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Abstract: In recent years, the unmanned aerial vehicle (UAV) remote sensing technology has been
widely used in the planning, design and maintenance of urban distributed photovoltaic arrays
(UDPA). However, the existing studies rarely concern the UAV swarm scheduling problem when
applied to remoting sensing in UDPA maintenance. In this study, a novel scheduling model and
algorithm for UAV swarm remote sensing in UDPA maintenance are developed. Firstly, the UAV
swarm scheduling tasks in UDPA maintenance are described as a large-scale global optimization
(LSGO) problem, in which the constraints are defined as penalty functions. Secondly, an adaptive
multiple variable-grouping optimization strategy including adaptive random grouping, UAV group-
ing and task grouping is developed. Finally, a novel evolutionary algorithm, namely cooperatively
coevolving particle swarm optimization with adaptive multiple variable-grouping and context vector
crossover/mutation strategies (CCPSO-mg-cvcm), is developed in order to effectively optimize the
aforementioned UAV swarm scheduling model. The results of the case study show that the devel-
oped CCPSO-mg-cvcm significantly outperforms the existing algorithms, and the UAV swarm remote
sensing in large-scale UDPA maintenance can be optimally scheduled by the developed methodology.

Keywords: remote sensing; unmanned aerial vehicle swarm; photovoltaic equipment maintenance;
evolutionary optimization; particle swarm optimization

1. Introduction

In recent years, the unmanned aerial vehicle (UAV) remote sensing technology has
been widely used in different engineering application, e.g., soil property estimation [1],
forest structure assessment [2], traffic control [3], urban infrastructure management [4],
emergency scenarios [5], and so on. Due to the relatively low flying altitude, the UAV can
easily acquire detailed information of observed objects with a spatial resolution under one
decimeter. This advantage allows the UAV to be further applied in the maintenance of urban
distributed PV arrays (UDPA), e.g., 3D reconstruction and location optimization, hot-spot
detection, shading detection, cleanliness detection, and some other maintenance tasks.

With the fast development of photovoltaic (PV) power generation technology, the
UDPA are widely installed in every possible corner of the city to maximize the utilization
of solar energy [6–8]. To obtain the effective maintenance of these distributed PV arrays,
the UAV remote sensing technology are widely adopted [9–11]. With the utilization of UAV
swarm, a lot of design and maintenance tasks can be effectively accomplished, e.g., 3D
reconstruction of distributed PV roofs, PV array location optimization, PV panels and
infrastructures status monitoring, and so on. The application of remote sensing UAV in
distributed PV infrastructures maintenance can significantly increase the work efficiency,
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which is of great meaningful for the optimal operation of a large-scale distributed renewable
energy system.

However, due to the increasingly large number of UDPA, the efficiency requirements
for UDPA maintenance tasks always cannot be satisfied by a single UAV. Instead, the UAV
swarm consisting of a certain number of UAVs is adopted to accomplish the remote sensing
and maintenance tasks of large-scale UDPA. Obviously, the scheduling problem for the
UAV swarm significantly affects the entire maintenance efficiency. Especially, to optimally
schedule the UAV swarm becomes extremely difficult when the UAV number and UDPA
scale are large, as the complexity of the scheduling problem increasing exponentially with
the dimensionality (i.e., the so-called “curse of dimensionality”).

Recently, worldwide scholars have become concerned with the optimization and ro-
bust control of UAV swarm or other autonomous vehicles. For example, Gu et al. concerned
the problem of event-triggered secure path tracking control of autonomous ground vehicles
under deception attacks, and a novel learning-based event-triggered mechanism was de-
veloped [12]. Niu et al. formulated the UAV task-scheduling problem for disaster scenarios
as a two-stage Lyapunov optimization problem. They developed a dispersed computing
network consisting of UAVs and ground mobile devices, which could be used for collab-
orative computing. Compared with the UAV-based local computation, their developed
methodology could reduce the system energy consumption by more than 50% [13]. Liu et al.
were concerned with the UAV swarm scheduling method for remote sensing observations
in emergency scenarios. According to their experimental results, the proposed method
could optimally allocate the tasks to each UAV and significantly outperforms the direct
allocation method and manual scheduling method [6]. Hanna et al. proposed a method to
optimize the UAV positions to maximize the MIMO capacity when a UAV swarm commu-
nicates with a distant multiantenna ground station, and their simulation results showed the
robustness of their method under UAV motion disturbances [14]. Phung et al. developed a
spherical vector-based particle swarm optimization algorithm to solve the path-planning
problem of a UAV swarm in complicated environments [15]. As discussed above, most of
the existing studies concern the scheduling, robust control or path/position optimization
for a single target (e.g., a single autonomous vehicle or UAV), or for small-scale UAV swarm.
However, for the UDPA system in a modern city, a lot of PV arrays with different scales
are widely distributed in different city corners. When the UAV swarm is employed for the
maintenance of UDPA, complexity of the scheduling problem will increase exponentially
with the model dimensionality (i.e., the number of distributed PV arrays and the UAVs to
be scheduled). As a result, the effective model and optimization algorithm for solving the
high-dimensional UAV swarm scheduling problem are worth developing.

In this study, a novel high-dimensional scheduling model and optimization algorithm
for UAV swarm remote sensing in UDPA maintenance are developed. To be specific,
the UAV swarm scheduling tasks in UDPA maintenance are described as a large-scale
global optimization (LSGO) problem, in which the task-allocation constraint and UAV
duration constraint are introduced as penalty functions. Then, a novel adaptive multiple
variable-grouping optimization strategy including the adaptive random grouping, UAV
grouping and task grouping are developed. Finally, a novel evolutionary algorithm namely
cooperatively coevolving particle swarm optimization with adaptive multiple variable-
grouping and context vector crossover/mutation strategies (CCPSO-mg-cvcm) are developed
to optimize the aforementioned model.

2. UAV Swarm Scheduling Model Based on Large-Scale Global Optimization
2.1. UAV Swarm Remote Sensing in UDPA Maintenance

When the UAV swarm is applied in UDPA maintenance, the UAVs should be equipped
with necessary sensors, for example, the RGB camera, light-weight thermal infrared sensors,
and the global positioning system/inertial measurement unit (GPS/IMU). Then, the UAVs
fly to each UDPA from the maintenance center to execute the maintenance task and acquire
the dataset. The application of UAV swarm remote sensing in UDPA maintenance is
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illustrated in Figure 1. As shown in Figure 1, for the UDPA maintenance problem, a large
number of distributed PV arrays need to be maintained by the UAVs. However, the number
of UAVs is significantly smaller than that of UDPAs. As a result, how to effectively schedule
the UAV swarm to go to each UDPA location in turn and accomplish the detection tasks
will significantly affect the overall maintenance efficiency.
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Figure 1. Application of UAV swarm remote sensing in UDPA maintenance.

When a UAV arrives at a certain UDPA, it needs to hover around the PV array with
a certain route and scan all the PV panels to acquire the dataset. Then, when all the PV
panels have been scanned, the UAV flies to the next UDPA and repeat the above work.
Obviously, the time cost for the maintenance of each UDPA directly depends on its scale.
The dataset acquisition process for each UDPA is illustrated in Figure 2.
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Figure 2. Dataset acquisition process for each UDPA.

Assume the UAV swarm contains M UAVs, and the total number of UDPA tasks
is N. The scheduling problem is to optimally allocate the N tasks to the M UAVs and
maximize the maintenance efficiency (i.e., minimize the total time cost). Denote Li,j as
the distance between the ith and jth UDPA locations, and denote Si as the hover distance



Sensors 2022, 22, 4467 4 of 19

when maintaining the ith UDPA. Then, the total time cost for the mth UAV, i.e., Cm can be
formulized as

Cm =
L0,Tm

1
+ LTm

Nm ,0

v f
+

Nm−1

∑
n=1

LTm
n ,Tm

(n+1)

v f
+

Nm

∑
n=1

STm
n

vm
(1)

where vf is the speed of a UAV from one UDPA to another, and vm is the speed of a UAV
when it hovers around the PV array and scans the PV panels to acquire the dataset. L0,Tm

1
denotes the distance between the maintenance center and the first task location of the mth
UAV; LTm

Nm ,0 denotes the distance between the last task location and the maintenance center;
LTm

n ,Tm
(n+1)

denotes the distance between the nth and the (n + 1)th task locations of the mth
UAV; STm

n denotes the hover distance when maintaining the Tm
n th UDPA; Nm is the number

of tasks allocated to the mth UAV, and Tm
n is the nth tasks in the task queue of the mth UAV.

Obviously, the entire UAV swarm scheduling problem can be formulized as

min C =
M

∑
m=1

(
L0,Tm

1
+ LTm

Nm ,0

v f
+

Nm−1

∑
n=1

LTm
n ,Tm

(n+1)

v f
+

Nm

∑
n=1

STm
n

vm
) (2)

where C denotes the total time cost of a certain scheduling solution, and M denotes the
number of UAVs in the UAV swarm.

2.2. Encoding and Decoding Schemes

In order to minimize the total scheduling time cost using evolutionary algorithm, an
efficient encoding scheme is required. In this study, for the scheduling problem with M
UVAs and N task locations, N ×M variables xn,m (n = 1, 2, . . . , N; m = 1, 2, . . . , M) are
introduced to encode the scheduling solution. To be specific, the optimization vector

→
x ,

which is a combination of all the optimization variables, is defined as

→
x = (x1,1, x1,2, . . . , x1,M, . . . , xN,1, xN,2, . . . , xN,M) (3)

where xn,m∈[0, Hx] (n = 1, 2, . . . , N; m = 1, 2, . . . , M; Hx represents the upper bound of
xn,m, which denotes the allocating relationship between the mth UAV and the nth task. xn,m
≥ Hx/2 represents the nth task is allocated to the mth UAV, and xn,m < Hx/2 represents
the opposite. The encoding scheme for the UAV swarm-scheduling problem is illustrated
in Figure 3.
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Correspond to the 1st task Correspond to the 2nd task Correspond to the Nth task 

Correspond to 

the 1st UAV 
Correspond to 

the 2nd UAV 

Correspond to 

the Mth UAV  

Figure 3. Encoding scheme for UAV swarm scheduling.

For decoding the optimization vector, the optimization variables related to a certain
UAV, say the mth UAV, are employed to establish the its task queue. To be specific, for the
mth UAV, the variables within x1,m, x2,m, . . . , xn,m and greater than Hx/2 are selected. Then,
these selected variables are sorted from the smallest to the largest in order to form the final
task queue of the mth UAV. The decoding scheme for the UAV swarm scheduling problem
is illustrated in Figure 4.
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2.3. Constraints and Penalty Function

(1) UAV duration constraint

Due to the limited flight duration of UAV, the total distance for completing the task
queue of a certain UAV should be strictly constrained. To be specific, the above UAV
duration constraint can be formulized as

Cm = L0,Tm
1
+ LTm

Nm ,0 +
Nm−1

∑
n=1

LTm
n ,Tm

(n+1)
+

Nm

∑
n=1

STm
n ≤ ηd·Ld−max (4)

where Cm denotes the total distance for completing the task queue of a certain UAV; Ld-max
denotes the maximum duration for each UAV; ηd ∈ (0, 1) is a coefficient to ensure a certain
residual power.

(2) Task-allocation constraint

Consider that in a feasible solution, each of the UDPA tasks should be allocated to a
certain UAV. As a result, the task-allocation constraint can be formulized as

M

∑
m=1

xbinary
n,m = 1 (n = 1, 2, . . . , N), xbinary

n,m =

{
0, i f xn,m < Hx

2

1, i f xn,m ≥ Hx
2

(5)

where xbinary
n,m ∈ {0, 1} denotes the binary coding variable for xn,m.

(3) UAV-utilization constraint

In order to make full use of all the UAVs in service, the task queue for each UAV
should not be empty. As a result, the UAV-utilization constraint can be formulized as

N

∑
n=1

xbinary
n,m ≥ 1 (m = 1, 2, . . . , M), xbinary

n,m =

{
0, i f xn,m < Hx

2

1, i f xn,m ≥ Hx
2

(6)

(4) Penalty function

In order to effectively optimize the scheduling model using an evolutionary algorithm,
the aforementioned constraints are defined as penalty functions and directly introduced
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into the optimization model. To be specific, the penalty function for a certain solution
→
x is

defined as

Cp(
→
x ) = λp·(

M

∑
m=1

Dm + Ntask + Nuav), Dm =

{
0, i f Cm ≤ ηd·Ld−max

Cm
ηd ·Ld−max

, i f Cm > ηd·Ld−max
(7)

where Cp(
→
x ) denotes the total penalty value for a certain solution

→
x ; λp is a pre-defined

coefficient to control the penalty strength; Dm indicates whether the task queue for the mth
UAV can satisfy the UAV duration constraint. Dm is equal to 0 when the UAV duration
constraint for the mth UAV is satisfied, and Dm is equal to Cm/ηd·Td−max > 1 when the
constraint is broken; Ntask∈ [0, N] denotes the number of tasks that do not satisfy the
task-allocation constraint; Nuav∈ [0, M] denotes the number of UAVs that do not satisfy the
UAV-utilization constraint. Obviously, for a feasible solution, Dm (m = 1, 2, . . . , M), Ntask
and Nuav should be equal to 0.

As discussed above, the overall UAV swarm scheduling model by considering all the
constraints can be formulized as

min f = C + Cp =
M

∑
m=1

(
L0,Tm

1
+ LTm

Nm ,0

v f
+

Nm−1

∑
n=1

LTm
n ,Tm

(n+1)

v f
+

Nm

∑
n=1

STm
n

vm
) + λp·(

M

∑
m=1

Dm + Ntask + Nuav) (8)

3. A Novel CCPSO-mg-cvcm Optimization Algorithm

As discussed in Section 2, the optimal scheduling for remote sensing a UAV swarm is
modeled as a N ×M dimensional optimization problem. Obviously, the model complexity
significantly increases with the number of UAVs and the scale of the UDPA system. For
example, when 20 UAVs (M = 20) are employed to execute the maintenance tasks of 80
UDPAs (N = 80), the model dimensionality is 20× 8 = 1600. Obviously, this ultra-high
dimensional problem is too complex to be optimized by using traditional optimization
algorithms. In order to overcome this problem, a novel evolutionary algorithm, namely,
the cooperatively coevolving particle swarm optimization with adaptive multiple variable-
grouping and context vector crossover/mutation strategies (CCPSO-mg-cvcm), is developed.

3.1. Particle Swarm Optimization

With the fast development of artificial intelligence (AI) theories and technologies,
many AI-based algorithms are developed and employed for solving real-world problems,
for example, in remote sensing [16,17], renewable energy system [18], architecture [19,20],
human behavior recognition [21], control of unmanned vehicles [22] and so on [23]. The
evolutionary algorithm (EA) is an important branch of AI technology, and it is widely
employed for solving complex optimization problems [24]. In recent years, many EA-
based methodologies are widely developed and obtain promising performance in solving
real-world optimization problems [25–27].

Particle swarm optimization (PSO) is an evolutionary algorithm typically employed
in numerical optimization problems. The idea of PSO originates from the imitation of
foraging behavior of swarms such as birds and fishes. When PSO is employed to optimize a
certain problem, all the individuals (also called the particle) in its population are randomly
initialized, and each presents a potential solution for the original problem. Then, according
to the velocity and position updating formulas, each particle searches for the optimal
position in the solution space by iteratively updating. When the stopping criteria are
reached, the algorithm outputs the best particle in the newest generated population as the
final solution. The basic evolution rules in PSO can be formulized as

vi(t + 1) = ω·vi(t) + αl ·(xi−best(t)− xi(t)) + αg·(xgbest(t)− xi(t)) (9)

xi(t + 1) = xi(t) + vi(t + 1) (10)
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where xi(t) and vi(t) denote the position and velocity of the ith particle in the tth generation;
xi-best(t) denotes the historical best position for the ith particle in the tth generation; xgbest(t)
denotes the global best position in the tth generation; αl and αg are coefficients to control
the cognitive and social learning strength. In recent years, many PSO variants have been
developed and employed to solve different engineering problems [28].

3.2. Cooperatively Coevolving

In the optimization of high-dimensional problem, the basic PSO and most of its
variants always lose their efficacies due to the “curse of dimensionality”. In order to
overcome this problem, the cooperatively coevolving (CC) inspired by the “divide and
conquer” philosophy is developed [29]. In the CC framework, the original D-dimensional
problem is decomposed into several relatively low-dimensional sub-problems. Then, all
the sub-problems are coevolved one-by-one in each generation. As each sub-problem only
contains a part of variables of the original problem, it is impossible to compute the fitness
function value without a context. As a result, one or more D-dimensional particles are
defined as the context vector (CV) to provide references for the variables corresponding to
the other dimensionalities.

For the UAV scheduling model described in Section 2, the application of the PSO and
CC framework is illustrated in the following steps:

Step 1: For the original D = N × M dimensional scheduling model (denoted as
UAV-Model0), initialize the PSO population with NP particles. Each particle represents a
D-dimensional optimization vector as listed in Equation (3). Then, decompose the original
UAV-Model0 into K sub-models (denote as Sub-Modeli, i = 1, 2, . . . , K), i.e., UAV-Model0
= (Sub-Model1, Sub-Model2, . . . , Sub-ModelK). Note that the dimensionality of each sub-
model is equal to D/K. Then, each D-dimensional particle (i.e., optimization vector)

→
x

can be denoted as
→
x = (x1, x2, . . . , xK), where xi represents the corresponding variables

(i.e., dimensionalities) belongs to the ith sub-model, i.e., Sub-Modeli.
Step 2: Denote the selected context vector as CV . Then, the Sub-modeli in the CC

framework can be defined as

min f (xi
∣∣∣CV), xi ∈ [0, Hx]

D/K, CV ∈ [0, Hx]
D (11)

where f (xi
∣∣CV) = f (CV1, . . . , CVi−1, xi, CVi+1, . . . , CVK) represents the fitness func-

tion for Sub-modeli.
Step 3: Start an evolution cycle. All the sub-models as listed in Equation (11) are

optimized one-by-one using PSO.
Step 4: Proceed another evolution cycle if the stopping criteria are not satisfied;

otherwise, stop the cooperatively coevolving process and output the D-dimensional global
best particle.

3.3. Adaptive Multiple Variable-Grouping Strategy

Actually, in the CC framework as discussed in Section 3.2, the decomposition strategy
of the original model significantly affects the optimization performance. That is to say, how
to allocate the original D variables to each sub-model is very important. In order to ensure
that the heavily coupled variables are grouped into the same sub-model and coevolved for
enough iterations, a novel multiple variable-grouping strategy is developed. To be specific,
all the optimization variables xn,m (n = 1, 2, . . . , N; m = 1, 2, . . . , M) are grouped using the
following strategies:

(1) Adaptive random grouping

The most widely used variable-grouping strategy is random grouping, which means
that all the variables are randomly disordered and grouped into each sub-model. In this
study, the adaptive random grouping (AR-grouping) is developed, in which the group size
can be adaptively adjusted. Steps for the AR-grouping strategy are as follows:

Step 1: Randomly disorder the entire D dimensionalities within the original model.
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Step 2: Decompose the disordered dimensionalities into K = D/s sub-models, where
s is a pre-defined variable to control the size of each sub-model. Randomly increase or
decrease s with a certain step-size ∆s, i.e., set s = s± ∆s.

Step 3: In each iteration, check whether the global optimum is effectively evolved.
Keep increasing (or decreasing) s with the same direction if the global optimum is evolved;
otherwise, change the disturbance direction of the group-size s. Then, go to Step 1 to
re-disorder and re-decompose the dimensionalities with the newly updated s.

The schematic of the AR-grouping strategy is illustrated in Figure 5.
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(2) UAV variable grouping

In the UAV variable grouping strategy (denote as UAV-grouping), the variables related
to a certain UAV are grouped into the same sub-model. To be specific, set the group size s
to k·N(k = 1, 2, . . . , M). When s = N in a certain iteration, the variables for the first UAV
(denote as UAV1), i.e., x1,1, x2,1, . . . , xn,1, are regarded as the first sub-model; then, the
variables for the second UAV (denote as UAV2), i.e., x1,2, x2,2, . . . , xn,2, are regarded as the
second sub-model, and so on. Similarly, when s = k·N in a certain iteration, the variables for
the adjacent k UAVs are grouped into the same sub-model. That is to say, x1,1, . . . , xn,1, x1,2,
. . . , xn,2, . . . , x1,k, . . . , xn,k, are regarded as the first sub-model; then, x1,(k + 1), . . . , xn,(k + 1),
x1,(k + 2), . . . , xn,(k + 2), . . . , x1,2k, . . . , xn,2k, are regarded as the second sub-model, and so on.

The schematic of the UAV-grouping strategy is illustrated in Figure 6.
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(3) Task variable grouping

In the Task variable grouping strategy (denote as Task-grouping), the variables related
to a certain UDPA are grouped into the same sub-model. Similar with the UAV-grouping,
set the group size s to k·M(k = 1, 2, . . . , N). When s = M in a certain iteration, the variables
for the first UDPA (denote as UDPA1), i.e., x1,1, x1,2, . . . , x1,m, are regarded as the first
sub-model; then, the variables for the second UDPA (denote as UDPA2), i.e., x2,1, x2,2, . . . ,
x2,m, are regarded as the second sub-model, and so on. Similarly, when s =k·M in a certain
iteration, the variables for the adjacent k UDPAs are grouped into the same sub-model. That
is to say, x1,1, . . . , x1,m, x2,1, . . . , x2,m, . . . , xk,1, . . . , xk,m are regarded as the first sub-model;
then, x(k + 1),1, . . . , x(k + 1),m, x(k + 2),1, . . . , x(k + 2),m, . . . , x2k,1, . . . , x2k,m, are regarded as the
second sub-model, and so on.

The schematic of the Task-grouping strategy is illustrated in Figure 7.
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In the overall adaptive multiple variable-grouping strategy, the AR-grouping, UAV-
grouping and Task-grouping are adaptively selected in each iteration. To be specific, each
of the grouping strategies are randomly selected according to their probabilities, which are
adaptively updated in each iteration. The adaptive probabilities for each grouping strategy
are defined as 

ρAR = NAR
NAR+NUAV+NTASK

ρUAV = NUAV
NAR+NUAV+NTASK

ρTASK = NTASK
NAR+NUAV+NTASK

(12)

where ρAR, ρUAV and ρTASK represent the adaptive probabilities for AR grouping, UAV
grouping and Task grouping, respectively; NAR, NUAV and NTASK represent the probability
coefficients for each grouping strategy. The principles for updating these probability
coefficients are as follows:
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Firstly, NAR, NUAV and NTASK are all initialized to N0 (e.g., N0 = 5) at the beginning
of iteration. That is to say, the AR-grouping, UAV-grouping and Task-grouping strategies
have the same probabilities (i.e., 33.33% for each one) to be selected at the beginning;

Then, check whether the global optimum is evolved at the end of each iteration. Add
1 to NAR (or NUAV, or NTASK) if the AR-grouping (or UAV-grouping, or Task-grouping)
strategy is selected in this iteration and the global optimum is effectively evolved.

As discussed above, the flowchart of the adaptive multiple variable-grouping strategy
is illustrated in Figure 8.
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3.4. Context Vector Crossover and Mutation Strategy

As discussed in Section 3.2, when the CC framework is employed to solve a high-
dimensional optimization problem, one or more D-dimensional vectors should be defined
as the context vector to provide references when evolving a certain part of the original
problem. In this study, the best (pcv − 1) particles in the current population and another
randomly generated particle in the current population are employed as the context vector.
Note that pcv denotes the total number of CV.

(1) CV crossover strategy

In order to keep the diversity of CV, the crossover mechanism is introduced. To be
specific, randomly select two CVs, say CV1 and CV2, and randomly exchange part of the
dimensionalities in CV1 and CV2. Note that in the CV crossover strategy, the exchanged
dimensionalities are always corresponding to the same UAV or the same UDPA. After the
crossover operation, update the original CVs (i.e., CV1 and CV2) using the newly generated
CVs (denote as CV1-new and CV2-new) if better. The schematic of the CV crossover strategy
is illustrated in Figure 9.
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(2) CV mutation strategy

As discussed in Section 2.3, each of the UDPA tasks should be allocated to a certain
UAV. That is to say, in a feasible scheduling solution, each of the variable groups related
to a certain UDPA should be a one-hot vector, i.e., only one variable in xn,1, xn,2, . . . , xn,M
(n = 1, 2, . . . , N) is greater than Hx/2. As a result, the CV mutation strategy is developed in
the following steps:

Step 1: Define the parameter ρm ∈ [0, 1] to control the mutation probabilities for
each CV;

Step 2: For each of the pcv CVs, say the ith CVi, randomly generate a mutation variable
ρi within the interval [0, 1]. Then, mutate CVi according to the following principles:

• If ρi ≤ ρm, keep CVi unchanged;
• Otherwise, each of the components [xn,1, xn,2, . . . , xn,M] (n = 1, 2, . . . , N) in CVi is

randomly mutated to [r0, r0, . . . , r0, r1], [r0, . . . , r0, r1, r0], . . . , [r0, r1, r0, . . . , r0] and
[r1, r0, r0, . . . , r0], in which each r0 is randomly generated within [0, Hx/2) and each r1
is randomly generated within [Hx/2, Hx].

Step 3: Denote the mutated CV as CVi-mut. Update CVi using CVi-mut if better.

3.5. The Overall CCPSO-mg-cvcm Optimization Algorithm

By integrating the aforementioned CC framework, adaptive multiple variable-grouping
strategy and the CV crossover/mutation strategy, a novel evolutionary algorithm namely
CCPSO-mg-cvcm is developed to optimize the high-dimensional UAV swarm scheduling
model. In the CCPSO-mg-cvcm, the position updating principle for each particle follows the
AMCCPSO developed in our previous study [30]. The developed CCPSO-mg-cvcm algorithm
is illustrated in Algorithm 1.

Algorithm 1. Pseudo code of CCPSO-mg-cvcm.

Initialize D = N ×M dimensional Population with NP particles. Initialize pcv context vectors with
the best (pcv − 1) particles and a randomly selected particle.
repeat

Update the adaptive probabilities for each grouping strategy, and randomly select a
grouping strategy according to these probabilities.

Decompose the original D-dimensional model into several sub-models using the selected
grouping strategy. Denote the jth sub-model as Sub-Modelj.

Execute the CV crossover operation for Nmu times. Execute the mutation operation for
each CV.

for each Sub-Modelj do
Coevolve the corresponding variables using AMCCPSO principles [30].

end
until the stopping criteria are satisfied.
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3.6. Application of the Overall UAV Swarm Scheduling Methodology

In the real-world application, the scheduling model described in Section 2 is estab-
lished by using the real problem details: for example, the number of tasks and UAVs, the
detailed locations and scales of each task, the distance duration and speed for each UAV
and so on. Then, run the CCPSO-mg-cvcm algorithm and output the global best solution.
Finally, decode the best solution and obtain the task sequence for each UAV. As discussed
above, the aforementioned scheduling model and optimization algorithm are implemented
in the following steps:

Step 1: Collect the model parameters according to the real scheduling problem, in-
cluding the number of tasks and UAVs, the locations and scales of each task, the maximum
distance duration and speed of UAV;

Step 2: Establish the LSGO-based high-dimensional scheduling model by using the
collected parameters in Step 1;

Step 3: Run the CCPSO-mg-cvcm algorithm and output the global best solution;
Step 4: Decode the best solution output in Step 3 and obtain the task sequence for

each UAV;
Step 5: Transmit the task sequence obtained in Step 4 to each UAV.

4. Case Studies and Analysis
4.1. Experimental Setup

In order to verify the effectiveness of the developed UAV swarm scheduling model
and optimization algorithm, some numerical experiments for different cases are conducted
in this section. Assume the UAV swarm contains 10 remote sensing UAVs, and there are
in total 50 UDPAs that need to be maintained. The location and scale for each UDPA
are shown in Figure 10. Note that in Figure 10, the red circle represents the maintenance
center, i.e., the beginning and ending points for the UAV swarm. The small blue circles
denote the 50 UDPAs located in different areas of a city, and the number next to each point
denotes the scale for each UDPA (i.e., the hover distance of the UAV when maintaining the
corresponding UDPA). The X and Y axes represent the horizontal and vertical distances
between the UDPA and maintenance center, and the units are kilometers. The detailed
parameter settings employed in the following experiments are listed in Table 1.
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Table 1. Detailed parameter settings for the scheduling model and optimization algorithm.

Parameter Meaning Value Parameter Meaning Value

vf
Speed of UAV from one UDPA

to another 25 m/s vm
Speed of UAV when hover around

PV array 15 m/s

Ld-max
Maximum distance duration for

each UAV 40 km ηd
Power consumption coefficient

for UAV 90%

Hx
Upper bound of

optimization variables 100 λp Penalty strength coefficient 10,000

∆s Step-size for random grouping 5 s0
Initial group size for random

grouping 10

pcv Number of CV 5 N0
Initial value for

probability coefficients 5

Np
Number of particle in the

PSO swarm 50 ρm
Mutation probability

control coefficient 0.7

Max_ges Maximum evaluation number for
CCPSO-mg-cvcm

2 × 106 Nmu Number of CV crossover operation 5

4.2. Experimental Results and Analysis

For the UAV swarm scheduling problem as shown in Figure 11, the optimal scheduling
solution obtained by CCPSO-mg-cvcm is listed in Table 2 and plotted in Figure 12. The final
optimized fitness function value is 40.45, which is smaller than the pre-defined penalty
strength coefficient λp = 10,000. This implies that all the constraints are strictly satisfied in
the optimized scheduling solution.
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Table 2. Optimal task queues for each UAV obtained by CCPSO-mg-cvcm.

UAV Task Queue UAV Task Queue

UAV1 8—-20—-41—-39 UAV6 11—-40—-23—-13

UAV2 35—-25—-47—-37 UAV7
5—-48—-45—-14—-

6—-44—-33—-10

UAV3
31—-7—-24—-21—-

15—-26 UAV8 50—-2—-1

UAV4 38—-30—-34—-27 UAV9
49—-29—-4—-3—-

42—-43—-9

UAV5
19—-16—-12—-32—-

36—-22 UAV10 17—-28—-18—-46
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In order to verify the effectiveness of the CC framework, multiple variables-grouping
strategy, CV crossover and mutation strategies, the basic PSO and the famous CCPSO2
algorithm are employed for comparison [29]. The final fitness function values obtained
by each algorithm are compared in Table 3. As shown in the table, the performance of
CCPSO-mg-cvcm significantly outperforms its competitors. To be specific, for the basic
PSO and the CCPSO2 algorithms, the final fitness function values are all significantly
larger than the pre-defined penalty strength coefficient λp. This implies that due to the high
dimensionality, some of the constraints are broken and the model is punished by the defined
penalty functions. However, the final fitness function value obtained by CCPSO-mg-cvcm
is just 40.45, which is significantly less than the penalty strength coefficient λp =10,000.
This implies that all the model constraints are satisfied in the final solution output by
CCPSO-mg-cvcm, and the total cost is effectively optimized. The convergence graphs for
PSO, CCPSO2 and CCPSO-mg-cvcm are compared in Figure 13.

Table 3. Comparison for the final fitness function value of PSO, CCPSO2 and CCPSO-mg-cvcm.

Algorithm
Final Fitness

Function
Value

Algorithm
Final Fitness

Function
Value

Algorithm
Final Fitness

Function
Value

PSO 547,478.43 CCPSO2 64,563.43 CCPSO-mg-cvcm 40.45

4.3. Analysis for Different Model Dimensionalities

In order to further analyze the performance of CCPSO-mg-cvcm for different model
dimensionalities (i.e., different scales for UAV swarm and UDPA system), some more case
studies are conducted in this section. The detailed parameter settings for each case are listed
in Table 4. The locations and scales for UDPAs in each case are plotted in Figure 14. The
final scheduling solutions obtained by CCPSO-mg-cvcm for each case are shown in Figure 15.
Note that in Figure 15, each line represents the flight path of a single UAV.
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Table 4. Parameter settings for each case.

Cases Number of
UAV

Number of
UDPA

Model
Dimensionality

Maximum Evaluation
Number

Case 1 3 10 30 2 × 105

Case 2 6 30 180 5 × 105

Case 3 8 40 320 1 × 106

Case 4 10 50 500 1 × 106

Case 5 14 80 1120 1 × 106

Case 6 20 120 2400 1 × 106
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As shown in Figure 15, the developed CCPSO-mg-cvcm performs robustly for all the
cases, and it can effectively output the optimal scheduling solution of the UAV swarm.
Especially for Case 6, in which the model dimensionality increases to 2400, the developed
CCPSO-mg-cvcm can effectively optimize such a high-dimensional problem and also satisfy
all the constraints. The detailed task queues for each UAV in Case 6 are listed in Table 5.
As shown in the table, due to the different scale and location of each UDPA, the lengths of
UAV task queues are different from each other. For example, the task queue lengths for
UAV1, UAV5, UAV6, UAV15 and UAV19 are 7; however, the lengths for UAV3, UAV8 and
UAV10 are only 3. Note that the task queue for UAV11 is empty, which implies that the
overall 120 UDPAs can be maintained by 19 UAVs with low time-cost and can satisfy all
the constraints, so UAV11 is excluded from the UAV swarm.

Table 5. Optimal task queues for each UAV in Case 6.

UAV Task Queue UAV Task Queue

UAV1 25—-27—-40—-50—-58—-93—-95 UAV11 /
UAV2 43—-44—-74—-80—-89 UAV12 13—-47—-49—-69—-70
UAV3 18—-36—-45 UAV13 23—-53—-76—-81
UAV4 8—-29—-39—-78—-83—-87 UAV14 6—-9—-10—-32—-48—-68
UAV5 7—-24—-30—-37—-61—-94—-98 UAV15 2—-15—-51—-77—-85—-91—-99
UAV6 31—-34—-35—-46—-66—-73—-96 UAV16 5—-19—-52—-57—-88
UAV7 16—-33—-38—-72—-79 UAV17 11—-26—-28—-63
UAV8 1—-14—-67 UAV18 22—-54—-55—-75—-90
UAV9 59—-62—-64—-86—-100 UAV19 3—-17—-20—-41—-71—-82—-84
UAV10 12—-21—-56 UAV20 4—-42—-60—-65—-92—-97

4.4. Comparison for Different Algorithms

In order to further verify the outperformance of CCPSO-mg-cvcm in optimizing a high-
dimensional scheduling model, some state-of-the-art evolutionary algorithms are em-
ployed for comparison. The compared algorithms include the basic CPSO-SK-rg-aw [31],
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CCPSO2 [29], JADE [32] and AMCCDE [33]. The population sizes of all of the compared
algorithms are set to 50, and the maximum number of fitness evaluations is set to 2 × 106.
The other parameter settings of the compared algorithms are the same as their original
studies. Parameter settings for Case 7–10 are listed in Table 6. As shown in Table 6, the
model dimensionality significantly increases from Case 7 to Case 10. To be specific, in
Case 7, the numbers of UAV and UDPA are 6 and 30, respectively, and the model dimen-
sionality is equal to 6 × 30 = 180. In Case 8, the numbers of UAV and UDPA increase to
12 and 60, respectively, and the model dimensionality increases to 12 × 60 = 720. Finally,
the model dimensionalities in Case 9 and 10 further increase to 1200 and 2000. Obviously,
the high-dimensionality characteristics in Cases 9 and 10 will significantly increase the
problem complexity and lead to the failure of some traditional optimization algorithms.

Table 6. Parameter settings for Case 7 to Case 10.

Cases Number of
UAV

Number of
UDPA

Model
Dimensionality

Maximum Evaluation
Number

Case 7 6 30 180 1 × 106

Case 8 12 60 720 1 × 106

Case 9 15 80 1200 1 × 106

Case 10 20 100 2000 1 × 106

The results of simulations for different algorithms are compared in Table 7. As shown
in the table, the developed CCPSO-mg-cvcm obtains the best performance for all the cases.
For example, when optimizing the 180-dimensional model in Case 7, CCPSO2, AMCCDE
and CCPSO-mg-cvcm can satisfy all the constraints, because the final results obtained by
these algorithms are significantly less than the penalty strength coefficient λp =10,000.
Specifically, the performance obtained by CCPSO-mg-cvcm for Case 7 (i.e., 25.251) is better
than CCPSO2 (29.142) and AMCCDE (27.599). This implies that the scheduling solution
provided by the developed CCPSO-mg-cvcm has a higher efficiency than that of CCPSO2
and AMCCDE, and the overall time-cost for accomplishing all the maintenance tasks is
significantly reduced by CCPSO-mg-cvcm. However, for the compared CPSO-SK-rg-aw and
JADE algorithms, some constraints are broken in the final solution, so the final cost values
obtained by CPSO-SK-rg-aw and JADE are significantly larger than the other algorithms.

Table 7. Comparison for different optimization algorithms.

Cases CPSO-SK-rg-aw CCPSO2 JADE AMCCDE CCPSO-mg-cvcm

Case 7 7.2602 × 104 2.9142 × 101 1.6330 × 104 2.7599 × 101 2.5251 × 101

Case 8 1.3087 × 105 6.8420 × 104 7.4197 × 105 3.3308 × 104 4.3747 × 101

Case 9 2.3357 × 105 1.0856 × 105 1.8142 × 106 8.4918 × 104 6.1996 × 101

Case 10 3.3947 × 105 1.3128 × 105 4.4930 × 106 9.4073 × 104 8.0628 × 101

Note that the solutions satisfied all the constraints are set in bold.

For the 720-dimensional model in Case 8, the final results obtained by CPSO-SK-ra-aw,
CCPSO2, JADE and AMCCDE are all significantly larger than the penalty strength co-
efficient λp. This indicates that the scheduling solutions obtained by these algorithms
are infeasible because some of the constraints are not satisfied. However, the final result
obtained by CCPSO-mg-cvcm is just 43.747, which is significantly smaller than the penalty
strength coefficient λp. Obviously, this implies that the CCPSO-mg-cvcm can satisfy all the
constraints and output efficient scheduling solution for this 720-dimensional problem.

When the dimensionality further increases to 1200 in Case 9 and 2000 in Case 10,
all the compared algorithms lose their efficacies and cannot efficiently optimize the high-
dimensional model. However, the developed CCPSO-mg-cvcm can obtain robust perfor-
mance, the final cost value obtained by CCPSO-mg-cvcm is 61.996 in Case 9 and 80.628
in Case 10. It can be concluded that the developed CCPSO-mg-cvcm algorithm can obtain
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promising performance on optimizing the high-dimensional UAV swarm scheduling model
with up to more than 2000 dimensionalities.

5. Conclusions

This study concerns the unmanned aerial vehicle (UAV) swarm scheduling problem
when applied to remote sensing in urban distributed photovoltaic arrays (UDPA) mainte-
nance. On one hand, the UAV swarm scheduling model and the penalty function-based
constraints are established. On the other hand, a novel evolutionary algorithm, namely
cooperatively coevolving particle swarm optimization with adaptive multiple variable-
grouping and context vector crossover/mutation strategies (CCPSO-mg-cvcm), is developed
to optimize the scheduling model. The results of case study show that the dimensionality
of the scheduling model significantly increases with the scales of UAV swarm and UDPA to
be maintained, and most of the existing algorithms lose their efficacies when adopted to op-
timize these high-dimensional problems. However, with the integration of a cooperatively
coevolving framework, adaptive multiple variable-grouping strategy, and context vector
crossover/mutation strategies, the developed CCPSO-mg-cvcm significantly outperforms
the existing algorithms, and it can effectively optimize the high-dimensional (even up to
2400 dimensionalities) scheduling model with robust performance. In the future, the deep
learning-based technique will be examined to further improve the performance of UAV
swarm remote sensing under a complex environment [34].
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