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Abstract: Although the LiDAR sensor provides high-resolution point cloud data, its performance
degrades when exposed to dust environments, which may cause a failure in perception for robotics
applications. To address this issue, our study designed an intensity-based filter that can remove dust
particles from LiDAR data in two steps. In the first step, it identifies potential points that are likely to
be dust by using intensity information. The second step involves analyzing the point density around
selected points and removing them if they do not meet the threshold criterion. To test the proposed
filter, we collected experimental data sets under the existence of dust and manually labeled them.
Using these data, the de-dusting performance of the designed filter was evaluated and compared
to several types of conventional filters. The proposed filter outperforms the conventional ones in
achieving the best performance with the highest F1 score and removing dust without sacrificing the
original surrounding data.

Keywords: LiDAR; filtering; algorithm; LIOR; LIDROR; de-dusting

1. Introduction

Light detection and ranging (LiDAR) is a powerful sensing technology that can create
a high-resolution map of an environment. For example, a prestigious LiDAR sensor such
as VLP-16 can generate up to 600,000 points per second in a range of 100 m with an
accuracy of 3 cm. Due to this merit, the LiDAR sensor has a wide range of applications
in mobile robotics such as object detection [1,2], localization [3,4], and mapping [5,6].
However, the performance of LiDAR sensors is systematically affected when exposed to
harsh environmental conditions such as dust [7] because, in contrast to Radar, the majority
of commercial LiDAR sensors work around 900 nm wavelength, making them capable
of sensing airborne particles. In such a situation, LiDAR sensors may not successfully
distinguish between data coming from dust clouds and those from non-dust clouds. For
example, Boss, a winner of the DARPA urban challenge competition, suffered from the
same problem of falsely detecting dust as an object during the competition [8].

In the literature, there have been two major approaches used to address the problem of
de-dusting. The first method is based on the data fusion from multiple sensors, including
a camera, LiDAR, and radar. This approach takes advantage of a radar sensor that is less
sensitive to dusty weather conditions, unlike LiDAR and cameras, even though it does not
provide a high-quality map. For instance, ref. [9] used the depth fusion model to detect
dust points that employed the discrepancy between LiDAR and radar.

The second approach is to exploit artificial-intelligence (AI) techniques such as machine
learning and deep learning to classify point clouds into dust and non-dust points. For
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example, the authors in [10] identified dust point clouds using both machine-learning (ML)
methods and custom neural networks. In this study, a 3D map was converted into 3D
occupancy grids, and then meaningful information was extracted from the occupied voxels
to train ML-based classifiers, i.e., random forest (RF) [11] and support vector machine
(SVM) [12]. As input features for classification, the authors selected the mean and standard
deviation of the intensity values of the points contained in each voxel as well as slope and
roughness that can be obtained by applying principal component analysis (PCA) to the
points inside the voxel [10]. The same voxel-based approach was chosen by [13] for fog
classification. They used the SVM and k-nearest neighbors (KNN) algorithms as classifiers
in which geometrical features and intensity were considered as inputs.

As another dust-filtering approach, a neural network classifier, was selected using
advanced deep-learning methods [14]. Compared to [10], this study considered both point-
and voxel-based classification. To improve its performance, they tested several input
features for the classifier to find the best one for dust removal. These features are geometry,
intensity as well as multi-echo information coming from the LiDAR sensor. Geometry and
multi-echo features proved to be the most effective features for point-based deep-learning
methods, while adding intensity information to these features brought a better solution for
voxel-based deep-learning methods. Deep-learning methods were also applied to other
adverse weather conditions. For example, the authors in [15] employed a CNN-based
architecture named WeatherNet to filter out fog and rain noises in LiDAR point-cloud
data. This method can segment point clouds using distance and intensity as input features.
However, the aforementioned AI de-dusting methods have the following limitations [16]:

1. The first challenge comes from the size of the data. To collect data from environments
using a LiDAR sensor, millions of points are needed, resulting in storage difficulties.

2. The large number of data sets required for training leads to high computation costs
and training time.

3. The performance of this method is significantly dependent on the training data. In
some particular situations where the AI model has not been trained, it may make a
wrong decision.

4. In particular, in the deep-learning method, the model architecture must be insensitive
to the detection distance and rotation of a sensor in order to maintain the filtering
performance when the sensor (or robot equipped with the sensor) moves.

To overcome the limitations of the aforementioned de-dusting filters, the study of [17]
presented an intensity-based filter for dust removal by taking advantage of LIOR (low-
intensity outlier removal) filtering [18]. This paper evaluated the validity of the LIOR
filtering method under different test conditions and identified the shortcomings. One
limitation of the LIOR filter is that it deletes nearly all the points selected from the first
step, which are apart from the sensor beyond a certain distance. Furthermore, selecting a
low threshold on this filter causes some dust to remain after filtering, whereas increasing a
threshold may result in the filtering process not being able to remove low-intensity objects
completely in the second step.

To deal with the above problems, this paper proposes a new intensity-based algorithm
for LiDAR sensors that can improve both dust filtering’s accuracy and robustness to the
inherited sparsity of a LiDAR point cloud as distance increases. This improvement was
achieved by redefining the second step of filtering to address the sparsity issue and enhance
the capability of saving important environmental information. The proposed solution
was experimentally evaluated using datasets collected by varying the LiDAR dust cloud
and LiDAR target distances to represent various outdoor scenarios. The dataset was then
manually labeled based on prior knowledge about the experimental scene. Using the
labeled dataset, we tested the performance of the designed filters against the existing filters
that were originally developed to remove noises for LiDAR sensors under adverse weather
conditions such as snow [19–21] but were designed for de-dusting in this study. The consid-
ered existing filtering methods include statistical outlier removal (SOR) filter [19,21], radius
outlier removal filter (ROR) [20], and dynamic radius outlier removal filter (DROR) [21].
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The main contributions of our work can be summarized as follows.

• To the best of our knowledge, the proposed method is the first attempt to develop
dust-filtering algorithms using non-AI techniques that take advantage of the inherent
characteristics (intensity value) of dust point-cloud data.

• The proposed method can overcome the inherent problems of AI methods applied to
dust filtering that require a large number of data sets for training and therefore lead to
high computation costs and training time.

• This study provides an in-depth and comprehensive discussion of various design
methodologies with SOR, ROR, DROR, LIOR, and LIDROR. Therefore, it can offer
practical recommendations on which is the most suitable method through a compara-
tive analysis.

The remainder of this paper is divided into the following sections. Section 2 provides
a theoretical background on the existing filtering methods. In Sections 3 and 4, the research
methodologies and results of filtering evaluation are presented, respectively. The Section 5
discusses concluding remarks and future work.

2. Theoretical Background

In this section, we present the operational principles of several conventional de-noise
filters for LiDAR point clouds that have been used to improve detection quality under
harsh weather conditions.

2.1. SOR Filter

The SOR filter aims to remove the sparse outliers caused by measurement error [19,21].
To do so, it iterates through each point and then computes the average distances di of
k-nearest points to that point, where k represents an integer parameter of the filter that can
be selected based on how many neighbor points are wanted to be analyzed [19]. As another
key variable, the threshold value T can be defined as shown in Equation (1).

T = µ± β× σ (1)

where µ and σ are the mean and standard deviation of the average distances di, and β is a
constant multiplier. This filter eliminates all points whose average distances fall outside
the threshold interval. The performance of the SOR filter depends on the right selection
of β and k.

2.2. ROR Filter

The ROR filter [20,21] removes isolated outliers from point clouds by iterating through
each point and counting the number of points located within a sphere with a center of that
point and search radius, R. It uses the k- d tree algorithm [22] to search for a point inside a
sphere. If the number of points is less than the minimum acceptable number of points N,
it is removed as an outlier, otherwise it is saved as an inlier. The parameters N and R can
be varied to find an optimum solution for ROR filtering.

2.3. DROR Filter

In [21], the ROR and SOR filters were chosen for the first time to test their de-snowing
abilities. This study found that the SOR was able to remove the majority of snow points,
but failed to remove densely grouped snow points. Furthermore, although the ROR
filter showed a better performance for de-snowing in general, it excluded all important
information from the environment that was farther away than 18 m from a LiDAR sensor.
This is because LiDAR points clouds become sparser as the distance from the sensor
increases, while a search radius in the ROR filter remains constant.
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To solve this problem, the study developed a DROR filter in which the search radius
changes proportionally to the distance from the LiDAR sensor, as shown in Equation (2).

Rdynamic = φ× α× 2
√

x2 + y2 (2)

where φ is a constant multiplier, α is the angular resolution of the LiDAR sensor, and [x, y]
are the Cartesian coordinates of the point. The pseudocode for this filter is presented in
Algorithm 1. The dynamic radius in Equation (2) enables rich data from the surroundings
to be preserved while removing snow particles. To avoid a very small search radius for
points near the LiDAR sensor, search radii less than the minimum search radius were set
equal to the minimum search radius in the study.

Algorithm 1 DROR filter

1: FOR (Each point in the point cloud)

2: Search radius←
√

x2
p + y2

p

3: IF (search radius < minimus search radius)
4: search radius = minimum search radius
5: ELSE
6: Search radius← φ× α×

√
x2

p + y2
p

7: ENDIF
8: n← Find number of points inside search radius
9: IF (n < threshold point)

10: Outliers← point
11: ELSE
12: Inliers← point
13: ENDIF
14: ENDFOR

2.4. LIOR Filter

The methods outlined above rely on only geometry information from a LiDAR sensor
for de-noising. An alternative approach, ref. [18], used the intensity information from
LiDAR’s 3D point clouds for de-snow filtering based on the finding that snow particles
have a lower intensity value than other objects. By applying this principle, the study of [18]
proposed the LIOR filter, which consists of two stages. The first stage involves iterating
through each point and identifying the points whose intensity is less than a threshold
intensity value ε. Selecting the right threshold is crucial to the successful operation of the
LIOR filter.

In the second stage, the ROR filter is applied to the selected points that have been
identified as candidate outliers in the first step. In this stage, all the parameters related
to the ROR filter, including the minimum acceptable number of points and the search
radius, play a pivotal role. Finally, those points determined as outliers in the second step
are removed from the point cloud.

The above procedure is summarized in Algorithm 2. The main feature of this filter is
to apply the ROR only to selected points. This allows the LIOR filter to achieve a higher
speed than the DROR filter while maintaining the same high level of performance as the
DROR filter in terms of removing snow particles [18].
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Algorithm 2 LIOR filter

1: FOR (Each point in the point cloud)
2: IF (point intensity > threshold intensity)
3: Inliers← point
4: ELSE
5: % SR is sesrch radius
6: n← Find number of points inside SR
7: IF (n < threshold point)
8: Outliers← point
9: ELSE

10: Inliers← point
11: ENDIF
12: ENDIF
13: ENDFOR

3. Project Methodology

To develop a de-dusting filter, we first gathered LiDAR datasets under a dust envi-
ronment to investigate the characteristics of dust clouds. An analysis of the collected data
shows that dust particles have a low-intensity value. Therefore, we concluded that an
intensity-based filtering method such as the LIOR can be applied to dust removal. Finally,
we designed new dust-filtering algorithms by applying the LIOR and further developing
it. These algorithms were implemented in MATLAB using a PC with Intel Core i5-8250U
CPU. The algorithms consist of three parts to be processed: gathering data from the LiDAR
sensor, analyzing data/filtering dust, and visualizing data in MATLAB. The first and the
last parts were implemented using LiDAR Toolbox in MATLAB. The remainder of this
section explains data collection, data analysis method, and filter design in detail.

3.1. Gathering Dust Dataset for Filter Design

Several datasets containing LiDAR data are publicly available, including the popular
KITTI dataset [23], the A*3D Dataset [24], the nuScence Dataset [25], the Oxford RobotCar
Dataset [26], the Canadian Adverse Driving Conditions Dataset [27], and the Waymo open
dataset [28], but none of them include dust datasets. The Marulan dataset [29] contains
LiDAR data containing airborne particles such as dust and smoke. However, no intensity
information is provided here, and only 2D LiDAR sensors were used in their experiments.
Thus, in order to develop our proposed dust-filtering algorithms using a 3D LiDAR, new
datasets containing dust had to be created.

According to [7], several parameters affect LiDAR measurements exposed to dust,
which include the distance between a LiDAR and dust clouds, the distance between a
LiDAR and a target, the dust cloud’s length, the dust density, the dust particle’s size, and
the reflectivity and surface area of a target (reflected points). Among these parameters,
the first two parameters (see Figure 1) were chosen as design variables to create different
experimental conditions in this study. This is because the dust cloud’s length, the dust
density, and the dust particle’s size are difficult to control; the reflectivity and surface area
were not selected either for the sake of simplicity, as computing these quantities for every
point in the point cloud complicates the problem. The distance between a LiDAR and the
location of dust blowing was measured using a measuring tape in this study, and the target
was placed at a predefined location described in Table 1.

Therefore, we designed four different experimental conditions by varying these two
variables as summarized in Table 1. Under these conditions, data were gathered with
a VLP-16 [30] LiDAR sensor and a leaf blower on a clear day that was used to create
dust particles. The experimental scene in Figure 2a includes a human, trees, and other
background objects, as well as dust scattered by a blower.
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Figure 1. Design variables to generate experimental conditions.

Table 1. Experimental conditions.

No. Experiment LiDAR–Dust Cloud
Distance LiDAR–Target Distance

1 4 5
2 5 10
3 8 10
4 10 15

Figure 2. A scene of experimental data collection (a) and corresponding point cloud (b).
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3.2. Data Analysis Method

The obtained data was thoroughly examined to analyze the characteristics of measured
point clouds. The primary characteristic of dust points is that their intensity ranges from 0
to 10, which is significantly lower than other objects. For instance, the point clouds were
plotted according to their intensity values using the turbo colormap in Figure 2b where
the dust point’s color is near black, equivalent to 0 of the intensity value. There were a few
non-dust points as well, especially some ground points with low intensity (dark blue). In
Figure 2b, dust noise (disturbance caused by dust) constitutes approximately 4.55 percent
of the total point cloud that needed to be removed.

From the above observation, we can note that intensity is a viable criterion to classify
or filter out dust point clouds. In the next step, the LIOR filter that requires the intensity
information was applied to assess its capability and effectiveness in removing dust.

3.3. Optimizing LIOR for De-Dusting

As discussed in Section 2.4, the LIOR filter has three parameters: intensity threshold,
search radius, and minimum acceptable number of points in the vicinity of a query point.
Finding the right intensity threshold value is crucial for achieving a high-performance
dust filter. Therefore, an analysis of the data was conducted to determine the appropriate
threshold intensity.

The histograms in Figure 3 illustrate the distribution of intensity values for dust and
non-dust particles in Figure 2. In VLP-16, the intensity value varies as an integer ranging
from 0 to 255. Specifically, the x axis presents an integer intensity interval while the y axis
shows a fraction of the intensity data falling in each interval. For example, in Figure 3a, the
x value of the 2nd bin is in the interval of [1,2) and its y value is about 71%. This means
that 71% of dust points in Figure 3a have an intensity equal to 1. On the other hand, the
majority of non-dust points, almost 88%, have an intensity greater than 8 (see Figure 3b).

(a) (b)

Figure 3. Histogram of VLP-16 LiDAR point clouds when exposed to dust: histogram of dust points
as a percentage of total dust points (a) and histogram of non-dust points as a percentage of total
non-dust points (b).

A high threshold increases the risk of removing low-intensity non-dust points. There-
fore, there is a trade off between dust removal and preserving environmental information,
and both have to be balanced. By considering both perspectives, 7 was selected as a thresh-
old intensity in the study. As shown in Figure 4, the optimal values of the two remaining
LIOR parameters, search radius and minimum acceptable number of points, in Table 2,
were determined to provide the best filtering performance through trial and error using the
data sets in Section 3.1.
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Figure 4. An illustration of how the tuning of LIOR and LIDROR were performed.

Table 2. LIOR final parameters.

LIOR Parameters Value

Threshold intensity 7
Search radius (m) 0.044

Minimum acceptable number of points 6

3.4. Low-Intensity Dynamic Radius Outlier Removal (LIDROR)

To improve the LIOR filter to be more robust to distance variables, we devised a
new filter named LIDROR. Specifically, the ROR filter was replaced by the DROR filter
in the second stage of the LIOR filter to overcome the problem of the ROR’s filter by
using a dynamic search radius (from line 5–9 of Algorithm 3). In this filter, the constant
multiplier φ and the minimum acceptable number of points within the search radius are
the parameters to be tuned for de-dusting. Based on observations of how these parameters
affect the filtering performance and robustness in different dust scenarios, they were tuned
accordingly.

The LIDROR filter also has the merit of allowing the threshold intensity to be set
higher without sacrificing important non-dust information while maximizing dust removal.
Through experiments, 8 was determined as a threshold intensity for this filter, which is
higher than 7 for the LIOR filter. The finalized parameter values including the threshold
intensity are summarized in Table 3.

Algorithm 3 LIDROR filter

1: FOR (Each point in the point cloud)
2: IF (point intensity > threshold intensity)
3: Inliers← point
4: ELSE
5: IF ( search radius < minimum search radius)
6: search radius = minimum search radius
7: ELSE
8: Search radius← φ× α×

√
x2

p + y2
p

9: ENDIF
10: n← Find number of points inside SR
11: IF (n < threshold point)
12: Outliers← point
13: ELSE
14: Inliers← point
15: ENDIF
16: ENDIF
17: ENDFOR
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Table 3. LIDROR final parameters.

LIDROR Parameters Value

Threshold intensity 8
Minimum radius search (m) 0.044

Minimum acceptable number of points 5
Constant multiplier 0.011

4. Results and Discussion

Figures 5 and 6 show the results of dust removal with the designed filters, LIOR and
LIDROR, in two different scenarios from Table 1. In the first scenario, dust clouds are
located approximately 4 m from a LiDAR sensor, which is equivalent to experiment No. 1
in Table 1. They are located within 8 m in the second scenario (experiment No. 3 in Table 1).

Figure 5. Experimental results after applying the developed LIOR de-dusting filters in two different
scenarios: Point cloud map before filtering in case of experiment No. 1, first scenario (a); point-cloud
map after LIOR filtering in case of experiment No. 1, first scenario (b); point-cloud map before
filtering in case of experiment No. 2, second scenario (c); and point-cloud map after LIOR filtering in
case of experiment No. 2, second scenario (d).

Figure 5a,c present the point-cloud maps without filtering in the first and second test
scenarios, respectively, and Figure 5c,d display the maps after applying the LIOR filter in
each case. As shown in Figure 5b,d, the LIOR filter removed almost all dust points. Some
of the non-dust points having a low-intensity value can also be saved in the second stage
(ROR) of the LIOR filter; since non-dust points are dense and the ROR filter can save them,
especially if they are not far away from the sensor. However, some low-intensity non-dust
points from the environment were also eliminated. The distance from the LiDAR sensor to
these eliminated points was approximately more than 15 m in both figures. As mentioned
in the theoretical background Section 2.2, this is a drawback of the ROR filter, a part of
the LIOR filter, which deletes almost all points that are far away from the sensor. Another
limitation of this method is that it is difficult to choose a higher threshold intensity since it
is likely to detect more low-intensity points from the environment in the first step and then
increase the risk of removing these non-dust points from the environment using the ROR
filter in the second step.
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The proposed LIDROR filter was also tested as illustrated in Figure 6, using the same
point clouds used for the evaluation of the LIOR filter. This filter can save low-intensity
non-dust points at a long distance from the sensor. As it can be seen in Figure 6d, this filter
can remove dust points while keeping the information of target points whose intensity
return is low.

Figure 6. Experimental results after applying the developed LIDROR de-dusting filters in two
different scenarios: point-cloud map before filtering in case of experiment No. 1, first scenario (a);
point-cloud map after LIDROR filtering in case of experiment No. 1, first scenario (b); point-cloud
map before filtering in case of experiment No. 3, second scenario (c); and point-cloud map after LIOR
filtering in case of experiment No. 3, second scenario (d).

To evaluate our proposed LIOR and LIDROR de-dusting filters, we manually labeled
some of the collected data based on prior knowledge about the experimental scene. This
work was carried out using the LiDAR labeler app in MATLAB [31], as illustrated in
Figure 7, which enables us to draw a cuboid around the dust cloud and label it as dust.
In the figure, the points inside the yellow cuboid are labeled as dust. Consequently,
dust and non-dust point clouds are labelled 1 and 0, respectively. The metrics used for
evaluating the filtering performance are accuracy, precision, recall, and F1-score, defined in
Equations (3)–(6).

Figure 7. Labeling data in MATLAB LiDAR labeler app: The points inside a yellow cube are
considered as dust.
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Accuracy =
TP + TN

N
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score =
2

1
Recall +

1
Precision

(6)

where TP is the number of dust points that are removed correctly, TN is the number of
non-dust points that are saved correctly, FP is the number of non-dust points that are
removed as dust falsely, FN is the number of dust points that are preserved as non-dust
falsely, and N is the total number of points inside the point cloud. A high precision score
indicates a low FP, implying that the filter is effective at removing dust noise. On the other
hand, a high recall score indicates a low FN, which means that the filter can effectively
preserve environmental information.

These filters were then compared to the existing de-noising filters, SOR, ROR, and
DROR whose parameters are summarized in Table 4. All the candidate filters were applied
to the point clouds used in Figures 5a and 6a, which correspond to experiments No. 1 and
3 in Table 1.

Table 4. Parameters of the SOR, ROR, AND DROR filters.

Filter Parameters Value

SOR K-nearest number 8
Constant multiplier 0.1

ROR Search radius 0.04
Minimum acceptable number of points 3

DROR Minimum search radius 0.04
Minimum acceptable number of points 3
Constant multiplier

According to the evaluation results with the four metrics, as shown in Table 5, the
SOR filter has the worst overall performance for removing dust noise that constitutes 4% of
the total point cloud. The SOR filter, however, has a higher accuracy value than the ROR.
As the SOR only considers the k-nearest points when removing outliers, this filter is ideal
for removing noises that are isolated from others (i.e., removing sparse outliers). However,
because the dust point cloud contains a very small number of isolated points, this filter is
ineffective in removing dust.

On the other hand, the performance of the ROR filter for removing dust depends
on the selected radius search, since a small radius search results in a loss of significant
useful information about the environment. The ROR outperforms the SOR as it considers
the density of neighbor points. The DROR filter delivers better results than the ROR and
SOR by addressing the sparsity issue in the LiDAR points cloud. However, due to the
same limitation as the ROR, choosing a smaller search radius than the current one cannot
improve the de-noise (dust) performance.

The LIOR filter is comparable to the LIDROR in terms of removing dust. However,
because the LIOR eliminates nearly all the non-dust points selected from the first step
beyond a certain distance, it has a lower recall score than LIDROR due to the sparseness
of a LiDAR point cloud at long range. Among the five filters, the LIDROR has the best
performance across all metrics with an outstanding F1-score of 97.55%. In addition, it has
the highest recall value (95.74%) and a precision value near 100%, indicating that this filter
is not only able to maintain the environmental data, but also eliminate almost all of the
dust from the point cloud.
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Table 5. Evaluation results.

Filters
Evaluation Metrics (%)

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SOR 86.3 0.21 0.33 0.26
ROR 73.11 10.77 54.25 17.97

DROR 91.63 36.78 75.49 49.46
LIOR 89 99.27 89.87 94.24

LIDROR 95.46 99.44 95.74 97.55

Although LIDROR has a better F1-score than LIOR, it is computationally more expen-
sive. The processing time for filtering takes around 0.383 and 0.412 s for the LIOR and
LIDROR, respectively.

5. Conclusions

This paper aims to design noise-filtering algorithms that can remove dust from LiDAR
sensory data for mobile machines in industrial sectors facing dust environments. To achieve
the goal, we developed the intensity-based filter (LIDROR) based on an in-depth analysis
of the properties of dust point clouds measured using a LiDAR sensor. To the best of our
knowledge, the proposed method, along with our previously developed LIOR, are the first
attempts to design a de-dust filter using non-AI techniques in this field.

To evaluate the developed de-dusting algorithms, four different metrics were used
with the manually labeled data sets. The performance of the developed algorithms was
compared with that of the SOR, ROR, and DROR filters that were previously applied for
noise filtering in harsh weather conditions such as snow.

Evaluation results show that the proposed LIOR and LIDROR filters outperformed
the conventional filters. Moreover, the LIDROR provides the most accurate and robust
performance for dust removal with an F1-score of 97.55. It is expected from the results that
our proposed filters can be used in applications such as mining and off-road machinery
under harsh environmental conditions with dust. The intended future work is to implement
the developed filters on a mobile platform and further test them under more various and
dynamic scenarios (e.g., varying dust conditions such as dust density, including moving
objects to detect, etc.). Finally, AI techniques will be applied to design different types of
de-dust filters and their performance will be compared to that of non-AI filters proposed in
this study.
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