
Citation: Ghimire, J.; Choi, D.-Y.

Ultra-Wide Band Double-Slot Podal

and Antipodal Vivaldi Antennas

Feed by Compact Out-Of-Phase

Power Divider Slot for Fluid

Properties Determination. Sensors

2022, 22, 4543. https://doi.org/

10.3390/s22124543

Academic Editors: Andrea Cataldo,

Emanuele Piuzzi and Agnieszka

Szypłowska

Received: 23 May 2022

Accepted: 14 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Ultra-Wide Band Double-Slot Podal and Antipodal Vivaldi
Antennas Feed by Compact Out-Of-Phase Power Divider Slot
for Fluid Properties Determination
Jiwan Ghimire and Dong-You Choi *

Department of Information and Communication Engineering, Chosun University, Gwangju 61452, Korea;
ghimire@chosun.kr
* Correspondence: dychoi@chosun.ac.kr

Abstract: In this paper, double slot podal and antipodal ultra-wideband (UWB) microstrip antennas
for a fluid property measurement system are proposed. Among different feeding techniques, out of
phase uni-planner power divider approach is used. The performance verification of the proposed
antenna is explained, along with a performance comparison of the antenna bandwidth, feeding, and
the realized gain. The suggested podal antenna has an impedance bandwidth from 2.4 to 15.4 GHz,
with a maximum gain of 11.3 dBi in the 12 GHz region while the antipodal antenna has a 2.8 GHz to
16 GHz impedance bandwidth, with a maximum gain of 10.4 dBi in the 10 GHz region. Within the
intended band, the radiation pattern had an excellent directivity characteristic. The implementation
of the proposed antenna is calibrated by measuring the propagated signals response via various
liquid specimens using UWB radar, which might be applied for fluid sensing and prediction purposes.
The proposed antenna was connected to an NVA-R661 module of Xethru Inc. for measuring the
sample delay and peak-to-peak amplitude of the received signals passing through specimens. The
measured parameters at a different radar frequency range of transmission are applied by drawing
the fluid viscous analogy based on Poiseuille’s law hypothesis, showing clear differentiation between
the test specimens.

Keywords: UWB; vivaldi antenna; podal; antipodal; viscosity; radar; microstrip power divider;
polar fluids

1. Introduction

Due to certain advantages such as low profile, compactness, cheap costs in system
development, planar configuration, and ease of integration [1–4] over conventional mea-
surement techniques such as using waveguide sample cells [5,6], resonant cavities or coaxial
probes [7–9], magnetic material [10,11], horn antennas [12], a microstrip antenna have been
considered as potential alternatives for detecting and monitoring the physical property and
permittivity analysis of the material. Similarly, microstrip antennas have also been studied
as a potential option for landmine detection [13], through-wall imaging [14], biomedical
imaging [15], breathing, heart rate detection [16], motion and gesture detection [17], and
two-dimensional (2D) imaging of concrete blocks [18]. Depending on the physical and
dielectrics properties of the material, microwave sensing techniques have a wide range of
industrial applications, such as identifying or monitoring material permittivity, density
distribution, temperature, moisture content, and compositional proportions in materi-
als [18–24]. The microstrip patch antenna is used to record the moisture level contained in
rubber latex by observing the shift in the resonant frequency [25], as a sensor dipped into a
liquid chamber for salinity determination [26], as a new method and the prototype system
for measuring permittivity and properties of dielectric material by sensing the change of the
input impedance of a transmitting microstrip patch antenna [27], as a temperature sensor
with reactive impedance surface ground plane [28], as a method of detecting the dielectric
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characteristics of water based on the proportion of salt and sugar incorporated [29,30]. The
process or techniques developed for detection and sensing require are complex and time-
consuming, and the cost of developing these systems is high. Limitations in bandwidth
at microwave frequency, materials, feeding space, installation, and application act as a
constraint when analyzing using existing methods. As a result, the challenge of developing
a method of measuring the constitutional properties of materials that is simple to use,
least reliant on various parameters, and provides enough measurement accuracy remains
crucial. To achieve the required penetration depth, especially through the high lossy test
samples or specimens, an antenna with a wide frequency range, consistent unidirectional
end-fire radiation character, and a high directed gain is preferred for microwave transmis-
sion. Different antenna designs are implemented for dielectric measurement systems such
as crescent-shaped patch and slotted partial ground patch antenna [3,30], conventional
microstrip patch antenna [21,26], EBG Based Microstrip Patch Antenna [15], microstrip
rectangular patch with a grid pattern ground plane [28], SRR and CSRR-based microstrip
sensor [31,32], and TEM horn antenna [33–35], depending on whether the application
demands high gain, efficiency, and a consistent radiation pattern for improved sensitivity
in the depiction of materials property. Several methods are proposed for achieving higher
gain such as using dielectric [36] and metamaterial lenses [37], placing parasitic elliptical
patch [38], electromagnetic bandgap (EBG) [39], adding profiled dielectric directors [40],
applying negative index material (NIM) [41]. zero-index material (ZIM) [42], frequency-
selective surface (FSS) [43], and dielectric slab [44]. However, achieving effective gain
improvements using several known approaches in a small region within the antenna is still
a complex, challenging, and time-consuming process. The feeding network determines
the performance of an antenna. Because the feeding network part takes up most of the
precious area, many of them are not symmetrically distributed. Therefore, the size of the
feeding structures should be counted while constructing antennas. Various feeding array
structures (e.g., SIW binary splitter, SIW power dividers, grounded coplanar waveguide
(GCPW), T-junction power divider, combined T-type and Y-type dividers, four-way SIW
power divider, a two-way power divider, and a 1-to-8 power divider network [45–53]) are
proposed in various studies for improving overall antenna performance either in terms
of optimizing insertion loss or increasing frequency bandwidth. However, most power
dividers are in-phase power dividers designed to feed a certain number of antenna arrays
with the same amplitude and phase at the output, which, when used in the system, results
in beam splitting at a higher frequency. To overcome this limitation among different feeding
techniques, uniform amplitude out of phase uniplanar power divider feeding approach
over a large frequency range is used. The feeding is a T-junction formed by a slot line and a
microstrip line for both podal and antipodal antenna designs. In the case of podal antennas,
the microstrip line has a Chebyshev transformation layout with each end terminating as a
two-feeding slot of Vivaldi antennas. This feeding arrangement results in a more uniform,
highly directive constructive field distribution at the antenna’s radiating end and offers a
wide antenna bandwidth.

In this work, for the first time, podal and antipodal microstrip Vivaldi antennas
connected with UWB radar module (NVA-R661 of Xethru Co., Oslo, Norway) [54] as a
sensor for polar fluid properties measurement are proposed. This arrangement limits the
use of complex equipment like network analyzer. The radar module can be used as a
low-cost alternative for the Vector Network Analyzer (VNA). The Xethru radar transceiver
is small, lightweight, and it provides quick and precise measurements at a reasonable cost,
mostly in this high-frequency band. The tests were carried out in free space on various
polar fluid materials in a polypropylene test tube for determining signal sample delay and
peak-to-peak amplitude of the received signals. The transmitting and receiving proposed
fabricated antennas are facing at an angle of 180 degrees to each other with a test object set in
the middle. The podal and antipodal antenna has a maximum realized gain of up to 11.3 dBi
and 10.4 dBi, respectively. Both the antenna work in the ultrawideband region. UWB
antennas enable the effective utilization of bandwidth at high data rates communication.
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Radar with UWB antennas is frequently employed in a variety of applications due to their
numerous benefits such as low power consumption and costs. The Xethru radar transceiver
work under the ultra-wideband frequency ranges from 5.3 GHz to 8.8 GHz. Hence, the
proposed podal and antipodal antennas have a bandwidth ranging from 2.4 to 16 GHz and
can be used as a transducer for the Xethru radar module. The paper is arranged as follows:
Section 2 presents the design of the proposed antenna and its feeding structure, Section 3
consists of the parametric study of simulated and measurement results and discussion, and
Section 4 discusses the operation of the antenna with experimental results on different test
samples with the proposed analogy. Finally, Section 5 is the conclusion of the work.

2. Antenna Design
2.1. Antenna Structure

The configuration of the proposed double slot podal and antipodal Vivaldi antennas
is shown in Figure 1a,b, respectively, with its optimal dimensions specified in Table 1.
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Figure 1. Structure of antenna with feed, substrate, and ground layer structure: (a) podal antenna;
(b) antipodal antenna.

Table 1. Parametric dimensions of the proposed two antennas structures.

Parameters Podal Antenna (mm) Antipodal Antenna (mm)

Ls 70.69 89.88

Ws 72 74

Fw 1.14 1.14

Fy, Fx, Fr, Sr 13, 6.01, 1.71, 2.28 13, 6.0, 3.42, 2.73

Sl, Sw 3.9, 0.28 4.74, 0.3

Px 23.78 11.14

P1 39 72.56

Vr 2.85 –
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Table 1. Cont.

Parameters Podal Antenna (mm) Antipodal Antenna (mm)

V3 – 19.43

V4 – 20.57

Gl – 17.31

Gw – 48

Vs 0.58 –

Pr 1.71 –

The feeding section of the antennas makes up the microstrip to slot line and slot to
microstrip line power transitions shown in Figure 2, where both ends of the microstrip lines
are out of phase with one another. Both antennas were designed on a Taconic substrate
(εr = 4.5, tan δ = 0.0035). The size of the antenna is 70.69 mm × 72 mm × 0.6 mm and
89.88 mm × 74 mm × 0.6 mm. The top side of the podal antennas has a 50-ohm microstrip
feedline to slotline and slotline to three-quarter wave Chebyshev transformer feeding
microstrip line transition network whereas on the bottom side is a ground plane with two
exponential tapering radiating patches. The antipodal antenna has an elliptical tapered
patch variation through the edge of the ground plane. The T-junction, which is formed by
connecting a slot line to a microstrip Chebyshev transformer feedline, splits the power to
each line end by 180 ± 5 degrees, resulting in a steady radiation pattern. The three-section
Chebyshev transformer matches a 50-ohm to 100-ohm microstrip line that feeds the podal
antenna’s two exponential tapering slots E1 and E2. Similarly, in both the radiating and
ground planes, the antipodal antenna includes three elliptical curves, E3, E4, and E5, which
are stated in terms of the values of the parameters indicated in Table 1 by the following:

E1 : x =
1
2
(Px + Vs(exp(y

ln
(

Px
Vs

)
Ls − Fy − Vr

))) ; (0 ≤ y ≤ (Ls − Fy − Vr)
)
, (1)

E2 : x =
1
2
(Px − Vs(exp(y

ln
(

Px
Vs

)
W4

2 + Pl
))) ;

(
0 ≤ y ≤ W4

2
+ Pl

)
, (2)

E3 : y =
2V3

Gw − Px

√(
Gw − Px

2

)2
− x2 ;

(
−
(

Ws − Gw

2

)
≤ x ≤ −

(
Gw − Px

2

))
, (3)

E4 : y =
2V4

Gw − Px + 2Fw

√(
Gw − Px + 2Fw

2

)2
− x2 ;

(
−
(

Ws − Gw

2

)
≤ x ≤ −

(
Gw − Px + 2Fw

2

))
, (4)

E5 : y = −
(

2(Ls − Gl)

Px

) √(
Px

2

)2
− x2 ;

(
−
(

Px

2

)
≤ x ≤ 0

)
, (5)
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Figure 2. Structure of out-of-phase feeding microstrip line with Chebyshev multi-section 50 Ω to 
100 Ω matching transformers designee using the following method [55]. The width of the calculated 
characteristics impedance of the three-section microstrip lines with reflection coefficient 0.05 for Ta-
conic substrate of thickness 0.6 mm is W0 = 1.14 mm, W1 = 0.89 mm, W2 = 0.59 mm, W3 = 0.37 mm, 
and W4 = 0.25 mm. The length of each width of the section (W1 to W4) is a quarter of (Px/10) given 
that the total feeding length Px is 24 mm. 
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Figure 2. Structure of out-of-phase feeding microstrip line with Chebyshev multi-section 50 Ω to
100 Ω matching transformers designee using the following method [55]. The width of the calculated
characteristics impedance of the three-section microstrip lines with reflection coefficient 0.05 for
Taconic substrate of thickness 0.6 mm is W0 = 1.14 mm, W1 = 0.89 mm, W2 = 0.59 mm, W3 = 0.37 mm,
and W4 = 0.25 mm. The length of each width of the section (W1 to W4) is a quarter of (Px/10) given
that the total feeding length Px is 24 mm.
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2.2. Design of the Feeding Structure

The schematic of the proposed slot to microstrip T-junction power divider topology
is shown in Figure 2, representing the feeding section of the fabricated podal antenna
prototype. The three-quarter wave Chebyshev transformer feeding lines have a different
width and are used to match the slot impedance of 100 ohms. In this figure, W1, W2, W3,
and W4 represent the transition linewidth connecting the microstrip line and a radial stub.

If “p” and “p’” represent the power output at the two ends of the feeding network
of the podal antenna, and “f” represents the input power through the SMA connector, the
simulated S-parameter (Sff) of the power divider is below 10 dB, supporting the proposed
antenna’s operating frequency range of 2.5–14.6 GHz, as shown in Figure 3a. The simulated
insertion loss (Spf and Sp’f) spans from 4.4 dB to 6.5 dB. As shown in Figure 3b, the power
divider yields equal power divisions with a phase difference (Spf − Sp’f) of 180 ± 5 degrees
and almost equal and opposite magnitude between the two outputs.
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3. Results and Discussion

Using commercially available high-frequency structure simulator (HFSS) software,
the proposed antenna is optimized and modeled. The simulation and measurement results
are depicted in Figure 4. Figure 4a displays that the suggested podal and antipodal
antennas have an impedance bandwidth of less than 10 dB between (2.4–15.4 GHz) and
(2.8–16 GHz). Figure 4b shows that the realized gain is less than 11.3 dBi throughout the
whole bandwidth, with a close agreement between measured and simulated outcomes.
At 10, 12, and 13 GHz, the simulated and measured results differ slightly, which can be
attributed to connector losses due to dimension imperfection and parasitic effect, fabrication
errors during the etching process, and inadequate soldering of the feed line to the connector,
and substrate properties.

Figure 5 illustrates the measured 2D radiation patterns of the designed antennas at 5,
6, 8, 10, and 13 GHz frequencies in the anechoic chamber room as shown in Figure 6c, using
a far-field analysis system. The radiation patterns of the antenna are almost directional
in both the E-plane (x–y plane) and the H-plane (z–y plane), which is one of the required
directive properties for podal and antipodal antennas. Figure 6a,b show the simulated
electric field distribution at 7 GHz; it can be seen that the electric field radiated due to
a change in surface current at each tapering slot of the antennas superimposed to form
a directive beam. Similarly, Figure 6c represents the measured 3 dB beamwidth of the
constituent antenna whereas Figure 6d signifies simulated radiation efficiency.
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Figure 4. Simulated and measured result of the antenna: (a) return loss; (b) realized gain.
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The radiation performance and feed system of the suggested antennas are compared
to that of previous known podal and antipodal antennas in Table 2. As indicated in the
table, most antenna systems employ a T-junction power divider. In comparison to the
existing ultra-wideband antennas, the suggested antenna offers feed management, compact
size, and gain.
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Table 2. Comparison of the proposed antennas with other antennas in terms of gain, size, and
feed system.

Ref. Frequency Range
(GHz) Feed System Size (mm2) Gain (dBi)

[52] 8–12 SIW 1 × 8 power divider 100 × 57 12

[56] 2.5–15 T-junction power divider 120 × 80 14.5

[57] 26.1–28.3 SIW Right-Angled Power Dividers – 8.5

[58] 7–32 microstrip feeding 140 × 66 12

[59] 25–31 4 × 4 butler matrix 29.52 × 20.52 10.2

Proposed antenna
(podal) 2.4–15.4 T-junction power divider with slot

and Chebyshev microstrip line 70.69 × 72 11.3

Proposed antenna
(antipodal) 2.8–16 T-junction power divider with slot

microstrip line 89.88 × 74 10.4

4. Experimental Study and Results

After testing the suggested antenna design, the experiment was carried out in a
controlled environment for measuring the fluid’s properties based on Poiseuille’s law
hypothesis. The test’s goal is to measure and evaluate the change in received signals
transmitted through fluid samples placed in a polypropylene test tube diameter of 3 cm
and 1 mm in thickness positioned within these two transmitting and receiving antennas
in both podal and antipodal design configurations. These investigations are intended to
build up measurement techniques of fluid resistance over transmitted waves for assessing
fluid characteristics over different test parameters and identifying the materials being used
through radar-based systems. As a material-under-test (MUT), 47 ml of seven different
polar fluid samples are taken, namely ethanol, methanol, 2-propanol, acetonitrile, and
distilled water.

4.1. Experimental Setup

As illustrated in Figure 7, the setup includes a UWB radar module (NVA-X2 R661 from
Xethru Co., Oslo, Norway), a tripod stand, RF cables, supporting Styrofoam, a test tube
containing the specimen, connectors connecting to the PC, and proposed antenna modules.
To house the test specimen (Figure 7e), the Styrofoam is grooved in the shape of a test tube.
The two antennas facing each other are mounted in the Styrofoam, with the specimen at
the center as shown in Figure 7c,d.
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Figure 7. Experimental measurement setup: (a) proposed podal antenna scanning the MUT;
(b) proposed antipodal antenna scanning MUT; (c) podal antenna with MUT side view; (d) antipodal
antenna MUT side view and; (e) Test tubes containing the specimen.

The NVA-X2 R661’s chip generates and transmits UWB pulses of high-order Gaussian
impulse signals with several GHz bandwidths and signal durations in the nanosecond
range. The high-frequency signal was chosen based on the antenna’s maximum gain and
return loss, as well as the radar’s capacity to transmit deep within the object with great
resolution. The impulse signals were tuned around the antenna’s operational bandwidth,
by a PGselect input with a peak-to-peak output amplitude of around 0.54 to 0.72 volts. The
criterion of λc/4 satisfied the minimum separation of antennas distance, of 3 cm facing
parallel to each other. Figure 8 illustrates the time and frequency domain responses in
nanoseconds for the chosen ( fc) at 5.3 GHz.
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4.2. Signal Analyzing

Background signal and noise are inherent in the transmitted signals as they pass
through the test specimen, so the received signals are significantly attenuated. The received
raw signal is cross-correlated with the template signal (Figure 8a), which is generated by
the X2 chipset to yield a correlated signal. This aids the signal in obtaining the maximum
signal-to-noise ratio and correlates the received signal pattern with a low signal variation.
The Xethru radar module’s PGSelect command is used to adjust the list of frequencies of
the transmitted impulse signal. Figure 9a,b depict the raw signal and correlated signal
with and without MUT on 5.3 GHz transmitted impulse signals where we can see that the
level of received signals when passing through MUT are highly attenuated and delayed
due to signal losses and absorption by the MUT. The correlated signals obtained with and
without MUT (ethanol) as shown in Figure 10a are resampled 10:1 of the original rate
(Figure 10b) to fill in all the missing points at the peaks and smooth the signals between
the two frame positions, and finally, 150 samples around the maximum peak value of the
signals obtained with and without MUT are chosen and then cross-correlated to detect the
highest delay points. The maximum delay duration (∆t) of the transmitted signal in a MUT
sample is found by multiplying the radar sampling periods by the delay points. Figure 11
depicts the resampled signal levels at various MUT. As seen in the figures, each MUT
corresponds to a different signal level and delay in a frame, which is one of the unique
traits used to anticipate the MUT’s samples. Finally using these characteristics, the time
delay and attenuation of transmitted electromagnetic waves at various radar transmission
frequencies in a MUT are estimated on electromagnetic wave analogue based on Poiseuille’s
law hypothesis and used to determine the fluid characteristic using Equation (10).
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Figure 9. The received pulse shape and correlated signals from IR-UWB radar for 5.3 GHz transmis-
sion: (a) without MUT; (b) with MUT.
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Figure 10. Correlated received pulse signals with and without MUT (ethanol) for PGSelect = 0;
(a) correlated signals; (b) resample correlated signals.
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4.3. Working Assumption

The flow rate of liquid, Q, in a cylindrical tube is determined by Poiseuille’s law [60]

Q =
(P2 − P1)πr4

8ξl
, (6)

where P2 and P1 are the pressures at the tube’s input and exit ends. r and l are the tube’s
inner diameter and length and ξ is the liquid viscosity. By rearranging the above equation,
the viscosity can be calculated as

ξ =
(P2 − P1)πr4

8Ql
, (7)

The relationship between flow rate, pressure difference, tube length and radius, and
fluid viscosity is probably interpreted by developing an analogy between the laminar flow
of fluid in a tube and the travel of electromagnetic waves through a material that has a
resistive property to slow the wave.

The pressure exerted per unit area by the transmitting wave through a podal or
antipodal antenna having a width (Ws) on a test tube holding MUT is influenced by the
change in velocity for a given time interval. If P2 and P1 are the pressures experienced
and Va, Vm are the transmitting wave velocities in a test tube without and with MUT
respectively, then the pressure P2 exerted on a test tube without MUT is zero, whereas
the pressure P1 experienced by MUT is the difference in wave velocity (Va and Vm) per
maximum time of flight (tm) for given tube inner diameter (l) containing MUT. The change
in pressure per unit area is then calculated as

P2 − P1 =
(Va − Vm)

tm
, (8)

The flow rate Q can be defined as the velocity of a wave per time of flight through a
medium and is proportional to the factor of peak-to-peak received signal voltage level (Pa
and Pm) with MUT and without MUT and can be expressed as

Q =
Vm

tm
× α, (9)

where, α = Pm
Pa

.
Equation (8) can be rearranged based on the time of flight. By replacing the terms Va

and Vm with l/ta and l/tm . r with half an antenna width, and rearranging Equations (8)
and (9) on Equation (7), we obtain the following:

ξ =
(tm − ta)π

(
Ws
2

)4

8αtal
(10)

Here (tm − ta) is the maximum delay duration (∆t) which can be calculated by multi-
plying the radar sampling periods by the delay points. ta is the time taken by radar impulse
to cover the inner diameter l of the test tube without MUT in a test tube.

4.4. Measurements

The experiments were performed in free space on a range of polar fluid materials in a
1 mm thick polypropylene test tube, including ethanol, methanol, propanol, Acetonitrile,
and distilled water around 25 degrees Celsius in its pure form. The transmitting and
receiving antennas are positioned at a 180-degree angle to each other, with a test item in
the center. With a center frequency ( fc) of 5.3 GHz, 5.7 GHz, 6.4 GHz, 6.8 GHz, 7.8 GHz,
and 8.2 GHz, and a peak-to-peak output amplitude of 0.54 to 0.72 volts, the transmitted
impulse signals were adjusted around the antenna’s operational bandwidth. The resistive
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property of the MUT is calculated by knowing the values of various measured parameters
for each transmitted frequency. As shown in Figure 12, the factor α for each fluid MUT at
various transmitted radar impulse frequencies using both podal and antipodal antennae
are distinct from each other.
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Figure 12. The ratio of peak-to-peak voltage level with and without fluid MUT at different transmitted
impulse frequency transmission trough using (a) podal antenna; (b) antipodal antenna.

Similarly, delay in a sample obtained from cross-correlation between the two-sample
frames of MUT and without MUT are plotted in Figure 13. Because higher frequency
signals attenuate faster than lower frequency signals, the signal-to-noise ratio is very low
at higher frequencies, losses in the connecting cables, as well as parasitic effects on the
soldered area around the SMA connector, affecting the measurement and delay of the
samples. Figure 14 depict the resistivity or viscosity due to MUT on electromagnetic wave
transmitted at different impulse frequencies using Equation (10). From the plot, we can see
the electromagnetic wave interacting differently for each fluid sample, which may be used
to forecast the nature of the fluid and its behavior for different transmission frequencies.
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Figure 13. Delay in samples at different transmitting impulse frequencies trough MUT using (a) podal
antenna; (b) antipodal antenna.
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5. Conclusions

A feed system consisting of a high gain podal and antipodal antenna on a single
substrate layer using a power splitter based out of phase uniplanar power divider approach
has been presented. The antenna exhibits a uniform amplitude out of phase uniplanar
power divider feeding methodology over a large frequency range. The feeding has a
T-junction formed by a slot line and a microstrip line for both podal and antipodal antenna
designs. The podal microstrip feed line consists of Chebyshev multi-section matching
transformers. The proposed antennas have maximum realized gain up to 11.3 dBi and a
3 dB beamwidth range from 89.6 to 29.01 degrees for podal and 10.4 dBi, 135 to 39.5 degrees
for antipodal antennas, respectively, within ultra-wideband regions of bandwidth from
(2.4–15.4 GHz) and (2.8–16 GHz). Broad bandwidth, high gain, and strong directivity
are all benefits of the suggested antenna, making it a viable option for applications that
need broad bandwidth communication. The feeding system is compact, eliminates the
beam-splitting effect, and significantly enhances the radiation directivity of the antenna
arrays. The fabricated antenna is deployed in the detection of the MUT samples, and
its viscous property is based on Poiseuille’s law hypothesis. To begin, radar scans were
taken on the samples, and delay in the scanned signal from with and without MUT is
calculated. Achieved delay is used to calculate the resistance or viscosity experienced by
the flow of waves to the material. The MUT placed on the systems detecting the fluid nature
and viscosity confirms that the proposed antenna is suitable for use in microwave liquid
viscosity imaging and fluid prediction application. The overall graphical representation of
a proposed idea in this paper can be illustrated in Figure 15.
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