j .

We will then make the first term of Equation (18) convex, by introducing a slack variable β.
The objective problem in Equation (18) is converted as:

min
α(Tx,Rx)

β

[
− log2

(
1 +

E(s)2

β

)
+ max

j∈{Tx,Rx}
log2

1 +
E(s)2

‖α(Tx,Rx)
j · Γj,:‖2

2

] (19)

s.t. ‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2 − β ≤ 0. (20)

In Equation (19), β is assigned as an upper-estimator of ‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2,
therefore making the objective function in Equation (19) an upper-estimator of that in
Equation (18). As such, the minimisation problem in Equation (18) can be converted to
minimising its upper-estimator in Equation (19) with the constraint in Equation (20).

Then, it is noteworthy that− log2(1+E(s)2/β) is a concave function with respect to β.
To transform − log2(1 +E(s)2/β) as a convex form, we adopt the first-order Taylor expan-
sion to represent the upper-estimator. As such, the minimisation problem in Equations (19)
and (20) can be approximated by minimising its convex upper-bound with the convex
constraint. Accordingly, an iterative algorithm applying the successive convex optimisation
method can be designed. By assuming a given initial point as βini from the last epoch, the
first-order Taylor expansions of log2(1 +E(s)2/β) at βini are expressed respectively as:

− log2

(
1 +

E(s)2

β

)
≤ − log2

(
1 +

E(s)2

βini

)
+

E(s)2 · (β− βini)

ln 2 ·
(
β2

ini +E(s)2 · βini
) , (21)

With the help of Equation (21), we take it into Equations (19) and (20), and add the l1-
norm of α(Tx,Rx) to constrain the number of selected relays. The approximated convex
optimisation problem is obtained as follows:

min
α(Tx,Rx)

β

[
E(s)2 · (β− βini)

ln 2 ·
(
β2

ini +E(s)2 · βini
) + max

j∈{Tx,Rx}
log2

1 +
E(s)2

‖α(Tx,Rx)
j · Γj,:‖2

2

+ ‖α(Tx,Rx)‖1

]
(22)

s.t. ‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2 − β ≤ 0. (23)

3.2.3. Overall Relay Selection Algorithm

After the elaboration of the GFT-based surrogate and the weight computation, we
provide the relay selection algorithm in Algorithm 1. The input is the training data of
the physical networked dynamic for GFT surrogate Γ computation. Step 1 is to compute
the GFT surrogate that will be used for the following weight computation. Step 2 is
the initialisation for the successive convex optimisation method of weight computation.
Steps 3–7 are to pursue the successive convex optimisation, in which the weight vector
α(Tx,Rx) is successively computed by solving the convex problem in Equations (22) and (23).
Then, the output is the computed weight α(Tx,Rx).

It is noteworthy that the proposed relay selection algorithm is in the offline manner.
To be specific, the relay is selected without any knowledge of the real networked dynamics
that will be used for communication encryption, but the dynamic training data from the
simulator that is able to characterise the dependencies of the physical networked dynamics.
In this view, two benefits are given in the following. First, the relays and their weights
can be computed and saved in advance, and do not need to be re-evaluated if the hidden
governing dynamic equations in Equation (1) and the network topology are fixed. As
such, the computational complexity of the relay selection algorithm is trivial, and no delay
will be caused by the algorithm in the securing of wireless communications. Second,
the computations of the relays and their weights do not depend on the real networked
dynamics that will be used for information encryption, which suggests the communication
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security even if the selected relays and their weights are revealed by an active or a passive
attacker. We will discuss this in the following parts.

Algorithm 1 Offline relay selection algorithm

Input: D groups of training data, i.e., Y of networked dynamics.
1: Compute GFT-based dynamic surrogate using Equations (14) and (15).
2: Assign k = 0. Find am initial feasible solution α(Tx,Rx)(0) and an initial slack variable

β(0). Assign ∆(0) = f (α(Tx,Rx)(0)).
3: while ∆(k) > ε do
4: Assign k = k + 1.
5: Update α(Tx,Rx)(k) and β(k) by solving convex problem in Equations (22) and (23)

with initial variables α(Tx,Rx)(k− 1) and β(k− 1).
6: Compute ∆(k) = f (α(Tx,Rx)(k))− f (α(Tx,Rx)(k− 1)).
7: end while
8: Assign α(Tx,Rx)(k) as optimal α(Tx,Rx).

Output: Return α(Tx,Rx).

3.3. Active and Passive Attackers

After the elaboration of the GLS encryption, we discuss two types of the eavesdroppers,
i.e., the passive and active attackers. The essence of our proposed GLS is using the signal
dependency of the underlying networked dynamics to encrypt transmitted information
from eavesdropping. Therefore, here we choose attackers that can either (i) passively
recover the networked dynamics so as to decrypt the information, or (ii) actively destroy
the signal dependency of the networked dynamics so as to impair the encryption process.
Other types of attacks (e.g., spoofing, denial of services) are not within the scope of this
work.

3.3.1. Passive Eavesdropper

In the context of GLS, where the physical networked dynamic is used for encryption, a
passive eavesdropper is defined to intercept the transmitted information without degrading
the physical networked dynamics. In this view, the eavesdropper can (1) intercept only
the transmitted information, or (2) in a more sophisticated way, equip eavesdropping
sensors on parts of the network nodes and try to recover the whole physical networked
dynamic matrix X. The former has been discussed in Equation (9), i.e., the eavesdropper can
intercept the transmitted information at Tx or Rx, and the further optimal relay selection
and weight computation in Equations (22) and (23) can ensure the maximal secrecy rate. We
will show the GLS performance with the eavesdropper that only intercepts the transmitted
information in Section 4.2.

For the latter, the GLS encryption performance will be degraded in terms of how
accurately the eavesdropper recovers the unknown physical networked dynamic X, and
this depends on how many network nodes have been hacked by the eavesdropping sensors.
As such, the goal for this passive eavesdropper is to recover the networked dynamics
and then use the recovered dynamics to decrypt the transmitted information between
legitimate nodes. According to the graph sampling theory [30–35], the prerequisites of this
eavesdropper are to know the data-driven GFT surrogate, Γ, and the weight vector α(Tx,Rx)

for each (Tx,Rx) pair. Then, the eavesdropping process can be divided into the following
three steps.

Step 1: Eve identifies the critical subset of network nodes S ⊂ {1, · · · , N} using the
graph sampling theory, i.e.,

rank(ΓS ,:) = r. (24)

Here, Equation (24) is implemented via a greedy algorithm that minimises the condi-
tion number of ΓS ,: by finding and adding row index to S , i.e., S ← S ∪ {i}, such that
i = argminj∈N\S cond(ΓS+{j},:).
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Step 2: Eve deploys sensors on the selected nodes, i.e., S , and eavesdrops the physical
networked dynamics under these nodes, denoted as XS ,:. Then, Eve can reconstruct the
complete networked dynamics as [30–35]:

X̂ = Γ:,1:r · Γ†
S ,1:r · XS ,:, (25)

which will then be used for decrypting the intercepted information.
Step 3: Eve intercepts the communication data from Tx node, and uses its reconstructed

Tx underlying signals to decrypt the transmitted information.
It is noteworthy that hacking different network nodes for physical networked dynamic

recovery is a strong assumption for eavesdroppers, as they have to know the data-driven
GFT surrogate Γ and the weight vector α(Tx,Rx) for each (Tx,Rx) pair, not to mention how
difficult it is to embed eavesdropping sensors on a number of network nodes without being
detected. We will show the number of nodes being hacked versus the GLS performance in
Section 4.2

3.3.2. Active Attackers

The active attacker in GLS aims to degrade the networked dynamics and their depen-
dencies, which will subsequently deteriorate the GLS encryption that relies on them. The
method is to (1) hack some of the network nodes and (2) frequently inject harmful jamming
inputs from them to the networked dynamical system. Here, different from perturbation
bk in Equation (1), the jamming injection is more frequent and with larger amplitudes. For
example, in the electric bus system, an active attacker can steeply add huge and harmful
power usages at a single or multiple buses, and subsequently affect the whole networked
dynamic (such as rotor speed and angle).

In this view, the GLS performance depends on whether the GFT-based surrogate
matrix Γ is still holding for analysing the linearly dependency of rows (i.e., relay selection
and weight computation) in X. It is straightforward that an increasing rate of jamming
injection will make Γ fail to represent X = ΓX̃, as a large perturbation can be artificially
designed by orthogonal vectors that do not belong to the graph-bandlimited subspace
spanned by the columns of Γ. We will evaluate the GLS performance versus the active
attackers with different injection rates in Section 4.3.

4. Simulations and Results

In the simulation section, the case study is the communications among the nodes
in the smart grid IEEE 39-Bus system. IEEE 39-Bus is a very general network dynamical
system which has been widely used for research such as synchronisation, stability, optimal
sampling, etc. [37–39]. This network is composed of 10 generator buses (nodes) and
29 loaded buses. When there is electricity consumption at some of the loaded buses, the
angular speed under these buses will change from the standard 2π · 60 rad/s, and then the
cascaded effects will make all the angular speeds under all buses changes. In the meantime,
10 generator buses are used to maintain the angular speed back to the standard value,
i.e., 2π · 60 rad/s. These two constitute the time-varying networked dynamics (i.e., the
speed deviations) of the IEEE 39-Bus system. For our GLS work, the goal here is to use the
time-varying speed deviations under buses (nodes) to encrypt the wireless data transmitted
among them. Here, such networked dynamical speed deviations are irrelevant with the
communications (e.g., channels and RSS). For encryption and communication process,
we at first compute the relay nodes and coefficients, i.e., α(Tx,Rx) for any two pairs of
(Tx,Rx) node, using Algorithm 1 in the off-line mode. Then, information is encrypted and
transmitted from Tx using Equation (3), and then passed through and processed by relay
nodes and Rx using Equation (5). It is noteworthy that the relay computation result for this
case study is specific, and will be recomputed for different dynamical models.
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4.1. Experimental Setting

The IEEE 39-Bus dynamics are configured in the following. Figure 2 illustrates the
network structure with N = 39 nodes, in which i = 30, . . . , 39 are generator buses, and
i = 1, . . . , 29 are load buses.

Figure 2. Network topology of IEEE 39-Bus system, with N = 39 buses (nodes) including 10 generators
(buses 30–39) and 29 load buses (1–29).

The physical dynamic model over the network is expressed by following differential
and algebraic equations (DAEs) [37,40]:

dθi(t)
dt

= ∆ωi(t) i ∈ {1, . . . , 39} (26)

d∆ωi(t)
dt

=
ωs

2Hi
· (Ti(t)− Pi(t)− D · ∆ωi(t)) i ∈ {30, . . . , 39} (27)

Ti(t) = −
(

KP · ∆ωi(t) + KI

∫ t

0
∆ωi(τ)dτ

)
i ∈ {30, . . . , 39} (28)

Pi(t) =
39∑

j=1

Gi,jcos(θi(t)− θj(t)) + Bi,jsin(θi(t)− θj(t)) i ∈ {30, . . . , 39} (29)

PLi =
39∑

j=1

Gi,jcos(θi(t)− θj(t)) + Bi,jsin(θi(t)− θj(t)) i ∈ {1, . . . , 29}. (30)

In Equations (26)–(30), θi(t) is the phasor’s angle at i bus, and ∆ωi(t) is the phasor’s
speed deviation (i.e., the difference between actual speed and the standard synchronous
speed ωs = 2π · 60 rad/s). For generator node i (i.e., i = 30, . . . , 39), Hi is the inertia
constant, Ti(t) is the mechanical torque controlling the generator’s speed deviation (with
constants KI and KP), and Pi(t) is the electric air-tap torque affected by the neighbour nodes’
angles. Gi,j and Bi,j are, respectively, the real and imaginary parts of the (i, j)th element of
admittance matrix, which characterises the admittance of power lines between buses. The
aforementioned parameters are assigned according to the work in [37]. In Equation (30),
PLi represents the load under bus i, following a Gaussian distribution with empirical
expectation and variance, which accounts for the dynamical input of the system that affects
the networked dynamics (i.e., the angles and the speed deviation). We also emphasise
here that the aforementioned DAEs are only used for physical dynamic generation, and
are unknown for the encryption and communication processes (e.g., process is data-driven
and model-agnostic).

With the help of the dynamic model, we select the speed deviation as the physical
networked signal for GLS encryption. To be specific, each bus (node) i is equipped with
an IoT sensor (e.g., the phasor measurement unit PMU), aiming at measuring the speed
deviation from time t = 0 to t = 5, by sampling rate Ts = 10−3 s [41] (i.e., discrete-time
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K = 5000). As such, the (i, k)th element of matrix X in Equation (1) is assigned as the
measured ∆Ωi(t = k · Ts), with a physical measurement noise (not to be confused with
communication SNR), which is used to encrypt (for Tx), process (for relays), and decrypt
(for Rx) the transmitted information. In this simulation, any pair of nodes are tested as
a transmitter (Tx) and a receiver (Rx). The information is assigned as the discrete on-off
keying (OOK) with length K = 5000. The channels for such communications are wireless
and are independent with the physical networked dynamics.

For attackers, we test the aforementioned passive and active types, respectively. In
the passive mode, we assume the eavesdropper can access part of nodes (e.g., 5%, 10%,
and 25%) and their time-varying electricity phases. Then, the eavesdropper will try to
recover the whole networked dynamics using the steps in Section 3.3.1. In the active mode,
we assume the attacker can inject the jamming perturbations into the nodes in order to
interfere with the dynamic pattern (as is discussed in Section 3.3.2).

4.2. GLS Performance with Passive Eavesdroppers

We at first evaluate the GLS performance with passive eavesdroppers mentioned in
Section 3.3.1. For this experiment, four passive eavesdroppers are considered. The first one
only intercepts the transmitted information without hacking any network node for the phys-
ical networked dynamics. The second to the fourth are considered to hack 5%, 10%, and 25%
network nodes and their underlying physical networked dynamics to recover the whole
dynamic matrix X, via the graph sampling theory in Equation (24). Here, it is noteworthy
that the hacked node set S are not randomly selected, but follow Equation (24), i.e., sat-
isfying rank(ΓS ,:) = r. For example, in IEEE 39-Bus system, |S| = 10 (or |S|/39 ≈ 25%)
selected by the graph sampling theory is S = {1, 2, 6, 10, 20, 21, 23, 25, 28, 33}.

In Figure 3a, we provide the average BERs of legitimate (Tx,Rx) pairs and of eavesdrop-
pers, versus the measurement noise variance (i.e., σ2) of sensors for physical networked
dynamic extraction. We can firstly observe that the BER of the legitimate users becomes
lower (e.g., 10−1 to 10−5) as σ2 decreases (from 10−3 to 10−5). This highlights the security’s
dependency on sensor accuracy (i.e., physical measuring accuracy) rather than the wireless
channel estimation quality or diversity (PLS) or public key security. For sensitive noise
variance (as one expects of good IoT systems), the encrypted communication channel can
achieve a decryption BER of≈10−5, five orders of magnitude better than the eavesdroppers
(that only intercept the wireless transmitted information). This indicates the encryption
reliability of GLS, which can be ensured solely by a cheap but accurate physical sensor (to
extract and exploit the physical networked dynamics for communication security), as op-
posed to the existing wireless-based encryption (PLS) that requires complex and unreliable
channel estimation techniques.

(a) (b)

(W)

(r
ad
/s
)

Figure 3. GLS performance with passive eavesdroppers: (a) Average BER with eavesdroppers
hacking 0% nodes, 5% nodes, 10% nodes, and 25% nodes; (b) recovery RMSEs of physical dynamics
by eavesdroppers hacking 0% nodes, 5% nodes, 10% nodes, and 25% nodes.
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Then, it is seen that with the increase of nodes being hacked by the eavesdroppers,
the eavesdropping BERs decrease. To be specific, the BER of eavesdroppers hacking 0%
nodes (i.e., only intercept transmitted information) is higher than that hacking 5% nodes,
higher than that hacking 10%, and the one with 25% hacked nodes is the lowest. This
is analysed with the help of Figure 3b, where the dynamic recovery RMSEs by eaves-
droppers versus the ratios of their hacked nodes are given, and that when the number of
hacked nodes is larger than 25%, the RMSE converges. This is due to the graph sampling
theory in Equation (24), which indicates that the appropriate node selection satisfying
|S| = r = 10 can guarantee the complete dynamic recovery (r = 10 here is given by the
data characteristic of IEEE 39-Bus with 10 generators). As such, Figure 3b gives the reason
that eavesdroppers with 10/39 ≈ 25% hacked nodes can obtain the whole underlying
dynamic for encryption and therefore achieve successful decryption. However, it is note-
worthy that hacking such a large number of nodes is difficult for the eavesdroppers, as
they have to equip their eavesdropping sensors on every network node they are interested
in without being discovered. As such, our GLS method provides a novel perspective and
security performance for IoT systems, by the utilisation of underlying physical networked
dynamics that are hard to extract by the eavesdroppers.

In Figure 4, we provide the statistical distribution of (Tx,Rx) pairs with respect to
different BER regions, i.e., <10−3, between 10−3 and 10−1, and >10−1. It is seen that the
ratios of (Tx,Rx) pairs belonging to the low BER regions are always larger than those from
the passive eavesdroppers (except for the one hacking 25% network nodes and obtaining
the full physical networked dynamics). For instance, when measurement noise variance
σ2 < 10−4, the ratio of (Tx,Rx) with BER less than 10−3 approaches 1, larger than those
eavesdroppers (i.e., with hacking 0%, 5%, and 10% nodes). This statistical result, combined
with the previous average result in Figure 4, demonstrates the encryption robustness and
reliability of the proposed GLS to secure wireless communications against potential passive
eavesdroppers.

Figure 4. Statistical distribution of all (Tx,Rx) pairs with respect to different levels of BERs with
passive Eves.

4.3. GLS Performance with Active Attackers

We next evaluate the GLS performance against active attackers. As is described in
Section 3.3.2), the active attackers here aim to degrade the dynamic dependency among
network nodes by adding artificial jamming inputs into the network. In the context of the
IEEE 39-Bus system, the jamming inputs are the variations of the power usages at each bus,
following the Gaussian distribution with means equalling the reference power usages at
each bus, and variance as 5 per unit (larger than that of the dynamic perturbation), which
will then affect the underlying dynamics (i.e., the rotor speed deviations) for information
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encryption and decryption. Four active attackers are considered and assigned with different
levels of jamming rates, i.e., 0 s−1, 10 s−1, 100 s−1, 200 s−1, and 500 s−1.

In Figure 5, we provide the average BERs of the legitimate (Tx,Rx) pairs versus the
measurement noise variance (i.e., σ2), under different levels of jamming attacks. It is
firstly seen that the BERs for all levels of jamming rates become lower, as the decrease
of the measurement noise variance σ2. This indicates the GLS reliability that relies on
the measuring accuracy of the physical networked dynamics for information encryption
and decryption. Then, it is observed that with the increase of the jamming rates, the
communication performance becomes worse. For example, at the point σ2 = 3.16× 10−5,
the BER increases from an order of 10−5 to 10−2 when jamming rate increases from 0 s−1

to 500 s−1. This is because (i) the burst jamming injection degrades the linear-dependant
property of the dynamics among the (Tx, relays, Rx) nodes, and (ii) with such increases of
the jamming inputs, deteriorates the successful decryption rate at Rx.

In Figure 6, we provide the statistical distribution of (Tx,Rx) pairs with respect to
different BER regions, i.e., <10−3, between 10−3 and 10−1, and >10−1), under different
levels of the jamming rate from the active attackers. It is seen that, given the fixed physical
measurement noise variance, with the increases of the attacker’s jamming rate, the ratio of
(Tx,Rx) pairs belonging to the low BER regions decreases. For instance, when measurement
noise variance has an order such as σ2 = 10−5, the ratio of (Tx,Rx) with no jamming
belonging to BER < 10−3 approaches 1, larger than those affected by jamming input (i.e.,
with jamming rate 10 s−1, 100 s−1, 200 s−1 and 500 s−1). Nevertheless, with medium
jamming rates and sensitive physical measurement noise regions, as is depicted in Figure 6
(i.e., jamming rate <=100 s−1 and σ2 <= 10−4), the proposed GLS can still approach
the 7 overhead hard-decision FEC limit (i.e., BER ≈ 4.5× 10−3) [42], indicating an error-
free BER performance with proper FEC codes. This statistical result, combined with
the previous average result in Figure 5, demonstrates the encryption robustness and
reliability of the proposed GLS to secure wireless communications against potential active
attackers. It is also noteworthy that the results, although from the networked dynamics
of the IEEE 39-Bus system, are able to show the general applicability of our GLS scheme
for securing other IoT systems with correlated underlying networked dynamics, as the
encryption steps/algorithm are irrelevant with the specific IEEE 39-Bus dynamic model,
i.e., Equations (26)–(30).

(W)

Figure 5. GLS performance with active attackers: Average BER versus physical measurement noise
with different levels of jamming rate.
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Figure 6. Statistical distribution of all (Tx,Rx) pairs with respect to different levels of BERs with active
attackers.

4.4. Comparison with Current PLS

We next compare our proposed GLS with current PLS. From a conceptual perspective,
the idea of our GLS is to use the underlying networked dynamics to encrypt the transmitted
information between Alice and Bob in the IoT scenarios. This is totally different with the
current PLS, which relies on the communication channels (e.g., superiority or common
feature). As such, we only provide conceptual comparisons other than experimental results,
and three aspects are given in the following:

(1) PLS uses the communication channel itself for encryption/security, but our GLS
leverages the networked dynamics that are totally irrelevant with the communication
aspects (e.g., channels, RSS). The networked dynamics can be the electricity flows in a
smart grid system (as what we used in simulations), or the water pressures in a water
distribution network.

(2) As described, the usage of our GLS requires an IoT with underlying networked
dynamics (e.g., communications of two nodes in one smart grid network, or communica-
tions of two water junctions in one water distribution network). This is different from PLS,
whereby any two legitimate users can have encrypted communications if the small-scale
fading (randomness) of their channel is enough.

(3) From attacker aspects, our GLS can be eavesdropped only if an eavesdropper can
reconstruct the networked dynamics under all IoT nodes, or any attackers can destroy the
GLS encryption by changing the dynamic pattern (e.g., the correlations of the dynamic
signals on different nodes). This is different from the attackers considered in PLS, which
try to either reconstruct the common channel feature for SKG, or weaken the superiority of
legitimate channels.

5. Conclusions

Graph layer security (GLS) is proposed for the first time here, as a way to secure the
wireless communication information via the wireless channel-irrelevant networked domain
physical dynamics. Our approach is premised on the exploration of the dependencies of
nonlinear physical networked dynamics among the network nodes for encryption and
decryption. The advantage of this approach, as described and demonstrated, is to rely
solely on the IoT sensors’ accuracy in measuring the physical dynamics X (e.g., water
flow rate, contamination, gas pressure, voltage) of a networked system. Over the past
few decades, we have developed cheap and accurate sensors. Therefore, encrypting the
wireless information by exploiting this accuracy makes sense compared to continuously
and accurately estimating the wireless environment in PLS, which remains challenging for
small IoT devices.
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The challenge with GLS is to develop representative GFT operators that can charac-
terise the dynamic dependency into a feasible graph-bandlimited subspace, so that the
(Tx,Rx) communication node pair can use such dependent channel-irrelevant dynamic to
encrypt their transmitted information. This is especially hard for those that involve PDEs.
Our prior work in sparse sensing of water distribution networks has shown that GSP can
be applied successfully to Navier–Stokes PDEs in water distribution networks [4]. The
generality of this data-driven approach is strong as it does not require knowledge of the
underlying physical dynamic model, and, indeed, many real-world systems do not have
one, or involve couplings between ODEs and PDEs (e.g., electricity grid connected to a
thermo energy storage).

Then, leveraging the GFT operator, encryption and decryption schemes were designed
by maximising the GLS secrecy rate. The simulation results demonstrate both the robust-
ness and the reliability of the proposed GLS, combating both the passive eavesdroppers
and the active attackers, which suggests its widespread applicability in secure wireless
communications over IoT systems, especially for the challenging radio environments and
computational resource scarcity scenarios where traditional cryptography and PLS are less
attractive. Here, one problem lies in the relay mechanism in our GLS method, which may
cause delay for information transmission and may increase the rate of interception by more
sophisticated eavesdroppers. The reason lies in the exploitation of solely the linear dynamic
dependency. In our future work, we will study how to extract and utilise the higher-order
dynamic dependency for point-to-point wireless communications over IoT systems.
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